1
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
2
|
Tayae E, Osman EM, Tawfik MR, Hegazy N, Moaaz M, Ghazala RA. Expression Levels of Plasma YRNAs in Colorectal Cancer as a Potential Noninvasive Biomarker. J Gastrointest Cancer 2025; 56:81. [PMID: 40106048 DOI: 10.1007/s12029-025-01197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Colorectal cancer (CRC) is identified as the second leading cause of cancer-associated deaths worldwide. Therefore, there is ongoing research to discover new potential biomarkers enabling early and noninvasive diagnosis of the disease. YRNAs, a novel class of non-coding RNAs, have been identified as a new player in carcinogenesis and an independent class of clinical biomarkers in various malignancies. Nevertheless, the role of plasma YRNAs in CRC diagnosis and prognosis remains unknown. Therefore, the current study aimed to investigate the clinical significance of plasma YRNAs as a noninvasive biomarker for CRC. METHODS Plasma YRNAs expression was assessed in 50 newly diagnosed CRC patients as well as 50 age- and sex-matched healthy controls using quantitative reverse transcription polymerase chain reaction. RESULTS All plasma YRNAs expression levels were significantly higher in CRC patients than in controls. A significant correlation was observed between YRNA1 and YRNA3, and between YRNA1 and YRNA4. However, no significant correlation between YRNA1 and YRNA5 was identified. Plasma YRNA1 expression showed the highest diagnostic performance for the detection of CRC using the receiver operating characteristic curve analysis, with a sensitivity of 92% and a specificity of 90%. Nevertheless, when the four YRNAs were combined in a single ROC analysis, sensitivity decreased to 80%, while the specificity remained virtually unchanged. Moreover, significant association was observed between plasma YRNA1 and YRNA3 and tumor stage, grade, lymph node presence, metastasis, and lymphovascular invasion. CONCLUSIONS Plasma YRNA may serve as a potential noninvasive biomarker for the diagnosis and prognosis of CRC with high sensitivity and specificity vs. healthy controls.
Collapse
Affiliation(s)
- Eman Tayae
- Clinical Pathology Department, Alexandria University, Alexandria, Egypt.
- Faculty of Medicine, Champollion Street, Alexandria, Egypt.
| | - Eman M Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Marwa R Tawfik
- Internal Medicine Department, Alexandria University, Alexandria, Egypt
| | - Neamat Hegazy
- Clinical Oncology and Nuclear Medicine Department, Alexandria University, Alexandria, Egypt
| | - Marwa Moaaz
- Department of Human Physiology, Medical Research Institute, Alexandria, Egypt
| | - Rasha A Ghazala
- Medical Biochemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Tao W, Sun Q, Xu B, Wang R. Towards the Prediction of Responses to Cancer Immunotherapy: A Multi-Omics Review. Life (Basel) 2025; 15:283. [PMID: 40003691 PMCID: PMC11856636 DOI: 10.3390/life15020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor treatment has undergone revolutionary changes with the development of immunotherapy, especially immune checkpoint inhibitors. Because not all patients respond positively to immune therapeutic agents, and severe immune-related adverse events (irAEs) are frequently observed, the development of the biomarkers evaluating the response of a patient is key for the application of immunotherapy in a wider range. Recently, various multi-omics features measured by high-throughput technologies, such as tumor mutation burden (TMB), gene expression profiles, and DNA methylation profiles, have been proved to be sensitive and accurate predictors of the response to immunotherapy. A large number of predictive models based on these features, utilizing traditional machine learning or deep learning frameworks, have also been proposed. In this review, we aim to cover recent advances in predicting tumor immunotherapy response using multi-omics features. These include new measurements, research cohorts, data sources, and predictive models. Key findings emphasize the importance of TMB, neoantigens, MSI, and mutational signatures in predicting ICI responses. The integration of bulk and single-cell RNA sequencing has enhanced our understanding of the tumor immune microenvironment and enabled the identification of predictive biomarkers like PD-L1 and IFN-γ signatures. Public datasets and machine learning models have also improved predictive tools. However, challenges remain, such as the need for large and diverse clinical datasets, standardization of multi-omics data, and model interpretability. Future research will require collaboration among researchers, clinicians, and data scientists to address these issues and enhance cancer immunotherapy precision.
Collapse
Affiliation(s)
- Weichu Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Qian Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| | - Bingxiang Xu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (W.T.); (Q.S.)
| |
Collapse
|
4
|
Karlsson L, Öhrnberg I, Sayyab S, Martínez-Enguita D, Gustafsson M, Espinoza P, Méndez-Aranda M, Ugarte-Gil C, Diero L, Tonui R, Paues J, Lerm M. A DNA Methylation Signature From Buccal Swabs to Identify Tuberculosis Infection. J Infect Dis 2025; 231:e47-e58. [PMID: 38962817 PMCID: PMC11793033 DOI: 10.1093/infdis/jiae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/29/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) is among the largest infectious causes of death worldwide, and there is a need for a time- and resource-effective diagnostic methods. In this novel and exploratory study, we show the potential of using buccal swabs to collect human DNA and investigate the DNA methylation (DNAm) signatures as a diagnostic tool for TB. METHODS Buccal swabs were collected from patients with pulmonary TB (n = 7), TB-exposed persons (n = 7), and controls (n = 9) in Sweden. Using Illumina MethylationEPIC array, the DNAm status was determined. RESULTS We identified 5644 significant differentially methylated CpG sites between the patients and controls. Performing the analysis on a validation cohort of samples collected in Kenya and Peru (patients, n = 26; exposed, n = 9; control, n = 10) confirmed the DNAm signature. We identified a TB consensus disease module, significantly enriched in TB-associated genes. Last, we used machine learning to identify a panel of 7 CpG sites discriminative for TB and developed a TB classifier. In the validation cohort, the classifier performed with an area under the curve of 0.94, sensitivity of 0.92, and specificity of 1. CONCLUSIONS In summary, the result from this study shows clinical implications of using DNAm signatures from buccal swabs to explore new diagnostic strategies for TB.
Collapse
Affiliation(s)
- Lovisa Karlsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - Isabelle Öhrnberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - Shumaila Sayyab
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| | - David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | - Cesar Ugarte-Gil
- Facultad de Medicina
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ronald Tonui
- AMPATH Kenya
- Department of Pathology, Moi University, Eldoret, Kenya
| | - Jakob Paues
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Maria Lerm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences
| |
Collapse
|
5
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Wang D, Zhang Y, Li Q, Li Y, Li W, Zhang A, Xu J, Meng J, Tang L, Lyu S. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression. Genes Dis 2024; 11:101020. [PMID: 38988323 PMCID: PMC11233905 DOI: 10.1016/j.gendis.2023.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Accepted: 04/14/2023] [Indexed: 07/12/2024] Open
Abstract
Mutations or abnormal expression of oncogenes and tumor suppressor genes are known to cause cancer. Recent studies have shown that epigenetic modifications are key drivers of cancer development and progression. Nevertheless, the mechanistic role of epigenetic dysregulation in the tumor microenvironment is not fully understood. Here, we reviewed the role of epigenetic modifications of cancer cells and non-cancer cells in the tumor microenvironment and recent research advances in cancer epigenetic drugs. In addition, we discussed the great potential of epigenetic combination therapies in the clinical treatment of cancer. However, there are still some challenges in the field of cancer epigenetics, such as epigenetic tumor heterogeneity, epigenetic drug heterogeneity, and crosstalk between epigenetics, proteomics, metabolomics, and other omics, which may be the focus and difficulty of cancer treatment in the future. In conclusion, epigenetic modifications in the tumor microenvironment are essential for future epigenetic drug development and the comprehensive treatment of cancer. Epigenetic combination therapy may be a novel strategy for the future clinical treatment of cancer.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuhua Lyu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|
7
|
Saleem MA, Mustafa MS. Promoter Hypermethylation of the BRCA1 Gene as a Novel Biomarker for Prostate Cancer. Cureus 2024; 16:e66467. [PMID: 39246954 PMCID: PMC11380563 DOI: 10.7759/cureus.66467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) is recognized as one of the most common malignancies that greatly affects the male population globally. Breast cancer gene 1 (BRCA1) is an important tumor suppressor gene that plays a central role in the maintenance of genomic integrity by promoting the repair of double-strand breaks of DNA. Here, we present a pilot study to examine the promoter methylation and gene expression of the BRCA1 gene in patients with PCa in Erbil governorate, Iraq. The collection of samples took place in Erbil City, Iraq, specifically at Rizgary Hospital, PAR Hospital, and Al-Mufti's private laboratory. A total of 40 tissue samples were collected from age-matched individuals, comprising 30 pathologically confirmed PCa cases and 10 normal prostatic tissue taken from individuals who, during diagnosis, were found to be negative for PCa. Data on demographic and clinical information, such as pathological stage, age, and prostate-specific antigen (PSA) level, were gathered from the medical records. The impact of the promoter methylation was forecasted using the DNA bisulfite conversion technique and methyl-specific PCR (MSP) with specific primers for the BRCA1 promoter region. The assessment of BRCA1 expression was conducted using quantitative real-time PCR (qPCR). Among the 30 patients examined, 76.6% (23 cases) were found to have BRCA1 promoter methylation, and none of the normal tissues appeared to have DNA methylation. BRCA1 promoter methylation was positively associated with the advanced stage of disease (p=0.01) and Gleason score (p=0.007). The analysis revealed a significant downregulation of the BRCA1 gene expression in methylated tumor samples as compared to non-methylated tumors and normal tissues, suggesting the role of epigenetic silencing. To the best of our knowledge, this is the first study investigating methylation status and level of BRCA1 mRNA transcripts among PCa patients in Iraq. Our findings suggest that promoter hypermethylation of the BRCA1 gene could serve as a viable biomarker for PCa, marking a significant discovery.
Collapse
Affiliation(s)
- Mohammed A Saleem
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| | - Mustafa S Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
8
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
9
|
Lee J, Roh JL. Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr) 2023; 46:1605-1623. [PMID: 37438601 DOI: 10.1007/s13402-023-00840-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Ferroptosis is a newly recognized form of oxidative-regulated cell death resulting from iron-mediated lipid peroxidation accumulation. Radical-trapping antioxidant systems can eliminate these oxidized lipids and prevent disrupting the integrity of cell membranes. Epigenetic modifications can regulate ferroptosis by altering gene expression or cell phenotype without permanent sequence changes. These mechanisms include DNA methylation, histone modifications, RNA modifications, and noncoding RNAs. Epigenetic alterations in cancer can control the expression of ferroptosis regulators or related pathways, leading to changes in cell sensitivity to ferroptosis inducers or cancer progression. Epigenetic alterations in cancer are influenced by a wide range of cancer hallmarks, contributing to therapeutic resistance. Targeting epigenetic alterations is a promising approach to overcoming cancer resilience. However, the exact mechanisms involved in different types of cancer remain unresolved. Discovering more ferroptosis-associated epigenetic targets and interventions can help overcome current barriers in anticancer therapy. Many papers on epigenetic modifications of ferroptosis have been continuously published, making it essential to summarize the current state-of-the-art in the epigenetic regulation of ferroptosis in human cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, 13496, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
10
|
Maksimova V, Popova V, Prus A, Lylova E, Usalka O, Sagitova G, Zhidkova E, Makus J, Trapeznikova E, Belitsky G, Yakubovskaya M, Kirsanov K. Insights into the Mechanism of Curaxin CBL0137 Epigenetic Activity: The Induction of DNA Demethylation and the Suppression of BET Family Proteins. Int J Mol Sci 2023; 24:12874. [PMID: 37629054 PMCID: PMC10454690 DOI: 10.3390/ijms241612874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The development of malignant tumors is caused by a complex combination of genetic mutations and epigenetic alterations, the latter of which are induced by either external environmental factors or signaling disruption following genetic mutations. Some types of cancer demonstrate a significant increase in epigenetic enzymes, and targeting these epigenetic alterations represents a compelling strategy to reverse cell transcriptome to the normal state, improving chemotherapy response. Curaxin CBL0137 is a new potent anticancer drug that has been shown to activate epigenetically silenced genes. However, its detailed effects on the enzymes of the epigenetic system of transcription regulation have not been studied. Here, we report that CBL0137 inhibits the expression of DNA methyltransferase DNMT3a in HeLa TI cells, both at the level of mRNA and protein, and it decreases the level of integral DNA methylation in Ca Ski cells. For the first time, it is shown that CBL0137 decreases the level of BET family proteins, BRD2, BRD3, and BRD4, the key participants in transcription elongation, followed by the corresponding gene expression enhancement. Furthermore, we demonstrate that CBL0137 does not affect the mechanisms of histone acetylation and methylation. The ability of CBL0137 to suppress DNMT3A and BET family proteins should be taken into consideration when combined chemotherapy is applied. Our data demonstrate the potential of CBL0137 to be used in the therapy of tumors with corresponding aberrant epigenetic profiles.
Collapse
Affiliation(s)
- Varvara Maksimova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Valeriia Popova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Anzhelika Prus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Department of Biotechnology and Industrial Pharmacy, Lomonosov Institute of Fine Chemical Technologies, Russian Technological University (MIREA), 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Evgeniya Lylova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Olga Usalka
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Guzel Sagitova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Ekaterina Zhidkova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Julia Makus
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Ekaterina Trapeznikova
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
| | - Gennady Belitsky
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Institute of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478 Moscow, Russia; (V.M.); (V.P.); (A.P.); (E.L.); (O.U.); (E.Z.); (J.M.); (E.T.); (G.B.); (K.K.)
- Institute of Medicine, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
11
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|