1
|
Korbecki J, Bosiacki M, Stasiak P, Snarski E, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Clinical Aspects and Significance of β-Chemokines, γ-Chemokines, and δ-Chemokines in Molecular Cancer Processes in Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasms (MDS). Cancers (Basel) 2024; 16:3246. [PMID: 39409868 PMCID: PMC11476337 DOI: 10.3390/cancers16193246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is a type of leukemia with a very poor prognosis. Consequently, this neoplasm is extensively researched to discover new therapeutic strategies. One area of investigation is the study of intracellular communication and the impact of the bone marrow microenvironment on AML cells, with chemokines being a key focus. The roles of β-chemokines, γ-chemokines, and δ-chemokines in AML processes have not yet been sufficiently characterized. METHODS This publication summarizes all available knowledge about these chemotactic cytokines in AML and myelodysplastic neoplasm (MDS) processes and presents potential therapeutic strategies to combat the disease. The significance of β-chemokines, γ-chemokines, and δ-chemokines is detailed, including CCL2 (MCP-1), CCL3 (MIP-1α), CCL5 (RANTES), CCL23, CCL28, and CX3CL1 (fractalkine). Additionally, the importance of atypical chemokine receptors in AML is discussed, specifically ACKR1, ACKR2, ACKR4, and CCRL2. RESULTS/CONCLUSIONS The focus is on the effects of these chemokines on AML cells, particularly their influence on proliferation and resistance to anti-leukemic drugs. Intercellular interactions with non-AML cells, such as mesenchymal stem cells (MSC), macrophages, and regulatory T cells (Treg), are also characterized. The clinical aspects of chemokines are thoroughly explained, including their effect on overall survival and the relationship between their blood levels and AML characteristics.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Piotr Stasiak
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland; (J.K.); (P.S.)
| | - Emilian Snarski
- Institute of Medical Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland;
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.)
| |
Collapse
|
2
|
Bartaula-Brevik S, Leitch C, Hernandez-Valladares M, Aasebø E, Berven FS, Selheim F, Brenner AK, Rye KP, Hagen M, Reikvam H, McCormack E, Bruserud Ø, Tvedt THA. Vacuolar ATPase Is a Possible Therapeutic Target in Acute Myeloid Leukemia: Focus on Patient Heterogeneity and Treatment Toxicity. J Clin Med 2023; 12:5546. [PMID: 37685612 PMCID: PMC10488188 DOI: 10.3390/jcm12175546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.
Collapse
Affiliation(s)
- Sushma Bartaula-Brevik
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Calum Leitch
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Annette K. Brenner
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Kristin Paulsen Rye
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Marie Hagen
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tor Henrik Anderson Tvedt
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
3
|
Desai SS, Ravindran F, Panchal A, Ojha N, Jadhav S, Choudhary B. Whole transcriptome sequencing reveals HOXD11-AGAP3, a novel fusion transcript in the Indian acute leukemia cohort. Front Genet 2023; 14:1100587. [PMID: 37113989 PMCID: PMC10126405 DOI: 10.3389/fgene.2023.1100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Acute leukemia is a heterogeneous disease with distinct genotypes and complex karyotypes leading to abnormal proliferation of hematopoietic cells. According to GLOBOCAN reports, Asia accounts for 48.6% of leukemia cases, and India reports ~10.2% of all leukemia cases worldwide. Previous studies have shown that the genetic landscape of AML in India is significantly different from that in the western population by WES. Methods: We have sequenced and analyzed 9 acute myeloid leukemia (AML) transcriptome samples in the present study. We performed fusion detection in all the samples and categorized the patients based on cytogenetic abnormalities, followed by a differential expression analysis and WGCNA analysis. Finally, Immune profiles were obtained using CIBERSORTx. Results: We found a novel fusion HOXD11-AGAP3 in 3 patients, BCR-ABL1 in 4, and KMT2A-MLLT3 in one patient. Categorizing the patients based on their cytogenetic abnormalities and performing a differential expression analysis, followed by WGCNA analysis, we observed that in the HOXD11-AGAP3 group, correlated co-expression modules were enriched with genes from pathways like Neutrophil degranulation, Innate Immune system, ECM degradation, and GTP hydrolysis. Additionally, we obtained HOXD11-AGAP3-specific overexpression of chemokines CCL28 and DOCK2. Immune profiling using CIBRSORTx revealed differences in the immune profiles across all the samples. We also observed HOXD11-AGAP3-specific elevated expression of lincRNA HOTAIRM1 and its interacting partner HOXA2. Discussion: The findings highlight population-specific HOXD11-AGAP3, a novel cytogenetic abnormality in AML. The fusion led to alterations in immune system represented by CCL28 and DOCK2 over-expression. Interestingly, in AML, CCL28 is known prognostic marker. Additionally, non-coding signatures (HOTAIRM1) were observed specific to the HOXD11-AGAP3 fusion transcript which are known to be implicated in AML.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
- Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Febina Ravindran
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Amey Panchal
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Nishit Ojha
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Sachin Jadhav
- Cancer Centre, Healthcare Global Enterprises Ltd., Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Effect of Chemotherapy on Serum Level of CCL2 in Acute Myeloid Leukemia Patients with Monocytic Differentiation. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.52547/mlj.15.4.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Kaweme NM, Zhou F. Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppressive Microenvironment. Front Immunol 2021; 12:683381. [PMID: 34220833 PMCID: PMC8247591 DOI: 10.3389/fimmu.2021.683381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are prominent cytotoxic and cytokine-producing components of the innate immune system representing crucial effector cells in cancer immunotherapy. Presently, various NK cell-based immunotherapies have contributed to the substantial improvement in the reconstitution of NK cells against advanced-staged and high-risk AML. Various NK cell sources, including haploidentical NK cells, adaptive NK cells, umbilical cord blood NK cells, stem cell-derived NK cells, chimeric antigen receptor NK cells, cytokine-induced memory-like NK cells, and NK cell lines have been identified. Devising innovative approaches to improve the generation of therapeutic NK cells from the aforementioned sources is likely to enhance NK cell expansion and activation, stimulate ex vivo and in vivo persistence of NK cells and improve conventional treatment response of myeloid leukemia. The tumor-promoting properties of the tumor microenvironment and downmodulation of NK cellular metabolic activity in solid tumors and hematological malignancies constitute a significant impediment in enhancing the anti-tumor effects of NK cells. In this review, we discuss the current NK cell sources, highlight ongoing interventions in enhancing NK cell function, and outline novel strategies to circumvent immunosuppressive factors in the tumor microenvironment to improve the efficacy of NK cell-based immunotherapy and expand their future success in treating myeloid leukemia.
Collapse
Affiliation(s)
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Karimdadi Sariani O, Eghbalpour S, Kazemi E, Rafiei Buzhani K, Zaker F. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia. Cytokine 2021; 142:155508. [PMID: 33810945 DOI: 10.1016/j.cyto.2021.155508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with high mortality that accounts for the most common acute leukemia in adults. Despite all progress in the therapeutic strategies and increased rate of complete remission, many patients will eventually relapse and die from the disease. Cytokines as molecular messengers play a pivotal role in the immune system. The imbalance release of cytokine has been shown to exert a significant influence on the progression of hematopoietic malignancies including acute myeloid leukemia. This article aimed to summarize current knowledge about cytokines and their critical roles in the pathogenesis, treatment, and survival of AML patients.
Collapse
Affiliation(s)
- Omid Karimdadi Sariani
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Sara Eghbalpour
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Elahe Kazemi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Conversion of AML-blasts to leukemia-derived dendritic cells (DCleu) in 'DC-culture-media' shifts correlations of released chemokines with antileukemic T-cell reactions. Immunobiology 2021; 226:152088. [PMID: 33838552 DOI: 10.1016/j.imbio.2021.152088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DC) and T-cells are mediators of CTL-responses. Autologous (from patients with acute myeloid leukaemia (AML) or myelodysplasia (MDS)) or allogeneic (donor)-T-cells stimulated by DCleu, gain an efficient lysis of naive blasts, although not in every case. CXCL8, -9, -10, CCL2, -5 and Interleukin (IL-12) were quantified by Cytometric Bead Array (CBA) in supernatants from 5 DC-generating methods and correlated with AML-/MDS-patients' serum-values, DC-/T-cell-interactions/antileukemic T-cell-reactions after mixed lymphocyte culture (MLC) and patients' clinical course. The blast-lytic activity of T-cells stimulated with DC or mononuclear cells (MNC) was quantified in a cytotoxicity assay. Despite great variations of chemokine-levels, correlations with post-stimulation (after stimulating T-cells with DC in MLC) improved antileukemic T-cell activity were seen: higher released chemokine-values correlated with improved T-cells' antileukemic activity (compared to stimulation with blast-containing MNC) - whereas with respect to the corresponding serum values higher CXCL8-, -9-, and -10- but lower CCL5- and -2-release correlated with improved antileukemic activity of DC-stimulated (vs. blast-stimulated) T-cells. In DC-culture supernatants higher chemokine-values correlated with post-stimulation improved antileukemic T-cell reactivity, whereas higher serum-values of CXCL8, -9, and -10 but lower serum-values of CCL5 and -2 correlated with post-stimulation improved antileukemic T-cell-reactivity. In a context of 'DC'-stimulation (vs serum) this might point to a change of (CCL5 and -2-associated) functionality from a more 'inflammatory' or 'tumor-promoting' to a more 'antitumor'-reactive functionality. This knowledge could contribute to develop immune-modifying strategies that promote antileukemic (adaptive) immune-responses.
Collapse
|
8
|
Effect of Chemotherapy on CXCL1 and CXCL10 Levels in Acute Myeloid Leukemia Patients with M4/M5 Subtype. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.52547/mlj.15.2.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Solovey M, Scialdone A. COMUNET: a tool to explore and visualize intercellular communication. Bioinformatics 2020; 36:4296-4300. [PMID: 32399572 PMCID: PMC7520036 DOI: 10.1093/bioinformatics/btaa482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023] Open
Abstract
MOTIVATION Intercellular communication plays an essential role in multicellular organisms and several algorithms to analyze it from single-cell transcriptional data have been recently published, but the results are often hard to visualize and interpret. RESULTS We developed Cell cOmmunication exploration with MUltiplex NETworks (COMUNET), a tool that streamlines the interpretation of the results from cell-cell communication analyses. COMUNET uses multiplex networks to represent and cluster all potential communication patterns between cell types. The algorithm also enables the search for specific patterns of communication and can perform comparative analysis between two biological conditions. To exemplify its use, here we apply COMUNET to investigate cell communication patterns in single-cell transcriptomic datasets from mouse embryos and from an acute myeloid leukemia patient at diagnosis and after treatment. AVAILABILITY AND IMPLEMENTATION Our algorithm is implemented in an R package available from https://github.com/ScialdoneLab/COMUNET, along with all the code to perform the analyses reported here. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maria Solovey
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München – German Research Center for Environmental Health, München 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Antonio Scialdone
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München – German Research Center for Environmental Health, München 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
10
|
Aasebø E, Berven FS, Hovland R, Døskeland SO, Bruserud Ø, Selheim F, Hernandez-Valladares M. The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers (Basel) 2020; 12:cancers12061466. [PMID: 32512867 PMCID: PMC7352627 DOI: 10.3390/cancers12061466] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.e., regrowth from a clone detected at first diagnosis, progression from the original leukemic or preleukemic stem cells), a common characteristic of relapsed AML is increased chemoresistance. The aim of the present study was to investigate at the proteomic level whether leukemic cells from relapsed patients present overlapping molecular mechanisms that contribute to this chemoresistance. We used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to compare the proteomic and phosphoproteomic profiles of AML cells derived from seven patients at the time of first diagnosis and at first relapse. At the time of first relapse, AML cells were characterized by increased levels of proteins important for various mitochondrial functions, such as mitochondrial ribosomal subunit proteins (MRPL21, MRPS37) and proteins for RNA processing (DHX37, RNA helicase; RPP40, ribonuclease P component), DNA repair (ERCC3, DNA repair factor IIH helicase; GTF2F1, general transcription factor), and cyclin-dependent kinase (CDK) activity. The levels of several cytoskeletal proteins (MYH14/MYL6/MYL12A, myosin chains; VCL, vinculin) as well as of proteins involved in vesicular trafficking/secretion and cell adhesion (ITGAX, integrin alpha-X; CD36, platelet glycoprotein 4; SLC2A3, solute carrier family 2) were decreased in relapsed cells. Our study introduces new targetable proteins that might direct therapeutic strategies to decrease chemoresistance in relapsed AML.
Collapse
Affiliation(s)
- Elise Aasebø
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
| | - Frode S. Berven
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Randi Hovland
- Department for Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | | | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
| | - Frode Selheim
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (E.A.); (Ø.B.)
- The Department of Biomedicine, The Proteomics Unit at the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- Correspondence: ; Tel.: +47-5558-6368
| |
Collapse
|
11
|
Yazdani Z, Mousavi Z, Ghasemimehr N, Kalantary Khandany B, Nikbakht R, Jafari E, Fatemi A, Hassanshahi G. Differential regulatory effects of chemotherapeutic protocol on CCL3_CCL4_CCL5/CCR5 axes in acute myeloid leukemia patients with monocytic lineage. Life Sci 2019; 240:117071. [PMID: 31783051 DOI: 10.1016/j.lfs.2019.117071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/25/2022]
Abstract
AIMS AML (Acute myeloid leukemia) is characterized as a heterogeneous cancer. Chemokines play fundamental roles in the onset, progression cellular, migration, survival and improvement of AML therapy outcomes. The CCR5 receptors together with their ligands have indirect effects on the progression of cancer. In the present study, we have decided to investigate the impact of chemotherapy on the expression of CCR5 and its related ligands (CCL5, CCL4 and CCL3). MAIN METHODS In this study, peripheral blood and bone marrow specimens were collected prior and post the first stage of (7 + 3) chemotherapy from 25 AML-M4/M5 patients. The expression of CCR by Lymphocytes in peripheral blood was examined by flow cytometry and QRT-PCR. The serum levels of chemokines were measured by ELISA. KEY FINDINGS There was not observed leukemic blast cells in peripheral blood smear at post first stage of chemotherapy. We found that the expression of CCR5 was attenuated in patients post the first stage of chemotherapy and the healthy control subjects. We have also observed that the serum levels of chemokines were elevated in AML patients prior to chemotherapy. Although in post-chemotherapy stage, only CCL3 was found to reach to the baseline level, CCL5 and CCL4 have not returned to the basal level and were significantly higher than healthy control subjects. SIGNIFICANCE The current chemotherapy protocol was not able to completely inhibit CCL5 and CCL4. In conclusion, our findings in harmony with previous studies suggest that inhibition of chemokines along with chemotherapy in AML patients may aid therapy.
Collapse
Affiliation(s)
- Zinat Yazdani
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mousavi
- Department of Hematology and Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Narges Ghasemimehr
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Roya Nikbakht
- Department of Biostatistics and Epidemiology, Faculty of Health, Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamhossein Hassanshahi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
12
|
Merle M, Fischbacher D, Liepert A, Grabrucker C, Kroell T, Kremser A, Dreyssig J, Freudenreich M, Schuster F, Borkhardt A, Kraemer D, Koehne CH, Kolb HJ, Schmid C, Schmetzer HM. Serum Chemokine-release Profiles in AML-patients Might Contribute to Predict the Clinical Course of the Disease. Immunol Invest 2019; 49:365-385. [PMID: 31535582 DOI: 10.1080/08820139.2019.1661429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In cancer or hematologic disorders, chemokines act as growth- or survival factors, regulating hematopoiesis and angiogenesis, determining metastatic spread and controlling leukocyte infiltration into tumors to inhibit antitumor immune responses. The aim was to quantify the release of CXCL8, -9, -10, CCL2, -5, and IL-12 in AML/MDS-pts' serum by cytometric bead array and to correlate data with clinical subtypes and courses. Minimal differences in serum-levels subdivided into various groups (e.g. age groups, FAB-types, blast-proportions, cytogenetic-risk-groups) were seen, but higher release of CXCL8, -9, -10 and lower release of CCL2 and -5 tendentially correlated with more favorable subtypes (<50 years of age, <80% blasts in PB). Comparing different stages of the disease higher CCL5-release in persisting disease and a significantly higher CCL2-release at relapse were found compared to first diagnosis - pointing to a change of 'disease activity' on a chemokine level. Correlations with later on achieved response to immunotherapy and occurrence of GVHD were seen: Higher values of CXCL8, -9, -10 and CCL2 and lower CCL5-values correlated with achieved response to immunotherapy. Predictive cut-off-values were evaluated separating the groups in 'responders' and 'non-responders'. Higher levels of CCL2 and -5 but lower levels of CXCL8, -9, -10 correlated with occurrence of GVHD. We conclude, that in AML-pts' serum higher values of CXCL8, -9, -10 and lower values of CCL5 and in part of CCL2 correlate with more favorable subtypes and improved antitumor'-reactive function. This knowledge can contribute to develop immune-modifying strategies that promote antileukemic adaptive immune responses.
Collapse
Affiliation(s)
- M Merle
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - D Fischbacher
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - A Liepert
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - C Grabrucker
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - T Kroell
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - A Kremser
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - J Dreyssig
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - M Freudenreich
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany
| | - F Schuster
- Department for Pediatric Hematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - A Borkhardt
- Department for Pediatric Hematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - D Kraemer
- Department for Hematology, Municipal Hospital Oldenburg, Oldenburg, Germany
| | - C-H Koehne
- Department for Hematology, Municipal Hospital Oldenburg, Oldenburg, Germany
| | - H J Kolb
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany.,Helmholtz Center, Clinical Cooperative Group Human Cell Transplantation (CCG-HCT), Munich, Germany
| | - C Schmid
- Department for Hematology, University Hospital Augsburg, Augsburg, Germany
| | - H M Schmetzer
- Department for Hematopoietic Transplantations, Med III, University Hospital of Munich, Munich, Germany.,Helmholtz Center, Clinical Cooperative Group Human Cell Transplantation (CCG-HCT), Munich, Germany
| |
Collapse
|
13
|
High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype. J Clin Med 2019; 8:jcm8070970. [PMID: 31277464 PMCID: PMC6678419 DOI: 10.3390/jcm8070970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease, and this heterogeneity includes the capacity of constitutive release of extracellular soluble mediators by AML cells. We investigated whether this capacity is associated with molecular genetic abnormalities, and we compared the proteomic profiles of AML cells with high and low release. AML cells were derived from 71 consecutive patients that showed an expected frequency of cytogenetic and molecular genetic abnormalities. The constitutive extracellular release of 34 soluble mediators (CCL and CXCL chemokines, interleukins, proteases, and protease regulators) was investigated for an unselected subset of 62 patients, and they could be classified into high/intermediate/low release subsets based on their general capacity of constitutive secretion. FLT3-ITD was more frequent among patients with high constitutive mediator release, but our present study showed no additional associations between the capacity of constitutive release and 53 other molecular genetic abnormalities. We compared the proteomic profiles of two contrasting patient subsets showing either generally high or low constitutive release. A network analysis among cells with high release levels demonstrated high expression of intracellular proteins interacting with integrins, RAC1, and SYK signaling. In contrast, cells with low release showed high expression of several transcriptional regulators. We conclude that AML cell capacity of constitutive mediator release is characterized by different expression of potential intracellular therapeutic targets.
Collapse
|
14
|
Proteomic Profiling of Primary Human Acute Myeloid Leukemia Cells Does Not Reflect Their Constitutive Release of Soluble Mediators. Proteomes 2018; 7:proteomes7010001. [PMID: 30577422 PMCID: PMC6473519 DOI: 10.3390/proteomes7010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease, and communication between leukemic cells and their neighboring leukemia-supporting normal cells is involved in leukemogenesis. The bone marrow cytokine network is therefore important, and the mediator release profile seems more important than single mediators. It is not known whether the characterization of primary AML cell proteomes reflects the heterogeneity of the broad and dynamic constitutive mediator release profile by these cells. To address this, we compared the intracellular levels of 41 proteins in 19 AML patients with the constitutive extracellular release during in vitro culture, including chemokines, growth factors, proteases, and protease regulators. The constitutive release of most mediators showed a wide variation (up to 2000-fold differences) between patients. Detectable intracellular levels were seen for 10 of 41 mediators, but for most of these 10 mediators we could not detect significant correlations between the constitutive release during in vitro culture and their intracellular levels. Intracellular protein levels in primary human AML cells do not reflect the dynamics, capacity, and variation between patients in constitutive mediator release profiles. Measurements of these profiles thus add complementary information to proteomic detection/quantification regarding the heterogeneity of the AML cell contributions to the bone marrow cytokine network.
Collapse
|
15
|
Nepstad I, Hatfield KJ, Aasebø E, Hernandez-Valladares M, Brenner AK, Bartaula-Brevik S, Berven F, Selheim F, Skavland J, Gjertsen BT, Reikvam H, Bruserud Ø. Two acute myeloid leukemia patient subsets are identified based on the constitutive PI3K-Akt-mTOR signaling of their leukemic cells; a functional, proteomic, and transcriptomic comparison. Expert Opin Ther Targets 2018; 22:639-653. [DOI: 10.1080/14728222.2018.1487401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ina Nepstad
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Kimberley J. Hatfield
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise Aasebø
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | - Annette K. Brenner
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | | | - Frode Berven
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - Jørn Skavland
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Bjørn Tore Gjertsen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
16
|
Li Y, Cheng J, Li Y, Jiang Y, Ma J, Li Q, Pang T. CXCL8 is associated with the recurrence of patients with acute myeloid leukemia and cell proliferation in leukemia cell lines. Biochem Biophys Res Commun 2018; 499:524-530. [DOI: 10.1016/j.bbrc.2018.03.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
|
17
|
Bartaula-Brevik S, Lindstad Brattås MK, Tvedt THA, Reikvam H, Bruserud Ø. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia. Expert Opin Investig Drugs 2018; 27:377-387. [DOI: 10.1080/13543784.2018.1459562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sushma Bartaula-Brevik
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Tor Henrik Anderson Tvedt
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Resistance to the Antiproliferative In Vitro Effect of PI3K-Akt-mTOR Inhibition in Primary Human Acute Myeloid Leukemia Cells Is Associated with Altered Cell Metabolism. Int J Mol Sci 2018; 19:ijms19020382. [PMID: 29382066 PMCID: PMC5855604 DOI: 10.3390/ijms19020382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
Constitutive signaling through the phosphatidylinositol-3-kinase-Akt-mechanistic target of rapamycin (PI3K-Akt-mTOR) pathway is present in acute myeloid leukemia (AML) cells. However, AML is a heterogeneous disease, and we therefore investigated possible associations between cellular metabolism and sensitivity to PI3K-Akt-mTOR pathway inhibitors. We performed non-targeted metabolite profiling to compare the metabolome differences of primary human AML cells derived from patients susceptible or resistant to the in vitro antiproliferative effects of mTOR and PI3K inhibitors. In addition, the phosphorylation status of 18 proteins involved in PI3K-Akt-mTOR signaling and the effect of the cyclooxygenase inhibitor indomethacin on their phosphorylation status was investigated by flow cytometry. Strong antiproliferative effects by inhibitors were observed only for a subset of patients. We compared the metabolite profiles for responders and non-responders towards PI3K-mTOR inhibitors, and 627 metabolites could be detected. Of these metabolites, 128 were annotated and 15 of the annotated metabolites differed significantly between responders and non-responders, including metabolites involved in energy, amino acid, and lipid metabolism. To conclude, leukemia cells that are susceptible or resistant to PI3K-Akt-mTOR inhibitors differ in energy, amino acid, and arachidonic acid metabolism, and modulation of arachidonic acid metabolism alters the activation of mTOR and its downstream mediators.
Collapse
|
19
|
Mohammadi Najafabadi M, Shamsasenjan K, Akbarzadehlaleh P. The Angiogenic Chemokines Expression Profile of Myeloid Cell Lines Co-Cultured with Bone Marrow-Derived Mesenchymal Stem Cells. CELL JOURNAL 2017; 20:19-24. [PMID: 29308614 PMCID: PMC5759676 DOI: 10.22074/cellj.2018.4924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/03/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Angiogenesis, the process of formation of new blood vessels, is essential for development of solid tumors. At first, it was first assumed that angiogenesis is not implicated in the development of acute myeloid leukemia (AML) as a liquid tumor. One of the most important elements in bone marrow microenvironment is mesenchymal stem cells (MSCs). These cells possess an intrinsic tropism for sites of tumor in various types of cancers and have an impact on solid tumors growth by affecting the angiogenic process. But so far, our knowledge is limited about MSCs' role in liquid tumors angiogenesis. By increasing our knowledge about the role of MSCs on angiogenesis, new therapeutic strategies can be used to improve the status of patients with leukemia. MATERIALS AND METHODS In this experimental study, HL-60, K562 and U937 cells were separately co-cultured with bone marrow derived-MSCs and after 8, 16 and 24 hours, alterations in the expression of 10 chemokine genes involved in angiogenesis, were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR). Mono-cultures of leukemia cell lines were used as controls. RESULTS We observed that in HL-60 and K562 cells co-cultured with MSCs, the expression of CXCL10 and CXCL3 genes are increased, respectively as compared to the control cells. Also, in U937 cells co-cultured with MSCs, the expression of CXCL6 gene was upgraded. Moreover in U937 cells, CCL2 gene expression in the first 16 hours was lower than the control cells, while within 24 hours its expression augmented. CONCLUSIONS Our observations, for the first time, demonstrated that bone marrow (BM)-MSCs are able to alter the expression profile of chemokine genes involved in angiogenesis, in acute myeloid leukemia cell lines. MSCs cause different effects on angiogenesis in different leukemia cell lines; in some cases, MSCs promote angiogenesis, and in others, inhibit it.
Collapse
Affiliation(s)
| | - Karim Shamsasenjan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Bruserud Ø. Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia. Expert Rev Hematol 2017; 11:13-24. [PMID: 29168399 DOI: 10.1080/17474086.2018.1407239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION V-ATPase is a proton pump expressed both in the membrane of intracellular organelles (e.g. endosomes, lysosomes, Golgi structures) and the plasma membrane. It is an important regulator of organellar functions, intracellular molecular trafficking, intercellular communication and intracellular signaling. It is therefore considered as a possible therapeutic target in the treatment of human malignancies. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for original articles and reviews describing the possible importance of V-ATPase for leukemogenesis and chemosensitivity in human myeloid cells, especially acute myeloid leukemia (AML) cells. Expert commentary: The expression of V-ATPase in the primary human AML cells varies between patients, and high levels are associated with high constitutive release of a wide range of soluble mediators. Several of the molecules included in the V-ATPase interactome may also be important in leukemogenesis and/or development of chemoresistance in human AML. Therapeutic targeting of V-ATPase should therefore be regarded as a possible therapeutic strategy in human AML, but the efficiency of such targeting will probably differ between patients. The possibility of toxicity, especially hematological toxicity and immunosuppression, also has to be clarified.
Collapse
Affiliation(s)
- Elise Aasebø
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Sushma Bartaula-Brevik
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Maria Hernandez-Valladares
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,c Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
21
|
Honnemyr M, Bruserud Ø, Brenner AK. The constitutive protease release by primary human acute myeloid leukemia cells. J Cancer Res Clin Oncol 2017; 143:1985-1998. [PMID: 28631213 DOI: 10.1007/s00432-017-2458-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) cells show constitutive release of matrix metalloproteases and their inhibitors. We now investigated this constitutive release of protease/protease regulators associated with carcinogenesis (ADAM12, uPA, cystatin B), angiogenesis (serpin E1, uPA, CD147), cancer cell migration (uPA, cystatin C), coagulation (ADAM TS13, serpin C1), inflammation (fetuin A, caspase 1, cystatin C), monocytic differentiation (CFD) or regulation of hematopoiesis (neutrophil elastase). METHODS AML blasts from 79 consecutive patients were cultured in serum-free medium and mediator levels determined in culture supernatants. RESULTS Detectable release of serpin C1 and E1, cystatin B and C, CD147 and uPA was seen for most patients. These mediators together with fetuin A, caspase 1, and CFD were included in a hierarchical clustering analysis and three patient subsets were identified (high, intermediate, and low release). High levels were associated with monocytic differentiation. Global gene expression analyses showed increased levels of several zinc finger proteins for low-release patients and high expression of several cell surface molecules, ATPases, and calcium-binding proteins for high-release patients. Constitutive release of several mediators was also seen for normal hematopoietic cells and mesenchymal stem cells. In cocultures of the latter and AML blasts, the release level for most mediators was altered to resemble the levels of the mesenchymal cells cultured alone. CONCLUSION Differences in constitutive release of protease/protease regulators are a part of the disease heterogeneity in AML.
Collapse
Affiliation(s)
- Maria Honnemyr
- Section for Hematology, Department of Clinical Science, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Annette K Brenner
- Section for Hematology, Department of Clinical Science, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Bruserud Ø, Aasebø E, Hernandez-Valladares M, Tsykunova G, Reikvam H. Therapeutic targeting of leukemic stem cells in acute myeloid leukemia - the biological background for possible strategies. Expert Opin Drug Discov 2017; 12:1053-1065. [PMID: 28748730 DOI: 10.1080/17460441.2017.1356818] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy, caused by the accumulation of immature leukemic blasts in blood and bone marrow. There is a relatively high risk of chemoresistant relapse even for the younger patients who can receive the most intensive antileukemic treatment. Treatment directed against the remaining leukemic and preleukemic stem cells will most likely reduce the risk of later relapse. Areas covered: Relevant publications were identified through literature searches. The authors searched for original articles and recent reviews describing (i) the characteristics of leukemic/preleukemic stem cells; (ii) the importance of the bone marrow stem cell niches in leukemogenesis; and (iii) possible therapeutic strategies to target the preleukemic/leukemic stem cells. Expert opinion: Leukemia relapse/progression seems to be derived from residual chemoresistant leukemic or preleukemic stem cells, and a more effective treatment directed against these cells will likely be important to improve survival both for patients receiving intensive treatment and leukemia-stabilizing therapy. Several possible strategies are now considered, including the targeting of the epigenetic regulation of gene expression, proapoptotic intracellular signaling, cell metabolism, telomere activity and the AML-supporting effects by neighboring stromal cells. Due to disease heterogeneity, the most effective stem cell-directed therapy will probably differ between individual patients.
Collapse
Affiliation(s)
- Øystein Bruserud
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Elise Aasebø
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Maria Hernandez-Valladares
- a Division of Hematology, Institute of Clinical Science , University of Bergen , Bergen , Norway.,c Proteomics Unit (PROBE), Department of Biomedicine , University of Bergen , Bergen , Norway
| | - Galina Tsykunova
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Håkon Reikvam
- b Section of Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
23
|
Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, Ramírez PA. The CCL2/CCR2 Axis Affects Transmigration and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid Leukemia Cells. PLoS One 2017; 12:e0168888. [PMID: 28045930 PMCID: PMC5207636 DOI: 10.1371/journal.pone.0168888] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) has a high mortality rate despite chemotherapy and transplantation. Both CXCR4/SDF-1 and VLA-4/VCAM1 axes are involved in leukemia protection but little is known about the role of CCL2/CCR2 in AML biology and protection against chemotherapy. We measured CCR2 expression in AML cell lines and primary AML cells by flow cytometry (FCM), real time PCR (RT-PCR) and western blot (WB). CCL2 production was quantified by solid phase ELISA in peripheral blood (PB) and bone marrow (BM) serum. We measured chemotaxis in a transwell system with different concentrations of CCL2/CCR2 blockers; cell cycle with BrDU and propidium iodide and proliferation with yellow tetrazolium MTT. We determined synergy in in vitro cell apoptosis combining chemotherapy and CCL2/CCR2 blockade. Finally, we performed chemoprotection studies in an in vivo mouse model. Of 35 patients, 23 (65%) expressed CCR2 by FCM in PB. Two cell lines expressed high levels of CCR2 (THP-1 and murine AML). RT-PCR and WB confirmed CCR2 production. CCL2 solid phase ELISA showed significantly lower levels of CCL2 in PB and BM compared to normal controls. Chemotaxis experiments confirmed a dose-dependent migration in AML primary cells expressing CCR2 and THP-1 cells. A significant inhibition of transmigration was seen after CCL2/CCR2 blockade. Proliferation of CCR2+ AML cell lines was slightly increased (1.4-fold) after axis stimulation. We observed a non-significant increase in phase S THP-1 cells exposed to CCL2 and a concomitant decrease of cells in G1. The chemotherapy studies did not show a protective effect of CCL2 on cytarabine-induced apoptosis or synergy with chemotherapy after CCL2/CCR2 blockade both in vitro and in vivo. In conclusion, CCL2/CCR2 axis is expressed in the majority of monocytoid AML blasts. The axis is involved in cell trafficking and proliferation but no in vitro and in vivo chemotherapy protective effect was seen.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Apoptosis
- Bone Marrow/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chemokine CCL2/metabolism
- Colony-Forming Units Assay
- Drug Resistance, Neoplasm
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Monocytes/cytology
- Receptors, CCR2/metabolism
- U937 Cells
- Young Adult
Collapse
Affiliation(s)
- Patricia Macanas-Pirard
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Quezada
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Navarrete
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Richard Broekhuizen
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Leisewitz
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bruno Nervi
- Hematology Oncology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. Ramírez
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Región de los Ríos, Chile
- * E-mail:
| |
Collapse
|
24
|
Tvedt TH, Nepstad I, Bruserud Ø. Antileukemic effects of midostaurin in acute myeloid leukemia - the possible importance of multikinase inhibition in leukemic as well as nonleukemic stromal cells. Expert Opin Investig Drugs 2016; 26:343-355. [PMID: 28001095 DOI: 10.1080/13543784.2017.1275564] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Midostaurin is a multikinase inhibitor that inhibits receptor tyrosine kinases (Flt3, CD117/c-kit, platelet-derived growth factor receptor, vascular endothelial growth factor receptor 2) as well as non-receptor tyrosine kinases (Frg, Src, Syk, Protein kinase C). Combination of midostaurin with conventional intensive chemotherapy followed by one year maintenance monotherapy was recently reported to improve the survival of acute myeloid leukemia (AML) patients with Flt3 mutations. Areas covered: Relevant publications were identified through literature searches in the PubMed database. We searched for (i) original articles describing the results from clinical studies; (ii) published articles describing the importance of midostaurin-inhibited kinases for leukemogenesis and chemosensitivity. Expert opinion: Midostaurin monotherapy is well tolerated, combined with conventional chemotherapy gastrointestinal toxicity increases significantly. Midostaurin alters anthracycline pharmacokinetics. Furthermore, its antileukemic effects may not only be mediated through Flt3 inhibition alone; the inhibition of other kinases may also be important for the overall antileukemic effect. Midostaurin may then have direct effects on the leukemic cells but also indirect antileukemic effects through inhibition of the AML-supporting effects of neighboring stromal cells in the bone marrow microenvironment. Midostaurin may thus be used in combination with intensive chemotherapy, as maintenance treatment or as disease-stabilizing treatment for elderly unfit patients.
Collapse
Affiliation(s)
- Tor Henrik Tvedt
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Ina Nepstad
- b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| | - Øystein Bruserud
- a Section for Hematology, Department of Medicine , Haukeland University Hospital , Bergen , Norway.,b Section for Hematology , Institute of Clinical Science, University of Bergen , Bergen , Norway
| |
Collapse
|
25
|
Abdul-Aziz AM, Shafat MS, Mehta TK, Di Palma F, Lawes MJ, Rushworth SA, Bowles KM. MIF-Induced Stromal PKCβ/IL8 Is Essential in Human Acute Myeloid Leukemia. Cancer Res 2016; 77:303-311. [PMID: 27872094 DOI: 10.1158/0008-5472.can-16-1095] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) cells exhibit a high level of spontaneous apoptosis when cultured in vitro but have a prolonged survival time in vivo, indicating that tissue microenvironment plays a critical role in promoting AML cell survival. In vitro studies have shown that bone marrow mesenchymal stromal cells (BM-MSC) protect AML blasts from spontaneous and chemotherapy-induced apoptosis. Here, we report a novel interaction between AML blasts and BM-MSCs, which benefits AML proliferation and survival. We initially examined the cytokine profile in cultured human AML compared with AML cultured with BM-MSCs and found that macrophage migration inhibitory factor (MIF) was highly expressed by primary AML, and that IL8 was increased in AML/BM-MSC cocultures. Recombinant MIF increased IL8 expression in BM-MSCs via its receptor CD74. Moreover, the MIF inhibitor ISO-1 inhibited AML-induced IL8 expression by BM-MSCs as well as BM-MSC-induced AML survival. Protein kinase C β (PKCβ) regulated MIF-induced IL8 in BM-MSCs. Finally, targeted IL8 shRNA inhibited BM-MSC-induced AML survival. These results describe a novel, bidirectional, prosurvival mechanism between AML blasts and BM-MSCs. Furthermore, they provide biologic rationale for therapeutic strategies in AML targeting the microenvironment, specifically MIF and IL8. Cancer Res; 77(2); 303-11. ©2016 AACR.
Collapse
Affiliation(s)
- Amina M Abdul-Aziz
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Manar S Shafat
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Tarang K Mehta
- The Genome Analysis Centre (TGAC), Colney, Norwich, United Kingdom
| | | | - Matthew J Lawes
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Stuart A Rushworth
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kristian M Bowles
- Department of Molecular Haematology, Norwich Medical School, University of East Anglia, Norwich, United Kingdom. .,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| |
Collapse
|
26
|
Brenner AK, Andersson Tvedt TH, Bruserud Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016; 21:molecules21111512. [PMID: 27845732 PMCID: PMC6273124 DOI: 10.3390/molecules21111512] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic targeting of PI3K-Akt-mTOR is considered a possible strategy in human acute myeloid leukaemia (AML); the most important rationale being the proapoptotic and antiproliferative effects of direct PI3K/mTOR inhibition observed in experimental studies of human AML cells. However, AML is a heterogeneous disease and these effects caused by direct pathway inhibition in the leukemic cells are observed only for a subset of patients. Furthermore, the final effect of PI3K-Akt-mTOR inhibition is modulated by indirect effects, i.e., treatment effects on AML-supporting non-leukemic bone marrow cells. In this article we focus on the effects of this treatment on mesenchymal stem cells (MSCs) and monocytes/macrophages; both these cell types are parts of the haematopoietic stem cell niches in the bone marrow. MSCs have unique membrane molecule and constitutive cytokine release profiles, and mediate their support through bidirectional crosstalk involving both cell-cell contact and the local cytokine network. It is not known how various forms of PI3K-Akt-mTOR targeting alter the molecular mechanisms of this crosstalk. The effect on monocytes/macrophages is also difficult to predict and depends on the targeted molecule. Thus, further development of PI3K-Akt-mTOR targeting into a clinical strategy requires detailed molecular studies in well-characterized experimental models combined with careful clinical studies, to identify patient subsets that are likely to respond to this treatment.
Collapse
Affiliation(s)
- Annette K Brenner
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Tor Henrik Andersson Tvedt
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Øystein Bruserud
- Section for Haematology, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|