1
|
Bai HY, Li TT, Sun LN, Zhang JH, Kang XH, Qu YQ. Development of a Novel Prognostic Model for Lung Adenocarcinoma Utilizing Pyroptosis-Associated LncRNAs. Anal Cell Pathol (Amst) 2025; 2025:4488139. [PMID: 39834603 PMCID: PMC11745560 DOI: 10.1155/ancp/4488139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
Lung cancer is a highly prevalent and fatal cancer that seriously threatens the safety of people in various regions around the world. Difficulty in early diagnosis and strong drug resistance have always been difficulties in the treatment of lung cancer, so the prognosis of lung cancer has always been the focus of scientific researchers. This study used genotype-tissue expression (GTEx) and the cancer genome atlas (TCGA) databases to obtain 477 lung adenocarcinoma (LUAD) and 347 healthy individuals' samples as research subjects and divided LUAD patients into low-risk and high-risk groups based on prognostic risk scores. Differentially expressed gene (DEG) analysis was performed on 25 pyroptosis-related genes obtained from GeneCards and MSigDB databases in cancer tissues of LUAD patients and noncancerous tissues of healthy individuals, and seven genes were significantly different in cancer tissues and noncancerous tissues among them. Coexpression analysis and differential expression analysis of these genes and long noncoding RNAs (lncRNAs) found that three lncRNAs (AC012615.1, AC099850.3, and AO0001453.2) had significant differences in expression between cancer tissues and noncancerous tissues. We used Cox regression and the least absolute shrinkage sum selection operator (LASSO) regression to construct a prognostic model for LUAD patients with these three pyroptosis-related lncRNAs (pRLs) and analyzed the prognostic value of the pRLs model by the Likaplan-Meier curve and Cox regression. The results show that the risk prediction model has good prediction ability. In addition, we also studied the differences in tumor mutation burden (TMB), tumor immune dysfunction and rejection (TIDE), and immune microenvironment with pRLs risk scores in low-risk and high-risk groups. This study successfully established a LUAD prognostic model based on pRLs, which provides new insights into lncRNA-based LUAD diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Hong-Yan Bai
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Tian-Tian Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Li-Na Sun
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Jing-Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Xiu-He Kang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| |
Collapse
|
2
|
Ye GQ, Wang MD, Diao YK, Li C, Yao LQ, Gu LH, Xu JH, Yang T, Tong XM. Deciphering the Role of Necroptosis-Related Long Non-coding RNAs in Hepatocellular Carcinoma: A Necroptosis-Related lncRNA-Based Signature to Predict the Prognosis of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2025; 197:313-334. [PMID: 39115788 DOI: 10.1007/s12010-024-05014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by a high morbidity rate. Long non-coding RNAs (lncRNAs) play an important role in regulating various cellular processes and diseases, including cancer. However, their specific roles and mechanisms in HCC are not fully understood. This study used a multi-cohort design to investigate necroptosis-related lncRNAs (NRLs) in patients with HCC. We curated a list of 1095 NRLs and 838 genes showing differential expression between tumor and normal tissues. Among them, we found 105 NRLs closely associated with the prognosis of HCC patients. The 10 lncRNAs (AC100803.3, AC027237.2, AL158166.1, LINC02870, AC026412.3, LINC02159, AC027097.1, AC139887.4, AC007405.1, AL023583.1) generated by LASSO-Cox regression analysis were used to create a prognostic risk model for HCC and group patients into groups based on risk. The KEGG analysis revealed distinct pathway enrichments in high-risk (H-R) and low-risk (L-R) subgroups. According to GO analysis, this study identified 230 differentially expressed genes (DEGs) that were significantly enriched in specific biological processes. Comparison of immune checkpoint-related genes (MCPGs) between H-R and L-R patients revealed significant differences. Moreover, we established a correlation between the risk scores of patients with liver cancer and their sensitivity to 16 chemotherapeutic agents. Employing protein-protein interaction (PPI) analysis, we identified 10 hub genes that potentially regulate the molecular networks involved in HCC development. This study is a pioneering effort to investigate the roles of NRLs in HCC. It opens a new avenue for potential targeted therapies and provides insights into the molecular mechanisms of HCC.
Collapse
Affiliation(s)
- Gao-Qi Ye
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Yong-Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Lan-Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Jia-Hao Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), No. 225, Changhai Road, Yangpu District, Shanghai, 200438, China.
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Xiang-Min Tong
- Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Yang Z, Li X, Zhou L, Luo Y, Zhan N, Ye Y, Liu Z, Zhang X, Qiu T, Lin L, Peng L, Hu Y, Pan C, Sun M, Zhang Y. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microenvironment and predicting immunotherapy response in bladder cancer. Heliyon 2024; 10:e32018. [PMID: 38867969 PMCID: PMC11168393 DOI: 10.1016/j.heliyon.2024.e32018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis, a cell death pathway dependent on iron, has been shown in research to play a role in the development, advancement, and outlook of tumours through ferroptosis-related lncRNAs (FRLRs). However, the value of the FRLRs in bladder cancer (BLCA) has not been thoroughly investigated. This research project involved developing a predictive model using ten specific FRLRs (AC099850.4, AL731567.1, AL133415.1, AC021321.1, SPAG5-AS1, HMGA2-AS1, RBMS3-AS3, AC006160.1, AL583785.1, and AL662844.4) through univariate COX and LASSO regression techniques. The validation of this signature as a standalone predictor was confirmed in a group of 65 patients from the urology bladder tumour database at the First Affiliated Hospital of Wenzhou Medical University in Wenzhou, China. Patients were categorized based on their median risk score into either a low-risk group or a high-risk group. Enrichment analysis identified possible molecular mechanisms that could explain the variations in clinical outcomes observed in high-risk and low-risk groups. Moreover, we explored the correlation between FLPS and immunotherapy-related indicators. The ability of FLPS to forecast the effectiveness of immunotherapy was validated by the elevated levels of immune checkpoint genes (PD-L1, CTLA4, and PD-1) in the group at high risk. We also screened the crucial FRLR (HMGA2-AS1) through congruent expression and prognostic conditions and established a ceRNA network, indicating that HMGA2-AS1 may affect epithelial-mesenchymal transition by modulating the Wnt signalling pathway through the ceRNA mechanism. We identified the top five mRNAs (NFIB, NEGR1, JAZF1, JCAD, and ESM1) based on random forest algorithm and analysed the relationship between HMGA2-AS1, the top five mRNAs, and immunotherapy, and their interactions with drug sensitivities. Our results suggest that patients with BLCA have a greater sensitivity to four drugs (dasatinib, pazopanib, erismodegib and olaparib). Our study provides new insights into the TME, key signalling pathways, genome, and potential therapeutic targets of BLCA, with future guidance for immunotherapy and targeted precision drugs.
Collapse
Affiliation(s)
- Zhan Yang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoqi Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lijun Zhou
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yifan Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yiming Hu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaoran Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
4
|
Ye W, Li H, Zhao J, Lu D, Tao T, Zhu X. Graphene therapy-related lncRNAs as prognostic and immune microenvironmental biomarkers in hepatocellular carcinoma. Transl Oncol 2024; 43:101915. [PMID: 38368713 PMCID: PMC10884496 DOI: 10.1016/j.tranon.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Graphene materials have the capacity to influence the tumor microenvironment and intracellular signaling responsiveness. However, the process of graphene-assisted liver cancer treatment still lacks specific biomarkers for assessing its efficacy. METHODS We identified graphene therapy-related lncRNAs (GTLncRNAs) through gene analysis and correlation tests. Multivariate COX and LASSO regression analyses yielded significant lncRNAs for a risk score model. We evaluated clinicopathological factors and tumor microenvironment using ssGSEA. We scrutinized the pathways of immune function, the evasion of tumor immunity, and the potential for immunotherapy. GTLncRNAs with differential expression were subjected to GO/KEGG analysis, and prospective chemotherapy drugs were discerned utilizing the pRRophetic algorithm. The prognostic model was authenticated through the examination of the Imvigor210 cohort, and an analysis of mRNA stemness was executed. RESULTS The researchers constructed a prognostic model based on 22 graphene therapy-related lncRNAs. Protective lncRNAs (AC010280.2, AL365361.1, and LINC01549) and negative lncRNAs (AC026412.3, AL031985.3, ELFN1-AS1, SNHG4, and EB2-AS1) were identified. Higher risk scores correlated with shorter survival. Low-risk immune pathways included Type_II_IFN_Reponse and cytolytic_activity. Subgroups differed significantly in TMB, TIDE, MDSC, exclusion, and dysfunction. Low TMB values correlated with longer survival. The high-risk subgroup showed increased sensitivity to screened compounds, and mRNAsi was higher in cancer tissue. CONCLUSIONS Our GTLncRNAs-based model accurately predicted survival of HCC patients and underscored the influence of graphene therapy-related genes on the tumor microenvironment. Potential treatment compounds were identified, and the mRNAsi index demonstrated prognostic value.
Collapse
Affiliation(s)
- Weilong Ye
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China
| | - Hui Li
- Department of Internal Medicine, Huadu District People's Hospital of Guangzhou (The Third School of Clinical Medicine, Southern Medical University), PR China
| | - Juan Zhao
- Department of the Clinical Laboratory, Huadu District People's Hospital of Guangzhou (The Third School of Clinical Medicine, Southern Medical University), PR China
| | - Deshuai Lu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, PR China.
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, PR China.
| |
Collapse
|
5
|
Wang H, Wang W. Unlocking the future of hepatocellular carcinoma treatment: A comprehensive analysis of disulfidptosis-related lncRNAs for prognosis and drug screening. Open Med (Wars) 2024; 19:20240919. [PMID: 38584823 PMCID: PMC10998672 DOI: 10.1515/med-2024-0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 04/09/2024] Open
Abstract
Background The disulfide stress-induced cell death known as disulfidptosis is characterized by the disintegration of cytoskeletal proteins and F-actin as a result of an excessive buildup of disulfides within the cell. The relationship between disulfidptosis-associated long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC) progression is still not clearly understood. In this article, we aim to explore the crucial role of lncRNA in HCC. Methods We initially obtained lncRNA related to HCC and clinical data from TCGA. The genes associated with disulfidptosis were identified through co-expression analysis, Cox regression, and Lasso regression. Additionally, we established a prognostic model for verification. Results The risk model constructed with disulfidptosis-related lncRNA has been confirmed to be a good predictor of high and low-risk groups of HCC patients through survival curves, independent prognostic analysis, concordance index (C-index), ROC curves, and Kaplan-Meier plots. We also discovered differences in the response to immune targets and anticancer drugs between the two groups of patients, with GDC0810, Osimertinib, Paclitaxel, and YK-4-279 being more effective for patients in the high-risk group. Conclusion In conclusion, we have developed a risk model that can guide future efforts to diagnose and treat HCC.
Collapse
Affiliation(s)
- Haojun Wang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Capital Medical University, Beijing, 100071, China
| | - Wei Wang
- Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
- Capital Medical University, Beijing, 100071, China
| |
Collapse
|
6
|
Tan J, Yu X. A pyroptosis-related lncRNA-based prognostic index for hepatocellular carcinoma by relative expression orderings. Transl Cancer Res 2024; 13:1406-1424. [PMID: 38617506 PMCID: PMC11009817 DOI: 10.21037/tcr-23-1804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
Background Hepatocellular carcinoma (HCC) is an invasive malignant tumor, and pyroptosis makes an important contribution to the pathology and progression of liver cancer. Many prognostic models have been proposed for HCC based on the quantitative expression level of candidate genes, which are unsuitable for clinical application due to their vulnerability against experimental batch effects. The aim of this study was to develop a novel pyroptosis-related long non-coding RNA (lncRNA)-based prognostic index (PLPI) for HCC based on relative expression orderings (REOs). Methods Firstly, the pyroptosis-related lncRNAs were identified through the Wilcoxon rank-sum test and gene co-expression analyses. Then, the novel prognostic model PLPI was constructed by pyroptosis-related lncRNA pairs, which were identified by multiple machine learning algorithms. Gene set enrichment, somatic mutation, and drug sensitivity analyses were conducted to measure the differences between high- and low-risk patients. Multiple immune analyses were used to explore the association between PLPI and the immunological microenvironment. Results In this study, a novel prognostic model PLPI based on 10 pyroptosis-related lncRNA pairs was constructed, which was proven to be an independent prognostic risk factor. The receiver operating characteristic (ROC) curves showed that the model had a good prognostic ability in the training, testing, and external set, respectively [5-year area under the curve (AUC) =0.73, 5-year AUC =0.81, 4-year AUC =0.79]. The results of survival, somatic mutation, and immune analyses showed that the patients in the low-risk group had a better prognosis, lower rates of somatic mutation, and better immune cell infiltration. Personalized chemotherapeutic drugs were also identified for the patients with HCC. Conclusions The novel PLPI not only greatly predicted the prognosis of patients with HCC but could also offer novel ideas and approaches for the therapeutic management of HCC.
Collapse
Affiliation(s)
- Jinhua Tan
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Xiaoqing Yu
- School of Sciences, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
7
|
Zhang H, Wang J, Yang M. A novel disulfidptosis-related lncRNA signature for predicting prognosis and potential targeted therapy in hepatocellular carcinoma. Medicine (Baltimore) 2024; 103:e36513. [PMID: 38277541 PMCID: PMC10817158 DOI: 10.1097/md.0000000000036513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/16/2023] [Indexed: 01/28/2024] Open
Abstract
Disulfidptosis is a recently discovered mode of cell death with a significant role in cancer. Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes including oncogenesis, invasion, and metastasis. In this work, we developed an lncRNA signature associated with disulfidptosis for prediction of survival of hepatocellular carcinoma (HCC) patients. Detailed HCC expression profiles and clinical information were obtained from The Cancer Genome Atlas, and 599 differentially expressed disulfidptosis-related lncRNAs were identified through Pearson correlation analysis. Finally, by the least absolute shrinkage and selection operator method, we constructed an HCC prognostic model containing 7 disulfidptosis-related lncRNAs. We split patients into high- and low-risk groups based on the risk values generated by this model and showed that patients in the high-risk group had shorter overall survival times. In the training dataset, receiver operating characteristic curves for 1-, 3-, and 5-year survival were drawn according to the standard (0.788, 0.801, 0.803) and internal validation set (0.684, 0.595, 0.704) to assess the efficacy of the signature. Risk value was confirmed as an independent predictor and used to construct a nomogram in combination with several clinical factors. We further assessed the signature with respect to tumor immune landscape, gene set enrichment analysis, principal component analysis, tumor mutation burden, tumor immune dysfunction and exclusion, and drug sensitivity. High-risk patients had higher immune function scores, except for type II IFN response, whereas low-risk patients had significantly lower tumor immune dysfunction and rejection scores, indicating that they were more sensitive to immune checkpoint inhibitors. Drug sensitivity analysis showed that low-risk patients could benefit more from certain anti-tumor drugs, including sulafenib. In summary, we have constructed a novel signature that shows good performance in predicting survival of patients with HCC and may provide new insights for targeted tumor therapy.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Jiaojie Wang
- Department of Haematology, the First Hospital of Jilin University, Cancer Center, Changchun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Li H, Jiang H, Huang Z, Chen Z, Chen N. Construction and validation of cuproptosis-related lncRNA prediction signature for bladder cancer and immune infiltration analysis. Aging (Albany NY) 2023; 15:8325-8344. [PMID: 37616061 PMCID: PMC10496989 DOI: 10.18632/aging.204972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023]
Abstract
Bladder cancer (BC) is a common urologic tumor with a high recurrence rate. Cuproptosis and long noncoding RNAs (lncRNAs) have demonstrated essential roles in the tumorigenesis of many malignancies. Nevertheless, the prognostic value of cuproptosis-related lncRNA (CRLs) in BC is still unclear. The public data used for this study were acquired from the Cancer Genome Atlas database. A comprehensive exploration of the expression profile, mutation, co-expression, and enrichment analyses of cuproptosis-related genes was performed. A total of 466 CRLs were identified using Pearson's correlation analysis. 16 prognostic CRLs were then retained by univariate Cox regression. Unsupervised clustering divided the patients into two clusters with diverse survival outcomes. The signature consists of 7 CRLs was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analyses. Survival curves and receiver operating characteristics showed the prognostic signature possessed good predictive value, which was validated in the testing and entire sets. The reliability and stability of our signature were further confirmed by stratified analysis. Additionally, the signature-based risk score was confirmed as an independent prognostic factor. Gene set enrichment analysis showed molecular alteration in the high-risk group was closely associated with cancer. We then developed the clinical nomogram using independent prognostic indicators. Notably, the infiltration of immune cells and expression of immune checkpoints were higher in the high-risk group, suggesting that they may benefit more from immunotherapy. In summary, the prognostic signature might effectively predict the prognosis and provide new insight into the clinical treatment of BC patients.
Collapse
Affiliation(s)
- Hanrong Li
- Department of Extracorporeal Shock Wave Lithotripsy, Meizhou People’s Hospital (Huangtang Hospital), Meizhou 514031, China
| | - Huiming Jiang
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Meizhou 514031, China
| | - Zhicheng Huang
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Meizhou 514031, China
| | - Zhilin Chen
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Meizhou 514031, China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital (Huangtang Hospital), Meizhou 514031, China
| |
Collapse
|
9
|
Wu T, Li N, Luo F, Chen Z, Ma L, Hu T, Hong G, Li H. Screening prognostic markers for hepatocellular carcinoma based on pyroptosis-related lncRNA pairs. BMC Bioinformatics 2023; 24:176. [PMID: 37120506 PMCID: PMC10148420 DOI: 10.1186/s12859-023-05299-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Pyroptosis is closely related to cancer prognosis. In this study, we tried to construct an individualized prognostic risk model for hepatocellular carcinoma (HCC) based on within-sample relative expression orderings (REOs) of pyroptosis-related lncRNAs (PRlncRNAs). METHODS RNA-seq data of 343 HCC samples derived from The Cancer Genome Atlas (TCGA) database were analyzed. PRlncRNAs were detected based on differentially expressed lncRNAs between sample groups clustered by 40 reported pyroptosis-related genes (PRGs). Univariate Cox regression was used to screen out prognosis-related PRlncRNA pairs. Then, based on REOs of prognosis-related PRlncRNA pairs, a risk model for HCC was constructed by combining LASSO and stepwise multivariate Cox regression analysis. Finally, a prognosis-related competing endogenous RNA (ceRNA) network was built based on information about lncRNA-miRNA-mRNA interactions derived from the miRNet and TargetScan databases. RESULTS Hierarchical clustering of HCC patients according to the 40 PRGs identified two groups with a significant survival difference (Kaplan-Meier log-rank, p = 0.026). Between the two groups, 104 differentially expressed lncRNAs were identified (|log2(FC)|> 1 and FDR < 5%). Among them, 83 PRlncRNA pairs showed significant associations between their REOs within HCC samples and overall survival (Univariate Cox regression, p < 0.005). An optimal 11-PRlncRNA-pair prognostic risk model was constructed for HCC. The areas under the curves (AUCs) of time-dependent receiver operating characteristic (ROC) curves of the risk model for 1-, 3-, and 5-year survival were 0.737, 0.705, and 0.797 in the validation set, respectively. Gene Set Enrichment Analysis showed that inflammation-related interleukin signaling pathways were upregulated in the predicted high-risk group (p < 0.05). Tumor immune infiltration analysis revealed a higher abundance of regulatory T cells (Tregs) and M2 macrophages and a lower abundance of CD8 + T cells in the high-risk group, indicating that excessive pyroptosis might occur in high-risk patients. Finally, eleven lncRNA-miRNA-mRNA regulatory axes associated with pyroptosis were established. CONCLUSION Our risk model allowed us to determine the robustness of the REO-based PRlncRNA prognostic biomarkers in the stratification of HCC patients at high and low risk. The model is also helpful for understanding the molecular mechanisms between pyroptosis and HCC prognosis. High-risk patients may have excessive pyroptosis and thus be less sensitive to immune therapy.
Collapse
Affiliation(s)
- Tong Wu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Na Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Fengyuan Luo
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Zhihong Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tao Hu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
10
|
Revealing Prognostic and Immunotherapy-Sensitive Characteristics of a Novel Cuproptosis-Related LncRNA Model in Hepatocellular Carcinoma Patients by Genomic Analysis. Cancers (Basel) 2023; 15:cancers15020544. [PMID: 36672493 PMCID: PMC9857215 DOI: 10.3390/cancers15020544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has shown strong anti-tumor activity in a subset of patients. However, many patients do not benefit from the treatment, and there is no effective method to identify sensitive immunotherapy patients. Cuproptosis as a non-apoptotic programmed cell death caused by excess copper, whether it is related to tumor immunity has attracted our attention. In the study, we constructed the prognostic model of 9 cuproptosis-related LncRNAs (crLncRNAs) and assessed its predictive capability, preliminarily explored the potential mechanism causing treatment sensitivity difference between the high-/low-risk group. Our results revealed that the risk score was more effective than traditional clinical features in predicting the survival of HCC patients (AUC = 0.828). The low-risk group had more infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells), mainly with anti-tumor immune function (p < 0.05). It showed higher sensitivity to immune checkpoint inhibitors (ICIs) treatment (p < 0.001) which may exert the effect through the AL365361.1/hsa-miR-17-5p/NLRP3 axis. In addition, NLRP3 mutation-sensitive drugs (VNLG/124, sunitinib, linifanib) may have better clinical benefits in the high-risk group. All in all, the crLncRNAs model has excellent specificity and sensitivity, which can be used for classifying the therapy-sensitive population and predicting the prognosis of HCC patients.
Collapse
|
11
|
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Immune Cell Infiltration in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9557690. [PMID: 36891559 PMCID: PMC9988371 DOI: 10.1155/2023/9557690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 03/02/2023]
Abstract
Background Hepatocellular carcinoma (HCC), ranking as one of the most common malignant tumors, is one of the leading causes of cancer death, with a poor prognosis. Cuproptosis, a novel programmed cell death modality that has just been confirmed recently, may play an important role in HCC prognosis. Long noncoding RNA (LncRNA) is a key participant in tumorigenesis and immune responses. It may be of great significance to predict HCC based on cuproptosis genes and their related LncRNA. Methods The sample data on HCC patients were obtained from The Cancer Genome Atlas (TCGA) database. Combined with cuproptosis-related genes collected from the literature search, expression analysis was carried out to find cuproptosis genes and their related LncRNAs significantly expressed in HCC. The prognostic model was constructed by least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression. The feasibility of these signature LncRNAs used for the evaluation of the overall survival rate in HCC patients as independent factors was investigated. The expression profile of cuproptosis, immune cell infiltration, and the status of somatic mutation were analyzed and compared. Results A prognostic model of HCC consisting of seven cuproptosis gene-related LncRNA signatures was constructed. Multiple verification methods have showed that this model can accurately predict the prognosis of HCC patients. It was showed that the classified high-risk group under the risk score of this model had worse survival status, more significant expression of the immune function, and higher mutation frequency. During the analysis, the cuproptosis gene CDKN2A was found to be most closely related to LncRNA DDX11-AS1 in the expression profile of HCC patients. Conclusion The cuproptosis-related signature LncRNA in HCC was identified, on the basis of which a model was constructed, and it was verified that it can be used to predict the prognosis of HCC patients. The potential role of these cuproptosis-related signature LncRNAs as new targets for disease therapy in antagonizing HCC development was discussed.
Collapse
|
12
|
Liu Y, Jiang J. A novel cuproptosis-related lncRNA signature predicts the prognosis and immunotherapy for hepatocellular carcinoma. Cancer Biomark 2023; 37:13-26. [PMID: 37005878 DOI: 10.3233/cbm-220259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most serious malignant tumors with a poor prognosis worldwide. Cuproptosis is a novel copper-dependent cell death form, involving mitochondrial respiration and lipoylated components of the tricarboxylic acid (TCA) cycle. Long non-coding RNAs (lncRNAs) have been demonstrated to affect the tumorigenesis, growth, and metastasis of HCC. OBJECTIVE We explored the potential roles of cuproptosis-related lncRNAs in predicting the prognosis for HCC. METHODS The RNA-seq transcriptome data, mutation data, and clinical information data of HCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analyses were performed to identify a prognostic cuproptosis-related lncRNA signature. The receiver operating characteristic (ROC) analysis was used to evaluate the predictive value of the lncRNA signature for HCC. The enrichment pathways, immune functions, immune cell infiltration, tumor mutation burden, and drug sensitivity were also analyzed. RESULTS We constructed a prognostic model consisting of 8 cuproptosis-related lncRNAs for HCC. The patients were divided into high-risk group and low-risk group according to the riskscore calculated using the model. Kaplan-Meier analysis revealed that the high-risk lncRNA signature was correlated with poor overall survival [hazard ratio (HR) =1.009, 95% confidence interval (CI) = 1.002-1.015; p= 0.010)] of HCC. A prognostic nomogram incorporated the lncRNA signature and clinicopathological features were constructed and showed favorable performance for predicting prognosis of HCC patients. In addition, the most immune-related functions were significantly different between the high-risk and low-risk groups. Tumor mutation burden (TMB) and immune checkpoints were also expressed differently between the two risk groups. Finally, HCC patients with low-risk score were more sensitive to several chemotherapy drugs. CONCLUSIONS The novel cuproptosis-related lncRNA signature could be used to predict prognosis and evaluate the effect of chemotherapy for HCC.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Laboratory Medicine, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Jianshuai Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
13
|
Construction of Pyroptosis-Related Prognostic and Immune Infiltration Signature in Bladder Cancer. DISEASE MARKERS 2022; 2022:6429993. [PMID: 36569221 PMCID: PMC9771655 DOI: 10.1155/2022/6429993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Pyroptosis is a kind of programmed cell death related to inflammation, which is closely related to cancer. The goal of this study is to establish and verify pyroptosis-related gene signature to predict the prognosis of patients with bladder cancer (BLCA) and explore its relationship with immunity. Somatic mutation, copy number variation, correlation, and expression of 33 pyroptosis-related genes were evaluated based on The Cancer Genome Atlas (TCGA) database. BLCA cases were divided into two clusters by consistent clustering and found that pyroptosis-related genes were related to the overall survival (OS) of BLCA. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the signature (including 7 pyroptosis-realated genes). Survival analysis curve and receiver operating characteristic curve (ROC) showed that this signature could predict the prognosis of BLCA patients. Univariate and multivariate Cox regression analysis showed the independent prognostic value of this model. Immune infiltration analysis showed that the six types of immune cells have significantly different infiltrations. The effect of immunotherapy is better in the low-risk group. In summary, our effort indicated the potential role of pyroptosis-related genes in BLCA and provided new perspectives on the prognosis of BLCA and new ideas for immunotherapy.
Collapse
|
14
|
Wu H, Qian D, Bai X, Sun S. Targeted Pyroptosis Is a Potential Therapeutic Strategy for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2515525. [PMID: 36467499 PMCID: PMC9715319 DOI: 10.1155/2022/2515525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023]
Abstract
As a type of regulated cell death (RCD) mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced by different stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the formation of the inflammasomes. The canonical pathway is triggered by the assembly of inflammasomes, and the activation of caspase-1 and then the cleavage of effector protein gasdermin D (GSDMD) are promoted. While in the noncanonical pathway, the caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of inflammasomes. Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and curcumin have effect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Clinical Medicine, Three Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Li X, Zhou W, Zhu C, Liu J, Ming Z, Ma C, Li Q. Multi-omics analysis reveals prognostic and therapeutic value of cuproptosis-related lncRNAs in oral squamous cell carcinoma. Front Genet 2022; 13:984911. [PMID: 36046246 PMCID: PMC9421074 DOI: 10.3389/fgene.2022.984911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research revealed copper and lncRNA can regulate tumor progression. Additionally, cuproptosis has been proven can cause cell death that may affect the development of tumor. However, there is little research focused on the potential prognostic and therapeutic role of cuproptosis-related lncRNA in OSCC patients.Methods: Data used were for bioinformatics analyses were downloaded from both the TCGA database and GEO database. The R software were used for statistical analysis. Mapping was done using the tool of FigureYa.Results: The signature consist of 7 cuproptosis-related lncRNA was identified through lasso and Cox regression analysis and a nomogram was developed. In addition, we performed genomic analyses including pathway enrichment analysis and mutation analysis between two groups. It was found that OSCC patients were prone to TP53, TTN, FAT1 and NOTCH1 mutations and a difference of mutation analysis between the two groups was significant. Results of TIDE analysis indicating that patients in low risk group were more susceptible to immunotherapy. Accordingly, results of subclass mapping analysis confirmed our findings, which revealed that patients with low riskscore were more likely to respond to immunotherapy.Conclusion: We have successfully identified and validated a novel prognostic signature with a strong independent predictive capacity. And we have found that patients with low riskscore were more susceptible to immunotherapy, especially PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenbin Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiechen Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zedong Ming
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Cong Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qing Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Qing Li,
| |
Collapse
|
16
|
Liu Y, Liu Y, Ye S, Feng H, Ma L. Development and validation of cuproptosis-related gene signature in the prognostic prediction of liver cancer. Front Oncol 2022; 12:985484. [PMID: 36033443 PMCID: PMC9413147 DOI: 10.3389/fonc.2022.985484] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Liver cancer is a generic term referring to several cancer types arising from the liver. Every year, liver cancer causes lots of deaths and other burdens to the people all over the world. Though the techniques in the diagnosis and therapy of liver cancer have undergone significant advances, the current status of treating liver cancer is not satisfactory enough. The improvement of techniques for the prognosis of liver cancer patients will be a great supplement for the treatment of liver cancer. Cuproptosis is a newly identified regulatory cell death type, which may have a close connection to liver cancer pathology. Here, we developed a prognostic model for liver cancer based on the cuproptosis-related mRNAs and lncRNAs. This model can not only effectively predict the potential survival of liver cancer patients, but also be applied to evaluate the infiltration of immune cell, tumor mutation burden, and sensitivity to anti-tumor drugs in liver cancer. In addition, this model has been successfully validated in lots of liver cancer patients' data. In summary, we wish this model can become a helpful tool for clinical use in the therapy of liver cancer.
Collapse
Affiliation(s)
- Yanqing Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shujun Ye
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Liu B, Liu Z, Feng C, Tu C. A Necroptosis-Related lncRNA Signature Predicts Prognosis and Indicates the Immune Microenvironment in Soft Tissue Sarcomas. Front Genet 2022; 13:899545. [PMID: 35795204 PMCID: PMC9251335 DOI: 10.3389/fgene.2022.899545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Background: The necroptosis and long noncoding RNA (lncRNA) are critical in the occurrence and development of malignancy, while the association between the necroptosis-related lncRNAs (NRlncRNAs) and soft tissue sarcoma (STS) remains controversial. Therefore, the present study aims to construct a novel signature based on NRlncRNAs to predict the prognosis of STS patients and investigate its possible role. Methods: The transcriptome data and clinical characteristics were extracted from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression database (GTEx). A novel NRlncRNA signature was established and verified by the COX regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Subsequently, the K-M survival analysis, ROC, univariate, multivariate Cox regression analysis, and nomogram were used to evaluate the predictive value of the signature. Also, a variety of bioinformatic analysis algorithms explored the differences between the potential mechanism, tumor immune status, and drug sensitivity in the two-risk group. Finally, the RT-qPCR was performed to evaluate the expression of signature NRlncRNAs. Results: A novel signature consisting of seven NRlncRNAs was successfully established and verified with stable prediction performance and general applicability for STS. Next, the GSEA showed that the patients in the high-risk group were mainly enriched with tumor-related pathways, while the low-risk patients were significantly involved in immune-related pathways. In parallel, we found that the STS patients in the low-risk group had a better immune status than that in the high-risk group. Additionally, there were significant differences in the sensitivity to anti-tumor agents between the two groups. Finally, the RT-qPCR results indicated that these signature NRlncRNAs were abnormally expressed in STS. Conclusion: To the best of our knowledge, it is the first study to construct an NRlncRNA signature for STS. More importantly, the novel signature displays stable value and translational potential for predicting prognosis, tumor immunogenicity, and therapeutic response in STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Chao Tu,
| |
Collapse
|