1
|
Akiyama H, Barke L, Bevers TB, Rose SJ, Hu JJ, McAleese KA, Campos SS, Kondou S, Atsumi J, Soriano TF. Performance of a Logistic Regression Model Using Paired miRNAs to Stratify Abnormal Mammograms for Benign Breast Lesions. Cancer Med 2025; 14:e70767. [PMID: 40231553 PMCID: PMC11997706 DOI: 10.1002/cam4.70767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Mammography is effective in reducing breast cancer mortality, but it has false positive results that cause subsequent interventions such as biopsy or interval repeat mammography. Thus, there is a clinical unmet need for accurate molecular classifiers that can reduce unnecessary additional imaging and/or invasive diagnostic procedures for low-risk women. METHOD We performed miRNA profiling on a prospectively collected serum specimen obtained from each of the 432 subjects who received an abnormal mammogram or imaging result and then selected 265 subjects for further analysis. The miRNA classifier, named EarlyGuard, was generated based on a novel logistic regression model using "paired miRNAs" where the two miRNAs of interest exhibit the same properties. RESULTS The classifier developed using the training set of 174 subjects enrolled at seven investigative sites resulted in a negative predictive value (NPV) and a sensitivity of 96.4% and 91.2%, respectively. The classifier was validated using the test set consisting of 91 subjects enrolled at three investigative sites, two of which were not included in the training set. The resulting NPV and sensitivity were estimated similarly to be 96.9% and 95.8%, respectively. CONCLUSIONS Our miRNA classifier has produced promising results that could be used in conjunction with mammography or other imaging procedures to reduce unnecessary invasive diagnostic procedures for women who are unlikely to have a suspicious or worse result on a subsequent diagnostic biopsy. Additional studies will be conducted in larger cohorts to determine if the sensitivity of the classifier will be improved.
Collapse
Affiliation(s)
| | - Lora Barke
- Invision Sally Jobe/Radiology Imaging AssociatesEnglewoodColoradoUSA
| | - Therese B. Bevers
- Division of OVP, Department of Clinical Cancer Prevention, Cancer Prevention and Population SciencesThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Suzanne J. Rose
- Department of Research and Discovery, Stamford Health, Breast CenterStamford HealthStamfordConnecticutUSA
| | - Jennifer J. Hu
- Department of Public Health ScienceUniversity of Miami School of MedicineMiamiFloridaUSA
| | | | | | | | | | | |
Collapse
|
2
|
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors 2025; 51:e2146. [PMID: 39601401 DOI: 10.1002/biof.2146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Breast cancer, a complex and heterogeneous ailment impacting numerous women worldwide, persists as a prominent cause of cancer-related fatalities. MicroRNAs (miRNAs), small non-coding RNAs, have garnered significant attention for their involvement in breast cancer's progression. These molecules post-transcriptionally regulate gene expression, influencing crucial cellular processes including proliferation, differentiation, and apoptosis. This review provides an overview of the current research on the role of miRNAs in breast cancer. It discusses the role of miRNAs in breast cancer, including the different subtypes of breast cancer, their molecular characteristics, and the mechanisms by which miRNAs regulate gene expression in breast cancer cells. Additionally, the review highlights recent studies identifying specific miRNAs that are dysregulated in breast cancer and their potential use as diagnostic and prognostic biomarkers. Furthermore, the review explores the therapeutic potential of miRNAs in breast cancer treatment. Preclinical studies have shown the effectiveness of miRNA-based therapies, such as antagomir and miRNA mimic therapies, in inhibiting tumor growth and metastasis. Emerging areas, including the application of artificial intelligence (AI) to advance miRNA research and the "One Health" approach that integrates human and animal cancer insights, are also discussed. However, challenges remain before these therapies can be fully translated into clinical practice. In conclusion, this review emphasizes the significance of miRNAs in breast cancer research and their potential as innovative diagnostic and therapeutic tools. A deeper understanding of miRNA dysregulation in breast cancer is essential for their successful application in clinical settings. With continued research, miRNA-based approaches hold promise for improving patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Abhishek Ranga
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
3
|
Takemoto Y, Ito D, Komori S, Kishimoto Y, Yamada S, Hashizume A, Katsuno M, Nakatochi M. Comparing preprocessing strategies for 3D-Gene microarray data of extracellular vesicle-derived miRNAs. BMC Bioinformatics 2024; 25:221. [PMID: 38902629 PMCID: PMC11188187 DOI: 10.1186/s12859-024-05840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Extracellular vesicle-derived (EV)-miRNAs have potential to serve as biomarkers for the diagnosis of various diseases. miRNA microarrays are widely used to quantify circulating EV-miRNA levels, and the preprocessing of miRNA microarray data is critical for analytical accuracy and reliability. Thus, although microarray data have been used in various studies, the effects of preprocessing have not been studied for Toray's 3D-Gene chip, a widely used measurement method. We aimed to evaluate batch effect, missing value imputation accuracy, and the influence of preprocessing on measured values in 18 different preprocessing pipelines for EV-miRNA microarray data from two cohorts with amyotrophic lateral sclerosis using 3D-Gene technology. RESULTS Eighteen different pipelines with different types and orders of missing value completion and normalization were used to preprocess the 3D-Gene microarray EV-miRNA data. Notable results were suppressed in the batch effects in all pipelines using the batch effect correction method ComBat. Furthermore, pipelines utilizing missForest for missing value imputation showed high agreement with measured values. In contrast, imputation using constant values for missing data exhibited low agreement. CONCLUSIONS This study highlights the importance of selecting the appropriate preprocessing strategy for EV-miRNA microarray data when using 3D-Gene technology. These findings emphasize the importance of validating preprocessing approaches, particularly in the context of batch effect correction and missing value imputation, for reliably analyzing data in biomarker discovery and disease research.
Collapse
Affiliation(s)
- Yuto Takemoto
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan
| | - Daisuke Ito
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shota Komori
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Kishimoto
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Atsushi Hashizume
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-Ku, Nagoya, 461-8673, Japan.
| |
Collapse
|
4
|
Biegała Ł, Kołat D, Gajek A, Płuciennik E, Marczak A, Śliwińska A, Mikula M, Rogalska A. Uncovering miRNA-mRNA Regulatory Networks Related to Olaparib Resistance and Resensitization of BRCA2MUT Ovarian Cancer PEO1-OR Cells with the ATR/CHK1 Pathway Inhibitors. Cells 2024; 13:867. [PMID: 38786089 PMCID: PMC11119970 DOI: 10.3390/cells13100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFβR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFβ1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Jana Matejki 21/23, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
5
|
Greco M, Mirabelli M, Salatino A, Accattato F, Aiello V, Brunetti FS, Chiefari E, Pullano SA, Fiorillo AS, Foti DP, Brunetti A. From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures. Diagnostics (Basel) 2023; 13:2443. [PMID: 37510186 PMCID: PMC10377827 DOI: 10.3390/diagnostics13142443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Aiello
- Department of Precision Medicine, Vanvitelli University, 80133 Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore A Pullano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonino S Fiorillo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Choi YY, Kim A, Lee Y, Lee YH, Park M, Shin E, Park S, Youn B, Seong KM. The miR-126-5p and miR-212-3p in the extracellular vesicles activate monocytes in the early stage of radiation-induced vascular inflammation implicated in atherosclerosis. J Extracell Vesicles 2023; 12:e12325. [PMID: 37140946 PMCID: PMC10158827 DOI: 10.1002/jev2.12325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
People exposed to radiation in cancer therapy and nuclear accidents are at increased risk of cardiovascular outcomes in long-term survivors. Extracellular vesicles (EVs) are involved in radiation-induced endothelial dysfunction, but their role in the early stage of vascular inflammation after radiation exposure remains to be fully understood. Herein, we demonstrate that endothelial cell-derived EVs containing miRNAs initiate monocyte activation in radiation-induced vascular inflammation. In vitro co-culture and in vivo experimental data showed that endothelial EVs can be sensitively increased by radiation exposure in a dose-dependent manner, and stimulate monocytes releasing monocytic EVs and adhesion to endothelial cells together with an increase in the expression of genes encoding specific ligands for cell-cell interaction. Small RNA sequencing and transfection using mimics and inhibitors explained that miR-126-5p and miR-212-3p enriched in endothelial EVs initiate vascular inflammation by monocyte activation after radiation exposure. Moreover, miR-126-5p could be detected in the circulating endothelial EVs of radiation-induced atherosclerosis model mice, which was found to be tightly correlated with the atherogenic index of plasma. In summary, our study showed that miR-126-5p and miR-212-3p present in the endothelial EVs mediate the inflammatory signals to activate monocytes in radiation-induced vascular injury. A better understanding of the circulating endothelial EVs content can promote their use as diagnostic and prognostic biomarkers for atherosclerosis after radiation exposure.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Younghyun Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Yang Hee Lee
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Mineon Park
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Eunguk Shin
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Sunhoo Park
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
7
|
Liang Q, Jin W, Huang Z, Yin H, Liu S, Liu L, Song X, Wang Z, Fei J. A plasma 3-marker microRNA biosignature distinguishes spinal tuberculosis from other spinal destructive diseases and pulmonary tuberculosis. Front Cell Infect Microbiol 2023; 13:1125946. [PMID: 36926516 PMCID: PMC10011472 DOI: 10.3389/fcimb.2023.1125946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Accurate spinal tuberculosis (TB) diagnosis is of utmost importance for adequately treating and managing the disease. Given the need for additional diagnostic tools, this study aimed to investigate the utility of host serum miRNA biomarkers for diagnosing and distinguishing spinal tuberculosis (STB) from pulmonary tuberculosis (PTB) and other spinal diseases of different origins (SDD). For a case-controlled investigation, a total of 423 subjects were voluntarily recruited, with 157 cases of STB, 83 cases of SDD, 30 cases of active PTB, and 153 cases of healthy controls (CONT) in 4 clinical centers. To discover the STB-specific miRNA biosignature, a high-throughput miRNA profiling study was performed in the pilot study with 12 cases of STB and 8 cases of CONT using the Exiqon miRNA PCR array platform. A bioinformatics study identified that the 3-plasma miRNA combination (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) might serve as a candidate biomarker for STB. The subsequent training study developed the diagnostic model using multivariate logistic regression in training data sets, including CONT(n=100) and STB (n=100). Youden's J index determined the optimal classification threshold. Receiver Operating Characteristic (ROC) curve analysis showed that 3-plasma miRNA biomarker signatures have an area under the curve (AUC) = 0.87, sensitivity = 80.5%, and specificity = 80.0%. To explore the possible potential to distinguish spinal TB from PDB and other SDD, the diagnostic model with the same classification threshold was applied to the analysis of the independent validation data set, including CONT(n=45), STB(n=45), brucellosis spondylitis (BS, n=30), PTB (n=30), spinal tumor (ST, n=30) and pyogenic spondylitis (PS, n=23). The results showed diagnostic model based on three miRNA signatures could discriminate the STB from other SDD groups with sensitivity=80%, specificity=96%, Positive Predictive Value (PPV)=84%, Negative Predictive Value (NPV)=94%, the total accuracy rate of 92%. These results indicate that this 3-plasma miRNA biomarker signature could effectively discriminate the STB from other spinal destructive diseases and pulmonary tuberculosis. The present study shows that the diagnostic model based on 3-plasma miRNA biomarker signature (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) may be used for medical guidance to discriminate the STB from other spinal destructive disease and pulmonary tuberculosis.
Collapse
Affiliation(s)
- Qiang Liang
- Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, China
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Weidong Jin
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhigang Huang
- Department of Orthopedics, The Third People’s Hospital of Shenzhen, Shenzhen, China
| | - Huquan Yin
- Department of Biochemistry, Inteliex Biomedical Corp, Tampa, FL, United States
| | - Shengchun Liu
- Department of Orthopedics, The Tenth People’s Hospital of Shenyang, Shenyang, China
| | - Liehua Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangwei Song
- Department of Orthopaedics, First Affiliated Hospital of Xinxiang Medical College, Weihui, China
| | - Zili Wang
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Spine Surgery, Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, Shaanxi, China
- *Correspondence: Zili Wang, ; Jun Fei,
| | - Jun Fei
- Department of Orthopedics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Zili Wang, ; Jun Fei,
| |
Collapse
|
8
|
Circulating cell-free micro-RNA as biomarkers: from myocardial infarction to hypertension. Clin Sci (Lond) 2022; 136:1341-1346. [PMID: 36129059 DOI: 10.1042/cs20220056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA) are small, single strand non-coding RNA molecules involved in the post-transcriptional regulation of target genes. Since their discovery in 1993, over 2000 miRNAs have been identified in humans and there is growing interest in both the diagnostic and therapeutic potential of miRNA. The identification of biomarkers for human disease progression remains an active area of research, and there is a growing number of miRNA and miRNA combinations that have been linked to the development and progression of numerous cardiovascular diseases, including hypertension. In 2010, Chen et al. reported in Clinical Science that cell-free circulating miRNA could serve as novel biomarkers for acute myocardial infarction [1]. In this commentary, we expand on this topic to discuss the potential of using miRNA as biomarkers for hypertension and hypertension-related end-organ damage.
Collapse
|