1
|
Cianci R, Caldarelli M, Brani P, Bosi A, Ponti A, Giaroni C, Baj A. Cytokines Meet Phages: A Revolutionary Pathway to Modulating Immunity and Microbial Balance. Biomedicines 2025; 13:1202. [PMID: 40427029 PMCID: PMC12109214 DOI: 10.3390/biomedicines13051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Bacteriophages are a unique and fascinating group of viruses, known for their highly specific ability to infect and replicate within bacterial cells. While their potential as antibacterial agents has been recognized for decades, recent research has revealed complex interactions between phages and the human immune system, offering new insights into their role in immune modulation. New evidence reveals a dynamic and intricate relationship between phages and cytokines, suggesting their ability to regulate inflammation, immune tolerance, and host-pathogen interaction. Herein, we review how phages affect the production of cytokines and the behavior of immune cells indirectly by lysis of bacterium or directly on mammalian cells. Phages have been shown to induce both pro- and anti-inflammatory responses and recently, they have been explored in personalized immunotherapy, cancer immunotherapy, and microbiome modulation, which are the focus of this review. Several challenges remain despite significant progress, including practical obstructions related to endotoxins along with host microbiome variability and regulatory issues. Nevertheless, the potential of bacteriophages to modulate immune responses makes them attractive candidates for the future of precision medicine.
Collapse
Affiliation(s)
- Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Alessandra Ponti
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy; (P.B.); (A.B.); (A.P.); (C.G.); (A.B.)
- Laboratory of Microbiology, ASST Sette Laghi, 21100 Varese, Italy
| |
Collapse
|
2
|
Choi D, Ryu S, Kong M. Phage-derived proteins: Advancing food safety through biocontrol and detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2025; 24:e70124. [PMID: 39898971 PMCID: PMC11891642 DOI: 10.1111/1541-4337.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The emergence of antimicrobial-resistant foodborne pathogens poses a continuous health risk and economic burden as they can easily spread through contaminated food. Therefore, the demand for new antimicrobial agents to address this problem is steadily increasing. Similarly, the development of rapid, sensitive, and accurate pathogen detection tools is a prerequisite for ensuring food safety. Phage-derived proteins have become innovative tools for combating these pathogens because of their potent antimicrobial activity and host specificity. Phage proteins are relatively free from regulation compared to phages per se, and there are no concerns about the transduction of harmful genes. With recent progress in next-generation sequencing technology, the analysis of phage genomes has become more accessible, and numerous phage proteins with potential for biocontrol and detection have been identified. This review provides a comprehensive overview of phage protein research on food safety from 2006 to the present, a pivotal period marked by the certification of phages as Generally Recognized As Safe (GRAS). Emphasizing recent advancements, we investigated the diverse applications of various phage proteins for biocontrol and detection purposes. While highlighting the successful implementation of these proteins, we also address the current bottlenecks and propose strategies to overcome these challenges. By summarizing the current state of research on phage-derived proteins, this review contributes to a deeper understanding of their potential as effective antimicrobial agents and tools for detecting foodborne pathogens.
Collapse
Affiliation(s)
- Dahee Choi
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Institute of Food and BiotechnologySeoul National University of Science and TechnologySeoulSouth Korea
| |
Collapse
|
3
|
Godsil M, Ritz NL, Venkatesh S, Meeske AJ. Gut phages and their interactions with bacterial and mammalian hosts. J Bacteriol 2025; 207:e0042824. [PMID: 39846747 PMCID: PMC11844821 DOI: 10.1128/jb.00428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter." This community of gut-residing bacteriophages, called the gut "phageome," plays a central role in the gut microbiome through predation and transformation of native gut bacteria, and through interactions with their mammalian hosts. In this review, we will summarize what is known about the composition and origins of the gut phageome, as well as its role in microbiome homeostasis and host health. Furthermore, we will outline the interactions of gut phages with their bacterial and mammalian hosts, and plot a course for the mechanistic study of these systems.
Collapse
Affiliation(s)
- Marshall Godsil
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | | | - Alexander J. Meeske
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Valencia-Toxqui G, Ramsey J. How to introduce a new bacteriophage on the block: a short guide to phage classification. J Virol 2024; 98:e0182123. [PMID: 39264154 PMCID: PMC11494874 DOI: 10.1128/jvi.01821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Bacteriophage (phage) studies established the field of molecular biology and continue to propel life science research forward due to their diversity, abundance, and potential applications. In this Gem article, we orient newcomers to four common ways phages are currently classified: infection cycle, morphology, taxonomy, and supergroup. By using these classifications, researchers can determine where any novel phage fits into the scheme of the known "phage-verse".
Collapse
Affiliation(s)
- Guadalupe Valencia-Toxqui
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|