1
|
Tan L, Kong W, Zhou K, Wang S, Liang J, Hou Y, Dou H. FoxO1 Deficiency in Monocytic Myeloid-Derived Suppressor Cells Exacerbates B Cell Dysfunction in Systemic Lupus Erythematosus. Arthritis Rheumatol 2025; 77:423-438. [PMID: 39492682 PMCID: PMC11936497 DOI: 10.1002/art.43046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Myeloid-derived suppressor cells (MDSCs) contribute to the pathogenesis of systemic lupus erythematosus (SLE), in part due to promoting the survival of plasma cells. FoxO1 expression in monocytic MDSCs (M-MDSCs) exhibits a negative correlation with the SLE Disease Activity Index score. This study aimed to investigate the hypothesis that M-MDSC-specific FoxO1 deficiency enhances aberrant B cell function in aggressive SLE. METHODS We used GEO data sets and clinical cohorts to verify the clinical significance of FoxO1 expression and circulating M-MDSCs. Using Cre-LoxP technology, we generated myeloid FoxO1 deficiency mice (mFoxO1-/-) to establish murine lupus-prone models. The transcriptional stage was assessed by integrating chromatin immunoprecipitation (ChIP)-sequencing with transcriptomic analysis, luciferase reporter assay, and ChIP-quantitative polymerase chain reaction. Methylated RNA immunoprecipitation sequencing, RNA sequencing, and CRISPR-dCas9 were used to identify N6-adenosine methylation (m6A) modification. In vitro B cell coculture experiments, capmatinib intragastric administration, m6A-modulated MDSCs adoptive transfer, and sample validation of patients with SLE were performed to determine the role of FoxO1 on M-MDSCs dysregulation during B cell autoreacted with SLE. RESULTS We present evidence that low FoxO1 is predominantly expressed in M-MDSCs in both patients with SLE and lupus mice, and mice with myeloid FoxO1 deficiency (mFoxO1-/-) are more prone to B cell dysfunction. Mechanically, FoxO1 inhibits mesenchymal-epithelial transition factor protein (Met) transcription by binding to the promoter region. M-MDSCs FoxO1 deficiency blocks the Met/cyclooxygenase2/prostaglandin E2 secretion pathway, promoting B cell proliferation and hyperactivation. The Met antagonist capmatinib effectively mitigates lupus exacerbation. Furthermore, alkB homolog 5 (ALKBH5) targeting catalyzes m6A modification on FoxO1 messenger RNA in coding sequences and 3' untranslated regions. The up-regulation of FoxO1 mediated by ALKBH5 overexpression in M-MDSCs improves lupus progression. Finally, these correlations were confirmed in untreated patients with SLE. CONCLUSION Our findings indicate that effective inhibition of B cells mediated by the ALKBH5/FoxO1/Met axis in M-MDSCs could offer a novel therapeutic approach to manage SLE.
Collapse
Affiliation(s)
- Liping Tan
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Wei Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Kangxing Zhou
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Shuangan Wang
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Jun Liang
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingPeople's Republic of China
| | - Yayi Hou
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| | - Huan Dou
- Nanjing University, The State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjingPeople's Republic of China
| |
Collapse
|
2
|
Hong L, Huang F, Hu Z, Dong Q, Kong Y, Zheng X, Li M, Cui Y. Role of PD-1 in modulating IFN-γ-CXCL9/10-CXCR3 signaling in breast cancer. J Biochem Mol Toxicol 2024; 38:e23842. [PMID: 39588744 DOI: 10.1002/jbt.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 11/27/2024]
Abstract
Breast cancer represents a significant health burden globally, necessitating ongoing advancements in treatment strategies for improved patient outcomes. Immunotherapy, particularly targeting immune checkpoints like programmed death-1 (PD-1), has emerged as a promising approach in cancer therapy. This study focuses on elucidating the role of PD-1 in modulating the IFN-γ-CXCL9/10-CXCR3 signaling axis within the breast cancer microenvironment. By investigating the synergistic effects of PD-1 inhibitors in combination with Inetetamab, our research aims to uncover novel therapeutic targets for enhancing immunotherapy efficacy in breast cancer. Through comprehensive experimental analysis, we seek to deepen our understanding of the intricate molecular mechanisms underlying immune regulation in breast cancer, thereby paving the way for more effective and sustainable treatment strategies. Ultimately, our study endeavors to establish a robust theoretical framework that can guide the development of innovative clinical interventions, aiming for improved outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Lei Hong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Huang
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zexian Hu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Dong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Kong
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuan Zheng
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Man Li
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanzhi Cui
- Department of Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Naithani U, Jain P, Sachan A, Khare P, Gabrani R. MicroRNA as a potential biomarker for systemic lupus erythematosus: pathogenesis and targeted therapy. Clin Exp Med 2023; 23:4065-4077. [PMID: 37921874 DOI: 10.1007/s10238-023-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with hyperactive innate and adaptive immune systems that cause dermatological, cardiovascular, renal, and neuropsychiatric problems in patients. SLE's multifactorial nature and complex pathogenesis present significant challenges in its clinical classification. In addition, unpredictable treatment responses in patients emphasize the need for highly specific and sensitive SLE biomarkers that can assist in understanding the exact pathogenesis and, thereby, lead to the identification of novel therapeutic targets. Recent studies on microRNA (miRNA), a non-coding region involved in the regulation of gene expression, indicate its importance in the development of the immune system and thus in the pathogenesis of various autoimmune disorders such as SLE. miRNAs are fascinating biomarker prospects for SLE categorization and disease monitoring owing to their small size and high stability. In this paper, we have discussed the involvement of a wide range of miRNAs in the regulation of SLE inflammation and how their modulation can be a potential therapeutic approach.
Collapse
Affiliation(s)
- Urshila Naithani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Priyanjal Jain
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Aastha Sachan
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Prachi Khare
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India.
| |
Collapse
|
5
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
6
|
Wang Z, Dai R, Ahmed SA. MicroRNA-183/96/182 cluster in immunity and autoimmunity. Front Immunol 2023; 14:1134634. [PMID: 36891312 PMCID: PMC9986322 DOI: 10.3389/fimmu.2023.1134634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in ubiquitous biological processes, including immune-related pathways. This review focuses on the miR-183/96/182 cluster (miR-183C), which contains three miRNAs, miR-183, -96, and -182, having almost identical seed sequences with minor differences. The similarity among seed sequences allows these three miRNAs to act cooperatively. In addition, their minor differences permit them to target distinct genes and regulate unique pathways. The expression of miR-183C was initially identified in sensory organs. Subsequently, abnormal expression of miR-183C miRNAs in various cancers and autoimmune diseases has been reported, implying their potential role in human diseases. The regulatory effects of miR-183C miRNAs on the differentiation and function of both innate and adaptive immune cells have now been documented. In this review, we have discussed the complex role of miR-183C in the immune cells in both normal and autoimmune backgrounds. We highlighted the dysregulation of miR-183C miRNAs in several autoimmune diseases, including systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ocular autoimmune disorders, and discussed the potential for utilizing miR-183C as biomarkers and therapeutic targets of specific autoimmune diseases.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| | - Sattar Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|