1
|
Eastham G, Fausnacht D, Becker MH, Gillen A, Moore W. Praziquantel resistance in schistosomes: a brief report. FRONTIERS IN PARASITOLOGY 2024; 3:1471451. [PMID: 39817170 PMCID: PMC11732111 DOI: 10.3389/fpara.2024.1471451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/10/2024] [Indexed: 01/18/2025]
Abstract
Schistosomiasis is a group of both acute and chronic parasitic trematode infections of the genus Schistosoma. Research into schistosomiasis has been minimal, leading to its classification as a neglected tropical disease, yet more than 140 million people are infected with schistosomes globally. There are no treatments available for early-stage infections, schistosomal dermatitis, or Katayama syndrome, other than symptomatic control with steroids and antihistamines, as the maturing organisms seem to be mostly resistant to typical antiparasitics. However, praziquantel (PZQ) has been the drug of choice for schistosomiasis for decades in the latter stages of the disease. Though it is effective against all three clinically relevant species, heavy reliance on PZQ has led to concerns of schistosome resistance, especially in areas that have implemented this drug in mass drug administration (MDA) programs. This article summarizes the available literature concerning the available evidence for and against a warranted concern for PZQ resistance, genomic studies in schistosomes, proposed mechanisms of resistance, and future research in alternative methods of schistosomiasis treatment.
Collapse
Affiliation(s)
- Gabriela Eastham
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA, United States
| | - Matthew H. Becker
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Alan Gillen
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| |
Collapse
|
2
|
Motlhatlhedi K, Pilusa NB, Ndaba T, George M, Masamba P, Kappo AP. Therapeutic and vaccinomic potential of moonlighting proteins for the discovery and design of drugs and vaccines against schistosomiasis. Am J Transl Res 2024; 16:4279-4300. [PMID: 39398578 PMCID: PMC11470331 DOI: 10.62347/bxrt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 10/15/2024]
Abstract
Despite significant and coordinated efforts to combat schistosomiasis, such as providing clean water, sanitation, hygiene, and snail control, these strategies still fall short, as regions previously thought to be disease-free have shown active schistosomiasis transmission. Therefore, it is necessary to implement integrated control methods, emphasizing vaccine development for sustainable control of schistosomiasis. Vaccination has significantly contributed to global healthcare and has been the most economically friendly method for avoiding pathogenic infections. Over the years, different vaccine candidates for schistosomiasis have been investigated with varying degrees of success in clinical trials with many not proceeding past the early clinical phase. Recently, proteins have been mentioned as targets for drug discovery and vaccine development, especially those with multiple functions in schistosomes. Moonlighting proteins are a class of proteins that can perform several functions besides their known functions. This multifunctional property is believed to have been expressed through evolution, where the polypeptide chain gained the ability to perform other tasks without undergoing any structural changes. Since proteins have gained more traction as drug targets, multifunctional proteins have thus become attractive for discovering and developing novel drugs since the drug can target more than one function. Moonlighting proteins are promising drug and vaccine candidates for diseases such as schistosomiasis, since they aid in disease promotion in the human host. This manuscript elucidates vital moonlighting proteins used by schistosomes to drive their life cycle and to ensure their survival in the human host, which can be used to develop anti-schistosomal therapeutics and vaccinomics.
Collapse
Affiliation(s)
- Kagiso Motlhatlhedi
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Naledi Beatrice Pilusa
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Tshepang Ndaba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Mary George
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBBS) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus Auckland Park, Johannesburg, South Africa
| |
Collapse
|
3
|
Aly NSM, Kim HS, Eraky MA, El Kholy AA, Ali BT, Miyoshi SI, Omar RE. Evaluation of schistosomula lung antigen preparation and soluble egg antigen vaccines on experimental schistosomiasis mansoni. PARASITES, HOSTS AND DISEASES 2023; 61:251-262. [PMID: 37648230 PMCID: PMC10471471 DOI: 10.3347/phd.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
Schistosomiasis causes significant morbidity and mortality worldwide. This study aimed to assess the effect of schistosomula lung antigen preparation (SLAP) and soluble egg antigen (SEA) on a murine schistosomiasis mansoni model. Ninety laboratory-bred male Swiss albino mice were divided into 6 groups. Two doses of the vaccine were given at 2-week intervals. All mice were subcutaneously infected with 80±10 Schistosoma mansoni cercariae 2 weeks after the last vaccination dose. They were sacrificed 7 weeks post-infection. Parasitological and histopathological studies were conducted to assess the effect of inoculated antigens (single or combined). The results showed that the combination of SLAP and SEA (combination group) led to a significant reduction in worm burden (65.56%), and liver and intestine egg count (59% and 60.59%, respectively). The oogram pattern revealed a reduction in immature and mature eggs (15±0.4 and 10±0.8, respectively) and an increased number of dead eggs in the combination group (P<0.001). In terms of histopathological changes, the combination group showed notably small compact fibrocellular egg granuloma and moderate fibrosis in the liver. A high percentage of destroyed ova was observed in the intestine of the combination group. This study demonstrates for the first time the prophylactic effect of combined SLAP and SEA vaccine. The vaccine induced a significant reduction in the parasitological and pathological impacts of schistosomiasis mansoni in hepatic and intestinal tissues, making it a promising vaccine candidate for controlling schistosomiasis.
Collapse
Affiliation(s)
- Nagwa S. M. Aly
- Department of Parasitology, Benha Faculty of Medicine, Benha University,
Egypt
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Hye-Sook Kim
- Division of International Infectious Diseases Control, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530,
Japan
| | - Maysa A. Eraky
- Department of Parasitology, Benha Faculty of Medicine, Benha University,
Egypt
| | - Asmaa A. El Kholy
- Department of Parasitology, Benha Faculty of Medicine, Benha University,
Egypt
| | - Basma T. Ali
- Department of Parasitology, Benha Faculty of Medicine, Benha University,
Egypt
| | - Shin-ichi Miyoshi
- Department of Sanitary Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530,
Japan
| | - Rabab E. Omar
- Department of Parasitology, Benha Faculty of Medicine, Benha University,
Egypt
| |
Collapse
|
4
|
Piao X, Duan J, Jiang N, Liu S, Hou N, Chen Q. Schistosoma japonicum Tyrosine Hydroxylase is promising targets for immunodiagnosis and immunoprotection of Schistosomiasis japonica. PLoS Negl Trop Dis 2023; 17:e0011389. [PMID: 37276235 DOI: 10.1371/journal.pntd.0011389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Identification of promising schistosome antigen targets is crucial for the development of anti-schistosomal strategies. Schistosomes rely on their neuromuscular systems to coordinate important locomotory behaviors. Tyrosine hydroxylase (TH) is critical in the initial rate-limiting step in biosynthesis of catecholamine, the important neuroactive agents, which promote the lengthening of the worm through muscular relaxation and are therefore of great importance to the movement of the organism both within and between its hosts. THs from both Schistosoma mansoni and Schistosoma japonicum and their enzyme activities have been discovered; however, the role of these proteins during infection have not been explored. Herein, a recombinant protein of the nonconserved fragment of S. japonicum TH (SjTH) was produced and the corresponding polyclonal antibody was generated. The expression and antigenicity of SjTH were detected by qRT-PCR, western blotting, immunofluorescence assays, and ELISA. Mice immunized with the recombinant SjTH were challenged with cercariae to evaluate the immunoprotective value of this protein. Our results showed SjTH not only distributed in the head associated with the central nervous system, but also expressed along the tegument and the intestinal intima, which are involved in the movement, coupling and digestion of the parasites and associated with the peripheral nervous system. This protein can effectively stimulate humoral immune responses in mammalian hosts and has high potential as a biomarker for schistosomiasis immunodiagnosis. Furthermore, immunization with recombinant SjTH showed to reduce the worm and egg burden of challenged mice, and to contribute to the systemic balance of the Th1/Th2 responses. Taken together, these results suggest that SjTH is an important pathogenic molecule in S. japonicum and may be a possible target for anti-schistosomal approaches.
Collapse
Affiliation(s)
- Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiamei Duan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
5
|
Houlder EL, Costain AH, Nambuya I, Brown SL, Koopman JPR, Langenberg MCC, Janse JJ, Hoogerwerf MA, Ridley AJL, Forde-Thomas JE, Colombo SAP, Winkel BMF, Galdon AA, Hoffmann KF, Cook PC, Roestenberg M, Mpairwe H, MacDonald AS. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat Commun 2023; 14:1863. [PMID: 37012228 PMCID: PMC10070318 DOI: 10.1038/s41467-023-37502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 200 million people in multiple organs, including the lungs. Despite this, there is little understanding of pulmonary immune responses during schistosomiasis. Here, we show type-2 dominated lung immune responses in both patent (egg producing) and pre-patent (larval lung migration) murine Schistosoma mansoni (S. mansoni) infection. Human pre-patent S. mansoni infection pulmonary (sputum) samples revealed a mixed type-1/type-2 inflammatory cytokine profile, whilst a case-control study showed no significant pulmonary cytokine changes in endemic patent infection. However, schistosomiasis induced expansion of pulmonary type-2 conventional dendritic cells (cDC2s) in human and murine hosts, at both infection stages. Further, cDC2s were required for type-2 pulmonary inflammation in murine pre-patent or patent infection. These data elevate our fundamental understanding of pulmonary immune responses during schistosomiasis, which may be important for future vaccine design, as well as for understanding links between schistosomiasis and other lung diseases.
Collapse
Affiliation(s)
- E L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - I Nambuya
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - S L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J P R Koopman
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M C C Langenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - J J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M A Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A J L Ridley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - S A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - B M F Winkel
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A A Galdon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - P C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - H Mpairwe
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Abou-El-Naga IF. Emerging roles for extracellular vesicles in Schistosoma infection. Acta Trop 2022; 232:106467. [PMID: 35427535 DOI: 10.1016/j.actatropica.2022.106467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/05/2022] [Accepted: 04/11/2022] [Indexed: 11/01/2022]
Abstract
The co-evolution of Schistosoma and its host necessitates the use of extracellular vesicles (EVs) generated by different lifecycle stages to manipulate the host immune system to achieve a delicate balance between the survival of the parasite and the limited pathology of the host. EVs are phospholipid bilayer membrane-enclosed vesicles capable of transferring a complex mixture of proteins, lipids, and genetic materials to the host. They are nano-scale-sized vesicles involved in cellular communication. In this review, the author summarized the proteins involved in the biogenesis of schistosome-derived EVs and their cargo load. miRNAs are one cargo molecule that can underpin EVs functions and significantly affect parasite/host interactions and immune modulation. They skew macrophage polarization towards the M1 phenotype and downregulate Th2 immunity. Schistosoma can evade the host immune system's harmful effects by utilizing this strategy. In order to compromise the protective effect of Th2, EVs upregulate T regulatory cells and activate eosinophils, which contribute to granuloma formation. Schistosomal EVs also affect fibrosis by acting on non-immune cells such as hepatic stellate cells. These vesicles drew attention to translational applications in diagnosis, immunotherapy, and potential vaccines. A deep understanding of the interaction of schistosome-derived EVs with host cells will significantly increase our knowledge about the dynamics between the host and the worm that may aid in controlling this debilitating disease.
Collapse
|
7
|
Barbosa MMF, Kanno AI, Barazzone GC, Rodriguez D, Pancakova V, Trentini M, Faquim-Mauro EL, Freitas AP, Khouri MI, Lobo-Silva J, Goncalves VM, Schenkman RPF, Tanizaki MM, Boraschi D, Malley R, Farias LP, Leite LCC. Robust Immune Response Induced by Schistosoma mansoni TSP-2 Antigen Coupled to Bacterial Outer Membrane Vesicles. Int J Nanomedicine 2021; 16:7153-7168. [PMID: 34712047 PMCID: PMC8548026 DOI: 10.2147/ijn.s315786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The use of adjuvants can significantly strengthen a vaccine’s efficacy. We sought to explore the immunization efficacy of bacterial outer membrane vesicles (OMVs) displaying the Schistosoma mansoni antigen, SmTSP-2, through a biotin-rhizavidin coupling approach. The rationale is to exploit the nanoparticulate structure and the adjuvant properties of OMVs to induce a robust antigen-specific immune response, in light of developing new vaccines against S. mansoni. Materials and Methods OMVs were obtained from Neisseria lactamica and conjugated with biotin. The recombinant SmTSP-2 in fusion with the biotin-binding protein rhizavidin (rRzvSmTSP-2) was produced in E. coli and coupled to biotinylated OMVs to generate an OMV complex displaying SmTSP-2 on the membrane surface (OMV:rSmTSP-2). Transmission electron microscopy (TEM) and dynamic light scattering analysis were used to determine particle charge and size. The immunogenicity of the vaccine complex was evaluated in C57BL/6 mice. Results The rRzvSmTSP-2 protein was successfully coupled to biotinylated OMVs and purified by size-exclusion chromatography. The OMV:rSmTSP-2 nanoparticles showed an average size of 200 nm, with zeta potential around – 28 mV. Mouse Bone Marrow Dendritic Cells were activated by the nanoparticles as determined by increased expression of the co-stimulatory molecules CD40 and CD86, and the proinflammatory cytokines (TNF-α, IL-6 and IL-12) or IL-10. Splenocytes of mice immunized with OMV:rSmTSP-2 nanoparticles reacted to an in vitro challenge with SmTSP-2 with an increased production of IL-6, IL-10 and IL-17 and displayed a higher number of CD4+ and CD8+ T lymphocytes expressing IFN-γ, IL-4 and IL-2, compared to mice immunized with the antigen alone. Immunization of mice with OMV:rSmTSP-2 induced a 100-fold increase in specific anti-SmTSP-2 IgG antibody titers, as compared to the group receiving the recombinant rSmTSP-2 protein alone or even co-administered with unconjugated OMV. Conclusion Our results demonstrate that the SmTSP-2 antigen coupled with OMVs is highly immunogenic in mice, supporting the potential effectiveness of this platform for improved antigen delivery in novel vaccine strategies.
Collapse
Affiliation(s)
- Mayra M F Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Giovana C Barazzone
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Violeta Pancakova
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, 69100, France
| | - Monalisa Trentini
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Amanda P Freitas
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - Mariana I Khouri
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Jessica Lobo-Silva
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Viviane M Goncalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Martha M Tanizaki
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Napoli, Italy.,Stazione Zoologica Anton Dohrn, Napoli, Italy.,Shenzhen Institute of Advanced Technologies (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Leonardo P Farias
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
8
|
Wititkornkul B, Hulme BJ, Tomes JJ, Allen NR, Davis CN, Davey SD, Cookson AR, Phillips HC, Hegarty MJ, Swain MT, Brophy PM, Wonfor RE, Morphew RM. Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens 2021; 10:pathogens10070912. [PMID: 34358062 PMCID: PMC8308605 DOI: 10.3390/pathogens10070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Collapse
Affiliation(s)
- Boontarikaan Wititkornkul
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Nathan R. Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Sarah D. Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Matthew J. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Ruth E. Wonfor
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| |
Collapse
|
9
|
Barbosa MMF, Kanno AI, Pancakova V, Gonçalves VM, Malley R, Faria LP, Leite LCC. Optimization of Expression and Purification of Schistosoma mansoni Antigens in Fusion with Rhizavidin. Mol Biotechnol 2021; 63:983-991. [PMID: 34165770 PMCID: PMC8223184 DOI: 10.1007/s12033-021-00355-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/13/2021] [Indexed: 12/20/2022]
Abstract
Schistosomiasis causes significant morbidity and mortality. Vaccine efforts to date indicate the need to increase the immunogenicity of Schistosoma antigens. The multiple antigen-presenting system, whereby proteins are genetically fused to rhizavidin and affinity linked to biotinylated templates, enables the generation of robust immune responses. The objective of this work was to express and purify the S. mansoni antigens, SmTSP-2 and SmCD59.2, in fusion with rhizavidin. The fusion with rhizavidin greatly decreased the expression level of rSmTSP-2, but not rSmCD59.2, and both were expressed in the insoluble fraction, requiring optimization of culture conditions. Evaluation of different E. coli strains and media showed that BL21-DE3 cultured in Terrific Broth provided the highest expression levels of both proteins. Investigation of a range of time and temperature of induction showed that E. coli strains expressing rRzv:SmTSP-2 and rRzv:SmCD59.2 showed the highest protein production at 23 °C for 15 h. Recombinant proteins were purified by a single step of affinity chromatography allowing isolation of these proteins in high concentration and purity. The optimization process increased final soluble protein yield of rRzv:SmTSP-2 by fourfold and rRzv:SmCD59.2 by tenfold, providing ~ 20 mg/L of each protein. Optimized fusion protein production will allow antigen use in biotin–rhizavidin affinity platforms.
Collapse
Affiliation(s)
- Mayra M F Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex I Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil
| | - Violeta Pancakova
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.,UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), 69100, Villeurbanne, France
| | - Viviane M Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, USA
| | - Leonardo P Faria
- Laboratório de Biomarcadores e Inflamação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Luciana C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, SP, Brasil.
| |
Collapse
|
10
|
Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:931. [PMID: 33917456 PMCID: PMC8067467 DOI: 10.3390/nano11040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.
Collapse
Affiliation(s)
- Mayra M. Ferrari Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Leonardo Paiva Farias
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 40296-710, Brazil;
| | - Mariusz Madej
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Gergö Sipos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Silverio Sbrana
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 54100 Massa, Italy;
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, University of Perugia, 06132 Perugia, Italy;
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
11
|
Driciru E, Koopman JPR, Cose S, Siddiqui AA, Yazdanbakhsh M, Elliott AM, Roestenberg M. Immunological Considerations for Schistosoma Vaccine Development: Transitioning to Endemic Settings. Front Immunol 2021; 12:635985. [PMID: 33746974 PMCID: PMC7970007 DOI: 10.3389/fimmu.2021.635985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Collapse
Affiliation(s)
- Emmanuella Driciru
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | | | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, TX, United States
- Department of Internal Medicine, Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Sanches RCO, Tiwari S, Ferreira LCG, Oliveira FM, Lopes MD, Passos MJF, Maia EHB, Taranto AG, Kato R, Azevedo VAC, Lopes DO. Immunoinformatics Design of Multi-Epitope Peptide-Based Vaccine Against Schistosoma mansoni Using Transmembrane Proteins as a Target. Front Immunol 2021; 12:621706. [PMID: 33737928 PMCID: PMC7961083 DOI: 10.3389/fimmu.2021.621706] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis remains a serious health issue nowadays for an estimated one billion people in 79 countries around the world. Great efforts have been made to identify good vaccine candidates during the last decades, but only three molecules reached clinical trials so far. The reverse vaccinology approach has become an attractive option for vaccine design, especially regarding parasites like Schistosoma spp. that present limitations for culture maintenance. This strategy also has prompted the construction of multi-epitope based vaccines, with great immunological foreseen properties as well as being less prone to contamination, autoimmunity, and allergenic responses. Therefore, in this study we applied a robust immunoinformatics approach, targeting S. mansoni transmembrane proteins, in order to construct a chimeric antigen. Initially, the search for all hypothetical transmembrane proteins in GeneDB provided a total of 584 sequences. Using the PSORT II and CCTOP servers we reduced this to 37 plasma membrane proteins, from which extracellular domains were used for epitope prediction. Nineteen common MHC-I and MHC-II binding epitopes, from eight proteins, comprised the final multi-epitope construct, along with suitable adjuvants. The final chimeric multi-epitope vaccine was predicted as prone to induce B-cell and IFN-γ based immunity, as well as presented itself as stable and non-allergenic molecule. Finally, molecular docking and molecular dynamics foresee stable interactions between the putative antigen and the immune receptor TLR 4. Our results indicate that the multi-epitope vaccine might stimulate humoral and cellular immune responses and could be a potential vaccine candidate against schistosomiasis.
Collapse
Affiliation(s)
- Rodrigo C. O. Sanches
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Sandeep Tiwari
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Laís C. G. Ferreira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Maria J. F. Passos
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Eduardo H. B. Maia
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Divinópolis, Brazil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Rodrigo Kato
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco A. C. Azevedo
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Debora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| |
Collapse
|
13
|
Mewamba EM, Nyangiri OA, Noyes HA, Egesa M, Matovu E, Simo G. The Genetics of Human Schistosomiasis Infection Intensity and Liver Disease: A Review. Front Immunol 2021; 12:613468. [PMID: 33659002 PMCID: PMC7917240 DOI: 10.3389/fimmu.2021.613468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies.
Collapse
Affiliation(s)
- Estelle M. Mewamba
- Molecular Parasitology and Entomology Unit, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oscar A. Nyangiri
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Harry A. Noyes
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Moses Egesa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Enock Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
14
|
Wilkie J, Cameron TC, Beddoe T. Characterization of a profilin-like protein from Fasciola hepatica. PeerJ 2020; 8:e10503. [PMID: 33354436 PMCID: PMC7727368 DOI: 10.7717/peerj.10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Fasciola hepatica is the causative agent of fasciolosis, an important disease of humans and livestock around the world. There is an urgent requirement for novel treatments for F. hepatica due to increasing reports of drug resistance appearing around the world. The outer body covering of F. hepatica is referred to as the tegument membrane which is of crucial importance for the modulation of the host response and parasite survival; therefore, tegument proteins may represent novel drug or vaccine targets. Previous studies have identified a profilin-like protein in the tegument of F. hepatica. Profilin is a regulatory component of the actin cytoskeleton in all eukaryotic cells, and in some protozoan parasites, profilin has been shown to drive a potent IL-12 response. This study characterized the identified profilin form F. hepatica (termed FhProfilin) for the first time. Recombinant expression of FhProfilin resulted in a protein approximately 14 kDa in size which was determined to be dimeric like other profilins isolated from a range of eukaryotic organisms. FhProfilin was shown to bind poly-L-proline (pLp) and sequester actin monomers which is characteristic of the profilin family; however, there was no binding of FhProfilin to phosphatidylinositol lipids. Despite FhProfilin being a component of the tegument, it was shown not to generate an immune response in experimentally infected sheep or cattle.
Collapse
Affiliation(s)
- Jessica Wilkie
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| | - Timothy C Cameron
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Centre for Livestock Interactions with Pathogens (CLiP), La Trobe University, Bundoora, VIC, Australia.,Department of Animal, Plant and Soil Science and Centre for AgriBioscience (AgriBio), La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Abstract
Large-scale control efforts in sub-Saharan Africa may leave long-term lingering transmission. Large-scale screening of snail infection prevalence by loop-mediated isothermal amplification will enable accurate determination of man-to-snail transmission, as well as the effects of biota in snail habitat on host capacity and thus on snail-to-man transmission. Next-generation sequencing will enable identification of gut content of snails and thus their feeding preferences in hot spots and in non–hot spots, as well as for identification of attractive vegetation types for attracting snails to molluscicides.
Collapse
Affiliation(s)
- Joseph Hamburger
- Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
16
|
Bischofsberger M, Winkelmann F, Rabes A, Reisinger EC, Sombetzki M. Pathogen-host interaction mediated by vesicle-based secretion in schistosomes. PROTOPLASMA 2020; 257:1277-1287. [PMID: 32462473 PMCID: PMC7449993 DOI: 10.1007/s00709-020-01515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/15/2020] [Indexed: 05/07/2023]
Abstract
As part of the parasite's excretory/secretory system, extracellular vesicles (EVs) represent a potent communication tool of schistosomes with their human host to strike the balance between their own survival in a hostile immunological environment and a minimal damage to the host tissue. Their cargo consists of functional proteins, lipids, and nucleic acids that facilitate biological processes like migration, nutrient acquisition, or reproduction. The most important impact of the vesicle-mediated communication, however, is the promotion of the parasite survival via mimicking host protein function and directly or indirectly modulating the immune response of the host. Overcoming this shield of immunological adaption in the schistosome-host relation is the aim of current research activities in this field and crucial for the development of a reliable anti-schistosomal therapy. Not least because of their prospective use in clinical applications, research on EVs is now a rapidly expanding field. We herein focus on the current state of knowledge of vesicle-based communication of schistosomes and discussing the role of EVs in facilitating biological processes and immune modulatory properties of EVs considering the different life stages of the parasite.
Collapse
Affiliation(s)
- Miriam Bischofsberger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Anne Rabes
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine, Infectious Diseases and Section of Nephrology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
17
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
18
|
Molehin AJ. Schistosomiasis vaccine development: update on human clinical trials. J Biomed Sci 2020; 27:28. [PMID: 31969170 PMCID: PMC6977295 DOI: 10.1186/s12929-020-0621-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
Schistosomiasis causes significant levels of morbidity and mortality in many geographical regions of the world. The disease is caused by infections with parasitic blood flukes known as schistosomes. The control of schistosomiasis over the last several decades has been centered on the mass drug administration (MDA) of praziquantel (PZQ), which is the only drug currently available for treatment. Despite the concerted efforts of MDA programs, the prevalence and transmission of schistosomiasis has remained largely unchecked due to the fact that PZQ is ineffective against juvenile schistosomes, does not prevent re-infection and the emergence of PZQ-resistant parasites. In addition, other measures such as the water, sanitation and hygiene programs and snail intermediate hosts control have had little to no impact. These drawbacks indicate that the current control strategies are severely inadequate at interrupting transmission and therefore, implementation of other control strategies are required. Ideally, an efficient vaccine is what is needed for long term protection thereby eliminating the current efforts of repeated mass drug administration. However, the general consensus in the field is that the integration of a viable vaccine with MDA and other control measures offer the best chance of achieving the goal of schistosomiasis elimination. This review focuses on the present status of schistosomiasis vaccine candidates in different phases of human clinical trials and provide some insight into future vaccine discovery and design.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA. .,Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
| |
Collapse
|
19
|
Lei N, Liu FC, Ren CP, Shen JJ, Liu M. An Efficient Schistosoma japonicum Bivalent Membrane Protein Antigen DNA Vaccine Against Schistosomiasis in Mice. Med Sci Monit 2019; 25:9319-9326. [PMID: 31811711 PMCID: PMC6916134 DOI: 10.12659/msm.919195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the most important infectious parasitic diseases in the world. The most important was to control schistosomiasis is through a combination of medical therapy and immunization. The membrane antigens Tsp2 and 29 from Schistosoma are promising anti-schistosomiasis vaccine candidates. MATERIAL AND METHODS In this study, the pcDNA3.1(+)-SjTsp2, pcDNA3.1(+)-Sj29, and pcDNA3.1 (+)-SjTsp2-29 eukaryotic expression vectors were successfully constructed as DNA vaccines, and the protective abilities of these vaccines were evaluated in mice. RESULTS The results showed that vaccination with SjTsp2, Sj29, and SjTsp2-29 reduced parasite burden and hepatic pathology compared to the control group, and the protective effect of the bivalent SjTsp2-29 DNA vaccine was better than that of the univalent SjTsp2 or Sj29 DNA vaccines. We also found high levels of IgG, IgG1, and IgG2a against SjTsp2, Sj29, and SjTsp2-29 DNA vaccines, with high expression of IFN-γ and no IL-4 in the mice. CONCLUSIONS The double-membrane antigen DNA vaccine SjTsp2-29 elicited protection against Schistosoma infection and might serve as a vaccine candidate.
Collapse
Affiliation(s)
- Na Lei
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, P.R. China
- Department of Physiology, Anhui Medical College, Hefei, Anhui, P.R. China
| | - Feng-Chun Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Cui-Ping Ren
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ji-Jia Shen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Miao Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
20
|
Sm16, A Schistosoma mansoni Immunomodulatory Protein, Fails to Elicit a Protective Immune Response and Does Not Have an Essential Role in Parasite Survival in the Definitive Host. J Immunol Res 2019; 2019:6793596. [PMID: 31886307 PMCID: PMC6915009 DOI: 10.1155/2019/6793596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Sm16 is an immunomodulatory protein that seems to play a key role in the suppression of the cutaneous inflammatory response during Schistosoma mansoni penetration of the skin of definitive hosts. Therefore, Sm16 represents a potential target for protective immune responses induced by vaccination. In this work, we generated the recombinant protein rSm16 and produced polyclonal antibodies against this protein to evaluate its expression during different parasite life-cycle stages and its location on the surface of the parasite. In addition, we analyzed the immune responses elicited by immunization with rSm16 using two different vaccine formulations, as well as its ability to induce protection in Balb/c mice. In order to explore the biological function of Sm16 during the course of experimental infection, RNA interference was also employed. Our results demonstrated that Sm16 is expressed in cercaria and schistosomula and is located in the schistosomula surface. Despite humoral and cellular immune responses triggered by vaccination using rSm16 associated with either Freund's or alum adjuvants, immunized mice presented no reduction in either parasite burden or parasite egg laying. Knockdown of Sm16 gene expression in schistosomula resulted in decreased parasite size in vitro but had no effect on parasite survival or egg production in vivo. Thus, our findings demonstrate that although the vaccine formulations used in this study succeeded in activating immune responses, these failed to promote parasite elimination. Finally, we have shown that Sm16 is not vital for parasite survival in the definitive host and hence may not represent a suitable target for vaccine development.
Collapse
|
21
|
Rahmani A, Baee M, Rostamtabar M, Karkhah A, Alizadeh S, Tourani M, Nouri HR. Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. Int J Biol Macromol 2019; 141:125-136. [PMID: 31479669 DOI: 10.1016/j.ijbiomac.2019.08.259] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/05/2023]
Abstract
Currently, three recombinant antigens based vaccines are under clinical trials against Schistosomiasis, but there is no vaccine available for prophylaxis or therapeutic. This study was conducted to construct a multi-epitope based vaccine against Schistosoma mansoni via utilizing Sm14, Sm21.7, Sm23, Sm29, Smp80, Sm-CB and SM-TSP-2 antigens. Helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL) and IFN-γ epitopes were predicted. Furthermore, Pan HLA DR-binding epitope was added to the vaccine. Moreover, 50S ribosomal protein L7/L12 of Mycobacterium tuberculosis as a novel TLR4 agonist was applied. The TAT peptide was added to the vaccine to augment intracellular delivery. The selected epitopes were linked together through appropriate linkers and chimeric vaccine was constructed with 617 amino acids with molecular weight of 65.43 kDa. Physico-chemical properties revealed a soluble protein with antigenic and non-allergic properties. Further analyses validated the stability of the construct that was able to interact with TLR4. Immunoinformatics analysis demonstrated the strong potential of constructed vaccine to stimulate T and B-cell mediated immune responses. In summary, obtained data indicated that the proposed vaccine can properly induce both T and B cells immune responses and could possibly be utilized for prophylactic or therapeutic aims in response to infection caused by S. mansoni.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Baee
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Rostamtabar
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahmad Karkhah
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Solmaz Alizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Tourani
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
22
|
Egesa M, Lubyayi L, Tukahebwa EM, Bagaya BS, Chalmers IW, Wilson S, Hokke CH, Hoffmann KF, Dunne DW, Yazdanbakhsh M, Labuda LA, Cose S. Schistosoma mansoni schistosomula antigens induce Th1/Pro-inflammatory cytokine responses. Parasite Immunol 2018; 40:e12592. [PMID: 30239006 PMCID: PMC6492251 DOI: 10.1111/pim.12592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
Larvae of Schistosoma (schistosomula) are highly susceptible to host immune responses and are attractive prophylactic vaccine targets, although cellular immune responses against schistosomula antigens in endemic human populations are not well characterized. We collected blood and stool from 54 Schistosoma mansoni-infected Ugandans, isolated peripheral blood mononuclear cells and stimulated them for 24 hours with schistosome adult worm and soluble egg antigens (AWA and SEA), along with schistosomula recombinant proteins rSmKK7, Lymphocyte Antigen 6 isoforms (rSmLy6A and rSmLy6B), tetraspanin isoforms (rSmTSP6 and rSmTSP7). Cytokines, chemokines and growth factors were measured in the culture supernatants using a multiplex luminex assay, and infection intensity was determined before and at 1 year after praziquantel (PZQ) treatment using the Kato-Katz method. Cellular responses were grouped and the relationship between groups of correlated cellular responses and infection intensity before and after PZQ treatment was investigated. AWA and SEA induced mainly Th2 responses. In contrast, rSmLy6B, rSmTSP6 and rSmTSP7 induced Th1/pro-inflammatory responses. While recombinant antigens rSmKK7 and rSmLy6A did not induce a Th1/pro-inflammatory response, they had an association with pre-treatment infection intensity after adjusting for age and sex. Testing more schistosomula antigens using this approach could provide immune-epidemiology identifiers necessary for prioritizing next generation schistosomiasis vaccine candidates.
Collapse
Affiliation(s)
- Moses Egesa
- Department of Medical MicrobiologySchool of Biomedical SciencesMakerere University College of Health SciencesKampalaUganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research UnitEntebbeUganda
| | - Lawrence Lubyayi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research UnitEntebbeUganda
| | | | - Bernard S. Bagaya
- Department of Immunology and Molecular BiologySchool of Biomedical SciencesMakerere University College of Health SciencesKampalaUganda
| | - Iain W. Chalmers
- Institute of Biological, Environmental & Rural SciencesAberystwyth UniversityAberystwythUK
| | - Shona Wilson
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Cornelis H. Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Karl F. Hoffmann
- Institute of Biological, Environmental & Rural SciencesAberystwyth UniversityAberystwythUK
| | - David W. Dunne
- Department of PathologyUniversity of CambridgeCambridgeUK
| | - Maria Yazdanbakhsh
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Lucja A. Labuda
- Department of ParasitologyLeiden University Medical CenterLeidenThe Netherlands
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research UnitEntebbeUganda
- Department of Clinical ResearchLondon School of Hygiene & Tropical MedicineLondonUK
| |
Collapse
|
23
|
Alves CC, Araujo N, Bernardes WPDOS, Mendes MM, Oliveira SC, Fonseca CT. A Strong Humoral Immune Response Induced by a Vaccine Formulation Containing rSm29 Adsorbed to Alum Is Associated With Protection Against Schistosoma mansoni Reinfection in Mice. Front Immunol 2018; 9:2488. [PMID: 30450095 PMCID: PMC6224358 DOI: 10.3389/fimmu.2018.02488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
The helminth Schistosoma mansoni is one of main causes of human schistosomiasis, a health and economic concern in some of the world's poorest countries. Current treatment regimens can lead to serious side effects and are not suitable for breastfeeding mothers. As such, efforts have been undertaken to develop a vaccine to prevent infection. Of these, Sm29 is a promising candidate that has been associated with resistance to infection/reinfection in humans and mice. Its ability to induce resistance to reinfection has also been recently demonstrated using a vaccine formulation containing Freund's adjuvant. However, Freund's adjuvant is unsuitable for use in human vaccines. We therefore evaluated the ability of Sm29 to induce protection against S. mansoni reinfection when formulated with either alum or MPLA as an adjuvant, both approved for human use. Our data demonstrate that, in contrast to Sm29 with MPLA, Sm29 with alum reduced parasite burden after reinfection compared to a control. We next investigated whether the immune response was involved in creating the differences between the protective (Sm29Alum) and non-protective (Sm29MPLA) vaccine formulations. We observed that both formulations induced a similar mixed-profile immune response, however, the Sm29 with alum formulation raised the levels of antibodies against Sm29. This suggests that there is an association between a reduction in worm burden and parasite-specific antibodies. In summary, our data show that Sm29 with an alum adjuvant can successfully protect against S. mansoni reinfection in mice, indicating a potentially effective vaccine formulation that could be applied in humans.
Collapse
Affiliation(s)
- Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Neusa Araujo
- Laboratório de Esquistossomose, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Mariana Moreira Mendes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Laboratório de Imunologia de doenças Infeciosas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, CNPq, MCT, Salvador, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
24
|
de Souza C, Lopes MD, De Oliveira FM, Passos MJF, Ferreira LCG, Faria BF, Villar JAFP, Junior MC, Taranto AG, Dos Santos LL, Fonseca CT, de Oliveira Lopes D. Rational selection of immunodominant and preserved epitope Sm043300e from Schistosoma mansoni and design of a chimeric molecule for biotechnological purposes. Mol Immunol 2017; 93:133-143. [PMID: 29175593 DOI: 10.1016/j.molimm.2017.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/12/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022]
Abstract
Human schistosomiasis is a neglected tropical disease of great importance in public health. A large number of people are infected with schistosomiasis, making vaccine development and effective diagnosis important control strategies. A rational epitope prediction workflow using Schistosoma mansoni hypothetical proteins was previously presented by our group, and an improvement to that approach is presented here. Briefly, immunodominant epitopes from parasite membrane proteins were predicted by reverse vaccinology strategy with additional in silico analysis. Furthermore, epitope recognition was evaluated using sera of individuals infected with S. mansoni. The epitope that stood out in both in silico and in vitro assays was used to compose a rational chimeric molecule to improve immune response activation. Out of 2185 transmembrane proteins, four epitopes with high binding affinities for human and mouse MHCII molecules were selected through computational screening. These epitopes were synthesized to evaluate their ability to induce TCD4+ lymphocyte proliferation in mice. Sm204830e and Sm043300e induced significant TCD4+ proliferation. Both epitopes were submitted to enzyme-linked immunosorbent assay to evaluate their recognition by IgG antibodies from the sera of infected individuals, and epitope Sm043300 was significantly recognized in most sera samples. Epitope Sm043300 also showed good affinity for human MHCII molecules in molecular docking, and its sequence is curiously highly conserved in four S. mansoni proteins, all of which are described as G-protein-coupled receptors. In addition, we have demonstrated the feasibility of incorporating this epitope, which showed low similarity to human sequences, into a chimeric molecule. The stability of the molecule was evaluated by molecular modeling aimed at future molecule production for use in diagnosis and vaccination trials.
Collapse
Affiliation(s)
- Cláudia de Souza
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil; Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | - Marcelo Donizete Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil; Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | - Flávio Martins De Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Maria Juliana Ferreira Passos
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil; Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | - Laís Cunha Grossi Ferreira
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Bruna Franciele Faria
- Laboratório de Modelagem Molecular, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | | | - Moacyr Comar Junior
- Laboratório de Modelagem Molecular, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | - Alex Guterres Taranto
- Laboratório de Modelagem Molecular, Universidade Federal de São João del-Rei, Divinópolis, Minas Gerais, Brazil, Brazil
| | - Luciana Lara Dos Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil
| | - Cristina Toscano Fonseca
- Grupo de Pesquisa em Biologia e Imunologia de doenças Infeciosas e Parasitária, Centro de Pesquisas René Rachou-Fundação Oswaldo Cruz, Av. Augusto de Lima, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Av. Sebastião Gonçalves Coelho, 400, Divinópolis, Minas Gerais, 35501-296, Brazil.
| |
Collapse
|
25
|
Molehin AJ, Sennoune SR, Zhang W, Rojo JU, Siddiqui AJ, Herrera KA, Johnson L, Sudduth J, May J, Siddiqui AA. Cross-species prophylactic efficacy of Sm-p80-based vaccine and intracellular localization of Sm-p80/Sm-p80 ortholog proteins during development in Schistosoma mansoni, Schistosoma japonicum, and Schistosoma haematobium. Parasitol Res 2017; 116:3175-3188. [PMID: 29026995 PMCID: PMC5660642 DOI: 10.1007/s00436-017-5634-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Schistosomiasis remains a major global health problem. Despite large-scale schistosomiasis control efforts, clear limitations such as possible emergence of drug resistance and reinfection rates highlight the need for an effective schistosomiasis vaccine. Schistosoma mansoni large subunit of calpain (Sm-p80)-based vaccine formulations have shown remarkable efficacy in protecting against S. mansoni challenge infections in mice and baboons. In this study, we evaluated the cross-species protective efficacy of Sm-p80 vaccine against S. japonicum and S. haematobium challenge infections in rodent models. We also elucidated the expression of Sm-p80 and Sm-p80 ortholog proteins in different developmental stages of S. mansoni, S. haematobium, and S. japonicum. Immunization with Sm-p80 vaccine reduced worm burden by 46.75% against S. japonicum challenge infection in mice. DNA prime/protein boost (1 + 1 dose administered on a single day) resulted in 26.95% reduction in worm burden in S. haematobium-hamster infection/challenge model. A balanced Th1 (IFN-γ, TNF-α, IL-2, and IL-12) and Th2 (IL-4, IgG1) type of responses were observed following vaccination in both S. japonicum and S. haematobium challenge trials and these are associated with the prophylactic efficacy of Sm-p80 vaccine. Immunohistochemistry demonstrated that Sm-p80/Sm-p80 ortholog proteins are expressed in different life cycle stages of the three major human species of schistosomes studied. The data presented in this study reinforce the potential of Sm-p80-based vaccine for both hepatic/intestinal and urogenital schistosomiasis occurring in different geographical areas of the world. Differential expression of Sm-p80/Sm-p80 protein orthologs in different life cycle makes this vaccine potentially useful in targeting different levels of infection, disease, and transmission.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Souad R Sennoune
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Juan U Rojo
- College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | - Arif J Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karlie A Herrera
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Laura Johnson
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Justin Sudduth
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jordan May
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
26
|
Lopes MD, Oliveira FM, Coelho IEV, Passos MJF, Alves CC, Taranto AG, Júnior MC, Santos LL, Fonseca CT, Villar JAFP, Lopes DO. Epitopes rationally selected through computational analyses induce T‐cell proliferation in mice and are recognized by serum from individuals infected with
Schistosoma mansoni. Biotechnol Prog 2017; 33:804-814. [DOI: 10.1002/btpr.2463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/03/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Marcelo D. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Flávio M. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Ivan E. V. Coelho
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Maria J. F. Passos
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Clarice C. Alves
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Moacyr C. Júnior
- Laboratório de Química Farmacêutica, Universidade Federal de São João del‐ReiDivinópolis MGBrasil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| | - Cristina T. Fonseca
- Grupo de Pesquisa em Biologia Parasitária e Imunologia, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte MG30190‐002 Brasil
| | - José A. F. P. Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del‐ReiDivinópolis MG Brasil
| | - Débora O. Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del‐Rei, Rua Sebastião Gonçalves CoelhoDivinópolis MG Brasil
| |
Collapse
|
27
|
Sotillo J, Doolan D, Loukas A. Recent advances in proteomic applications for schistosomiasis research: potential clinical impact. Expert Rev Proteomics 2016; 14:171-183. [DOI: 10.1080/14789450.2017.1271327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Denise Doolan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
28
|
Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics 2016; 13:1091-1101. [DOI: 10.1080/14789450.2016.1252675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Molehin AJ, Rojo JU, Siddiqui SZ, Gray SA, Carter D, Siddiqui AA. Development of a schistosomiasis vaccine. Expert Rev Vaccines 2016; 15:619-27. [PMID: 26651503 PMCID: PMC5070536 DOI: 10.1586/14760584.2016.1131127] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schistosomiasis is a neglected tropical disease (NTD) of public health importance. Despite decades of implementation of mass praziquantel therapy programs and other control measures, schistosomiasis has not been contained and continues to spread to new geographic areas. A schistosomiasis vaccine could play an important role as part of a multifaceted control approach. With regards to vaccine development, many biological bottlenecks still exist: the lack of reliable surrogates of protection in humans; immune interactions in co-infections with other diseases in endemic areas; the potential risk of IgE responses to antigens in endemic populations; and paucity of appropriate vaccine efficacy studies in nonhuman primate models. Research is also needed on the role of modern adjuvants targeting specific parts of the innate immune system to tailor a potent and protective immune response for lead schistosome vaccine candidates with the long-term aim to achieve curative worm reduction. This review summarizes the current status of schistosomiasis vaccine development.
Collapse
Affiliation(s)
- Adebayo J. Molehin
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Juan U. Rojo
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | - Sabrina Z. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| | | | - Darrick Carter
- PAI Life Sciences, Washington, USA
- Infectious Disease Research Institute, Seattle, Washington, USA
| | - Afzal A. Siddiqui
- Department of Internal Medicine, Texas Tech University School of Medicine, Lubbock, Texas, USA
- Center of Tropical Medicine and Infectious Diseases, Texas Tech University School of Medicine, Lubbock, Texas, USA
| |
Collapse
|
30
|
Cai P, Gobert GN, You H, McManus DP. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol 2016; 46:453-63. [PMID: 26873753 DOI: 10.1016/j.ijpara.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
31
|
Driguez P, McManus DP, Gobert GN. Clinical implications of recent findings in schistosome proteomics. Expert Rev Proteomics 2015; 13:19-33. [PMID: 26558506 DOI: 10.1586/14789450.2016.1116390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.
Collapse
Affiliation(s)
- Patrick Driguez
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Donald P McManus
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Geoffrey N Gobert
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| |
Collapse
|
32
|
Nawaratna SSK, Gobert GN, Willis C, Mulvenna J, Hofmann A, McManus DP, Jones MK. Lysosome-associated membrane glycoprotein (LAMP)--preliminary study on a hidden antigen target for vaccination against schistosomiasis. Sci Rep 2015; 5:15069. [PMID: 26472258 PMCID: PMC4607944 DOI: 10.1038/srep15069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Charlene Willis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Qld 4111, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Malcolm K. Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| |
Collapse
|
33
|
El Ridi R, Othman AA, McManus DP. Editorial: The Schistosomiasis Vaccine - It is Time to Stand up. Front Immunol 2015; 6:390. [PMID: 26284073 PMCID: PMC4519682 DOI: 10.3389/fimmu.2015.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University , Cairo , Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University , Tanta , Egypt
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
| |
Collapse
|