1
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Serrano IM, Ribeiro G, Santos RS, Cruz JS, Lanza FC, dos Santos EF, de Almeida MC, Soares JFDS, Luquetti AO, Celedon PAF, Zanchin NIT, Santos FLN, dos Reis MG. IgG Isotypes Targeting a Recombinant Chimeric Protein of Trypanosoma cruzi in Different Clinical Presentations of Chronic Chagas Disease. Am J Trop Med Hyg 2024; 110:669-676. [PMID: 38412539 PMCID: PMC10993828 DOI: 10.4269/ajtmh.23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 02/29/2024] Open
Abstract
Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, which leads to a spectrum of clinical presentations that range from asymptomatic to severe cardiac involvement. The host immune response plays a pivotal role in disease progression. Ig isotypes may contribute to disease pathogenesis. Investigating these components can provide insights into the immunopathogenic mechanisms underlying CD. This cross-sectional study aims to establish a correlation between the Ig profile of individuals infected with T. cruzi with the clinical forms of chronic CD. Serum samples were collected from partner institutions in different states of Brazil. Individuals diagnosed with chronic CD were categorized based on the clinical form of the disease. The indirect ELISA method using the recombinant chimeric Molecular Biology Institute of Paraná membrane protein 8.4 as the antigen was used to determine the Ig profile, including total IgG, IgG1, IgG2, IgG3, and IgG4. Ninety-seven serum samples from patients classified as negative (NEG, n = 38), indeterminate (IND, n = 24), mild cardiac (MC, n = 20), and severe cardiac (SC, n = 15) forms were analyzed. IgG1 exhibited greater levels compared with the other isotypes, showing a significant difference between the MC and IND groups. IgG3 levels were greater in individuals from the MC group compared with the SC group. IgG1 and IgG3 isotypes can serve as biomarkers to evaluate the progression of CD because they exhibit variations across clinical groups. Additional longitudinal studies are necessary to explore the relationship between antibody kinetics and the development of tissue damage.
Collapse
Affiliation(s)
- Isabela Machado Serrano
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Gilmar Ribeiro
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Jaqueline Silva Cruz
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Fernanda Cardoso Lanza
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Emily Ferreira dos Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | - Márcio Cerqueira de Almeida
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
| | | | | | - Paola Alejandra Fiorani Celedon
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, Oswaldo Cruz Foundation–Paraná, Curitiba, Brazil
| | - Nilson Ivo Tonin Zanchin
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Structural Biology and Protein Engineering Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation–Paraná, Curitiba, Brazil
| | - Fred Luciano Neves Santos
- Advanced Health Public Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mitermayer Galvão dos Reis
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation–Bahia, Salvador, Brazil
- Integrated Translational Program in Chagas Disease, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
| |
Collapse
|
3
|
Yin S, Li J, Chen J, Zhou Q, Duan DBP, Lai M, Zhong J, He J, Chen D, Zeng Z, Su L, Luo L, Dong C, Zheng Z. LdCyPA attenuates MAPK pathway to assist Leishmania donovani immune escape in host cells. Acta Trop 2024; 251:107114. [PMID: 38190929 DOI: 10.1016/j.actatropica.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.
Collapse
Affiliation(s)
- Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Deng Bin Pei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng Lai
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China.
| |
Collapse
|
4
|
Al Mahmud A, Shafayet Ahmed Siddiqui, Karim MR, Al-Mamun MR, Akhter S, Sohel M, Hasan M, Bellah SF, Amin MN. Clinically proven natural products, vitamins and mineral in boosting up immunity: A comprehensive review. Heliyon 2023; 9:e15292. [PMID: 37089292 PMCID: PMC10079597 DOI: 10.1016/j.heliyon.2023.e15292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND and Purposes: The terminology "immune boost-up" was the talk of the topic in this Covid-19 pandemic. A significant number of the people took initiative to increase the body's defense capacity through boosting up immunity worldwide. Considering this, the study was designed to explain the natural products, vitamins and mineral that were proved by clinical trail as immunity enhancer. METHODS Information was retrieved from SciVerse Scopus ® (Elsevier Properties S. A, USA), Web of Science® (Thomson Reuters, USA), and PubMed based on immunity, nutrients, natural products in boosting up immunity, minerals and vitamins in boosting up immunity, and immune booster agents. RESULT A well-defined immune cells response provide a-well functioning defense system for the human physiological system. Cells of the immune system must require adequate stimulation so that these cells can prepare themselves competent enough to fight against any unintended onslaught. Several pharmacologically active medicinal plants and plants derived probiotics or micronutrients have played a pivotal role in enhancing the immune boost-up process. Their role has been well established from the previous study. Immune stimulating cells, especially cells of acquired immunity are closely associated with the immune-boosting up process because all the immunological reactions and mechanisms are mediated through these cells. CONCLUSION This article highlighted the mechanism of action of different natural products, vitamins and mineral in boosting up the immunity of the human body and strengthening the body's defense system. Therefore, it is recommended that until the specific immune-boosting drugs are available in pharma markets, anyone can consider the mentioned products as dietary supplements to boost up the immunity.
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Shafayet Ahmed Siddiqui
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
| | - Md Rezaul Karim
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | | | - Shammi Akhter
- Department of Pharmacy, Varendra University, Rajshahi, 6204, Bangladesh
| | - Md Sohel
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, 1213, Bangladesh
| | - Mahedi Hasan
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Sm Faysal Bellah
- Department of Pharmacy, Manarat International University, Ashulia, Dhaka, 1341, Bangladesh
| | - Mohammad Nurul Amin
- Pratyasha Health Biomedical Research Center, Dhaka, 1230, Bangladesh
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka, 1230, Bangladesh
| |
Collapse
|
5
|
Tagliazucchi L, Perea-Martinez A, Fiorini G, Manzano JI, Genovese F, García-Hernández R, Pinetti D, Gamarro F, Costi MP. Label-Free Mass Spectrometry Proteomics Reveals Different Pathways Modulated in THP-1 Cells Infected with Therapeutic Failure and Drug Resistance Leishmania infantum Clinical Isolates. ACS Infect Dis 2023; 9:470-485. [PMID: 36762976 PMCID: PMC10012269 DOI: 10.1021/acsinfecdis.2c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the world is facing increasing difficulties to treat leishmaniasis with current therapies, deeper investigation into the molecular mechanisms responsible for both drug resistance and treatment failure (TF) is essential in drug discovery and development. So far, few available drugs cause severe side effects and have developed several resistance mechanisms. Drug resistance and TF parasite strains from clinical isolates may have acquired altered expression of proteins that characterize specific mechanisms leading to therapy inefficacy. This work aims to identify the biochemical pathways of THP-1 human monocytes infected by different Leishmania infantum clinical isolates from patients with either resistance or with TF outcome, using whole cell differential Mass Spectrometry proteomics. We have adopted network enrichment analysis to integrate the transcriptomics and the proteomic results of infected cells studies. Transferrin receptor C (TFRC) and nucleoside diphosphate kinase 3 (NDK3) were discovered as overexpressed proteins in THP-1 cells infected with paromomycin, antimony, and miltefosine resistant L. infantum lines. The overall achievements represent founding concepts to confirm new targets involved in the parasitic drug resistance and TF mechanisms, and to consider in perspective the importance of a dual host-guest pharmacological approach to treat the acute stage of the disease.
Collapse
Affiliation(s)
- Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.,Clinical and Experimental Medicine (CEM) Ph.D. Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ana Perea-Martinez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Greta Fiorini
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - José Ignacio Manzano
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
6
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
7
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
9
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
10
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
11
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Orrego PR, Serrano-Rodríguez M, Cortez M, Araya JE. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules 2021; 11:biom11091322. [PMID: 34572535 PMCID: PMC8470620 DOI: 10.3390/biom11091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022] Open
Abstract
Calcineurin (CaN) is present in all eukaryotic cells, including intracellular trypanosomatid parasites such as Trypanosoma cruzi (Tc) and Leishmania spp. (Lspp). In this study, we performed an in silico analysis of the CaN subunits, comparing them with the human (Hs) and looking their structure, post-translational mechanisms, subcellular distribution, interactors, and secretion potential. The differences in the structure of the domains suggest the existence of regulatory mechanisms and differential activity between these protozoa. Regulatory subunits are partially conserved, showing differences in their Ca2+-binding domains and myristoylation potential compared with human CaN. The subcellular distribution reveals that the catalytic subunits TcCaNA1, TcCaNA2, LsppCaNA1, LsppCaNA1_var, and LsppCaNA2 associate preferentially with the plasma membrane compared with the cytoplasmic location of HsCaNAα. For regulatory subunits, HsCaNB-1 and LsppCaNB associate preferentially with the nucleus and cytoplasm, and TcCaNB with chloroplast and cytoplasm. Calpain cleavage sites on CaNA suggest differential processing. CaNA and CaNB of these trypanosomatids have the potential to be secreted and could play a role in remote communication. Therefore, this background can be used to develop new drugs for protozoan pathogens that cause neglected disease.
Collapse
Affiliation(s)
- Patricio R. Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| | - Mayela Serrano-Rodríguez
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
| | - Mauro Cortez
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil;
| | - Jorge E. Araya
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile;
- Center for Biotechnology and Bioengineering, CeBIB, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Correspondence: (P.R.O.); (J.E.A.); Tel.: +56-55-2637664 (J.E.A.)
| |
Collapse
|
13
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
da Silva MS. DNA Double-Strand Breaks: A Double-Edged Sword for Trypanosomatids. Front Cell Dev Biol 2021; 9:669041. [PMID: 33937271 PMCID: PMC8085331 DOI: 10.3389/fcell.2021.669041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
For nearly all eukaryotic cells, stochastic DNA double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions. DSB processing and repair can cause sequence deletions, loss of heterozygosity, and chromosome rearrangements resulting in cell death or carcinogenesis. However, trypanosomatids (single-celled eukaryotes parasites) do not seem to follow this premise strictly. Several studies have shown that trypanosomatids depend on DSBs to perform several events of paramount importance during their life cycle. For Trypanosoma brucei, DSBs formation is associated with host immune evasion via antigenic variation. In Trypanosoma cruzi, DSBs play a crucial role in the genetic exchange, a mechanism that is still little explored but appear to be of fundamental importance for generating variability. In Leishmania spp., DSBs are necessary to generate genomic changes by gene copy number variation (CNVs), events that are essential for these organisms to overcome inhospitable conditions. As DSB repair in trypanosomatids is primarily conducted via homologous recombination (HR), most of the events associated with DSBs are HR-dependent. This review will discuss the latest findings on how trypanosomatids balance the benefits and inexorable challenges caused by DSBs.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
15
|
Arraché Gonçalves G, Eifler-Lima VL, von Poser GL. Revisiting nature: a review of iridoids as a potential antileishmanial class. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:101-126. [PMID: 33746658 PMCID: PMC7960493 DOI: 10.1007/s11101-021-09750-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Leishmaniasis still stands as one of the most prevalent neglected tropical diseases in the least developed and emerging countries. The recommended therapeutic arsenal to treat leishmaniasis is characterized by several shortcomings, and resistance has already been reported. Hence, this dramatic background highlights the pressing need to develop novel, affordable, and safe antileishmanial drugs. Multiple classes of natural compounds have been reported to possess antileishmanial activity. Among these classes, iridoids stand out as a special type of monoterpenoids with diverse biological properties-including their antileishmanial potential. This review aims to discuss the available literature between 1991 and 2020 related to the antileishmanial activity of the iridoid class. Throughout the past decades, various investigations attributed antileishmanial action to assorted iridoid types, including inhibitory potential towards validated drug targets and immunomodulatory activity. The latter deserves special attention due to the ability of some iridoids to improve the host's immune response against parasites. It opens the possibility of iridoids become adjuncts in leishmaniasis treatments by improving the efficacy of currently employed drugs. Furthermore, the present study intends to provide a convenient visual representation of which iridoids and Leishmania spp. species have been most investigated as a guide for further researches.
Collapse
Affiliation(s)
- Guilherme Arraché Gonçalves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| | - Gilsane Lino von Poser
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
16
|
The ultimate fate determinants of drug induced cell-death mechanisms in Trypanosomatids. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:81-91. [PMID: 33601284 PMCID: PMC7900639 DOI: 10.1016/j.ijpddr.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy constitutes a major part of modern-day therapy for infectious and chronic diseases. A drug is said to be effective if it can inhibit its target, induce stress, and thereby trigger an array of cell death pathways in the form of programmed cell death, autophagy, necrosis, etc. Chemotherapy is the only treatment choice against trypanosomatid diseases like Leishmaniasis, Chagas disease, and sleeping sickness. Anti-trypanosomatid drugs can induce various cell death phenotypes depending upon the drug dose and growth stage of the parasites. The mechanisms and pathways triggering cell death in Trypanosomatids serve to help identify potential targets for the development of effective anti-trypanosomatids. Studies show that the key proteins involved in cell death of trypanosomatids are metacaspases, Endonuclease G, Apoptosis-Inducing Factor, cysteine proteases, serine proteases, antioxidant systems, etc. Unlike higher eukaryotes, these organisms either lack the complete set of effectors involved in cell death pathways, or are yet to be deciphered. A detailed summary of the existing knowledge of different drug-induced cell death pathways would help identify the lacuna in each of these pathways and therefore open new avenues for research and thereby new therapeutic targets to explore. The cell death pathway associated complexities in metazoans are absent in trypanosomatids; hence this summary can also help understand the trigger points as well as cross-talk between these pathways. Here we provide an in-depth overview of the existing knowledge of these drug-induced trypanosomatid cell death pathways, describe their associated physiological changes, and suggest potential interconnections amongst them.
Collapse
|
17
|
Rodríguez-Morales O, Cabrera-Mata JJ, Carrillo-Sánchez SDC, Gutiérrez-Ocejo RA, Baylón-Pacheco L, Pérez-Reyes OL, Rosales-Encina JL, Aranda-Fraustro A, Hernández-García S, Arce-Fonseca M. Electrolyzed Oxidizing Water Modulates the Immune Response in BALB/c Mice Experimentally Infected with Trypanosoma cruzi. Pathogens 2020; 9:E974. [PMID: 33238401 PMCID: PMC7700191 DOI: 10.3390/pathogens9110974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
Chagas disease is a major public health problem in Latin America. The mixed Th1/Th2 immune response is required against Trypanosoma cruzi. Electrolyzed oxidizing water (EOW) has been shown to have germicidal efficacy. The objective of this study was to evaluate the EOW effectiveness in T. cruzi-infected BALB/c mice clinically, immunologically, and histologically. The severity of the infection was assessed by parasitaemia, general health condition, mortality, mega syndromes, and histological lesions. IgG, TNF-alpha, IFN-gamma, and IL-1 beta levels were quantified. The EOW administration showed a beneficial effect on parasitaemia, general physical condition, and mortality. High levels of IgG1 at 50 days postinfection were observed. Prophylactic EOW treatment was able to induce a predominantly TH1 immune response based on an IgG2a levels increase at the late acute phase, and a 10-fold increase of INF-gamma in whole acute phase. EOW was able to control the acute phase infection as effectively as benznidazole. Splenomegaly was caused by EOW treatment and lymphadenopathy was stimulated by T. cruzi infection in all groups. Severe tissue damage was not prevented by EOW treatments. Moderate efficacy may be due to immunomodulatory properties and not to a direct toxic effect on the parasite.
Collapse
Affiliation(s)
- Olivia Rodríguez-Morales
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Juan José Cabrera-Mata
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Silvia del C. Carrillo-Sánchez
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Rodolfo A. Gutiérrez-Ocejo
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| | - Lidia Baylón-Pacheco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Olga L. Pérez-Reyes
- Department of Pathology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.L.P.-R.); (A.A.-F.)
| | - José Luis Rosales-Encina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Alberto Aranda-Fraustro
- Department of Pathology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.L.P.-R.); (A.A.-F.)
| | - Sergio Hernández-García
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Minerva Arce-Fonseca
- Laboratory of Molecular Immunology and Proteomics, Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico; (O.R.-M.); (J.J.C.-M.); (S.d.C.C.-S.); (R.A.G.-O.)
| |
Collapse
|
18
|
Herrera L, Llanes A, Álvarez J, Degracia K, Restrepo CM, Rivera R, Stephens DE, Dang HT, Larionov OV, Lleonart R, Fernández PL. Antileishmanial activity of a new chloroquine analog in an animal model of Leishmania panamensis infection. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:56-61. [PMID: 32950020 PMCID: PMC7502791 DOI: 10.1016/j.ijpddr.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 08/07/2020] [Indexed: 01/29/2023]
Abstract
Leishmania panamensis is a relevant causative agent of tegumentary leishmaniasis in several Latin American countries. Available antileishmanial drugs have several limitations including relatively high toxicity, difficult administration, high production costs and the emergence of resistance in circulating strains. Therefore, the identification of new molecules as potential therapeutics for leishmaniasis is of great relevance. Here, we developed a murine model of L. panamensis infection and evaluated the effect of a new compound in vivo. After treatment of animals with the compound, we observed a significant reduction of inflammation and parasite load at the inoculation site, in a dose-dependent manner. We observed a reduction in IL-10 production by popliteal lymph nodes cells of infected mice. These results pave the way for future evaluation of this compound as a potential antileishmanial drug or as a suitable scaffold for lead optimization strategies.
Collapse
Affiliation(s)
- Lizzi Herrera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama; Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama; Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Jennifer Álvarez
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá. Panama, 0801, Panama
| | - Kissy Degracia
- Escuela de Biotecnología, Facultad de Ciencias de la Salud Dr. William C. Gorgas, Universidad Latina de Panama, 0801, Panama
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - Rene Rivera
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - David E Stephens
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, United States
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Edificio 208, Ciudad del Saber, Apartado 0843-01103, Panama, 0801, Panama.
| |
Collapse
|
19
|
Ullah I, Gahalawat S, Booshehri LM, Niederstrasser H, Majumdar S, Leija C, Bradford JM, Hu B, Ready JM, Wetzel DM. An Antiparasitic Compound from the Medicines for Malaria Venture Pathogen Box Promotes Leishmania Tubulin Polymerization. ACS Infect Dis 2020; 6:2057-2072. [PMID: 32686409 PMCID: PMC8059355 DOI: 10.1021/acsinfecdis.0c00122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The few frontline antileishmanial drugs are poorly effective and toxic. To search for new drugs for this neglected tropical disease, we tested the activity of compounds in the Medicines for Malaria Venture (MMV) "Pathogen Box" against Leishmania amazonensis axenic amastigotes. Screening yielded six discovery antileishmanial compounds with EC50 values from 50 to 480 nM. Concentration-response assays demonstrated that the best hit, MMV676477, had mid-nanomolar cytocidal potency against intracellular Leishmania amastigotes, Trypanosoma brucei, and Plasmodium falciparum, suggesting broad antiparasitic activity. We explored structure-activity relationships (SAR) within a small group of MMV676477 analogs and observed a wide potency range (20-5000 nM) against axenic Leishmania amastigotes. Compared to MMV676477, our most potent analog, SW41, had ∼5-fold improved antileishmanial potency. Multiple lines of evidence suggest that MMV676477 selectively disrupts Leishmania tubulin dynamics. Morphological studies indicated that MMV676477 and analogs affected L. amazonensis during cell division. Differential centrifugation showed that MMV676477 promoted partitioning of cellular tubulin toward the polymeric form in parasites. Turbidity assays with purified Leishmania and porcine tubulin demonstrated that MMV676477 promoted leishmanial tubulin polymerization in a concentration-dependent manner. Analogs' antiparasitic activity correlated with their ability to facilitate purified Leishmania tubulin polymerization. Chemical cross-linking demonstrated binding of the MMV676477 scaffold to purified Leishmania tubulin, and competition studies established a correlation between binding and antileishmanial activity. Our studies demonstrate that MMV676477 is a potent antiparasitic compound that preferentially promotes Leishmania microtubule polymerization. Due to its selectivity for and broad-spectrum activity against multiple parasites, this scaffold shows promise for antiparasitic drug development.
Collapse
Affiliation(s)
- Imran Ullah
- Department of Pediatrics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Laela M. Booshehri
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Shreoshi Majumdar
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christopher Leija
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - James M. Bradford
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bin Hu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Joseph M. Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dawn M. Wetzel
- Department of Pediatrics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
20
|
Osier F, Uzonna JE. Editorial: Regulation of Immunity to Parasitic Infections Endemic to Africa. Front Immunol 2020; 11:1159. [PMID: 32595637 PMCID: PMC7304307 DOI: 10.3389/fimmu.2020.01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Faith Osier
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research, Kilifi, Kenya
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, Mabbott NA, Morrison LJ, Capewell P. To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. Front Immunol 2020; 11:1250. [PMID: 32595652 PMCID: PMC7304505 DOI: 10.3389/fimmu.2020.01250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.
Collapse
Affiliation(s)
- Omar A. Alfituri
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James M. Brewer
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Neil A. Mabbott
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Capewell
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
A High-Fat Diet Exacerbates the Course of Experimental Trypanosoma cruzi Infection That Can Be Mitigated by Treatment with Simvastatin. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1230461. [PMID: 32596277 PMCID: PMC7298325 DOI: 10.1155/2020/1230461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
The protozoan Trypanosoma cruzi is responsible for triggering a damage immune response in the host cardiovascular system. This parasite has a high affinity for host lipoproteins and uses the low-density lipoprotein (LDL) receptor for its invasion. Assuming that the presence of LDL cholesterol in tissues could facilitate T. cruzi proliferation, dietary composition may affect the parasite-host relationship. Therefore, the aim of this study was to evaluate myocarditis in T. cruzi-infected C57BL/6 mice-acute phase-fed a high-fat diet and treated with simvastatin, a lipid-lowering medication. Animals (n = 10) were infected with 5 × 103 cells of the VL-10 strain of T. cruzi and treated or untreated daily with 20 mg/kg simvastatin, starting 24 h after infection and fed with a normolipidic or high-fat diet. Also, uninfected mice, treated or not with simvastatin and fed with normolipidic or high-fat diet, were evaluated as control groups. Analyses to measure the production of chemokine (C-C motif) ligand 2 (CCL2), interferon- (IFN-) γ, interleukin- (IL-) 10, and tumor necrosis factor (TNF); total hepatic lipid dosage; cholesterol; and fractions, as well as histopathological analysis, were performed on day 30 using cardiac and fat tissues. Our results showed that the high-fat diet increased (i) parasite replication, (ii) fat accumulation in the liver, (iii) total cholesterol and LDL levels, and (iv) the host inflammatory state through the production of the cytokine TNF. However, simvastatin only reduced the production of CCL2 but not that of other inflammatory mediators or biochemical parameters. Together, our data suggest that the high-fat diet may have worsened the biochemical parameters of the uninfected and T. cruzi-infected animals, as well as favored the survival of circulating parasites.
Collapse
|
23
|
Repolês BM, Machado CR, Florentino PTV. DNA lesions and repair in trypanosomatids infection. Genet Mol Biol 2020; 43:e20190163. [PMID: 32236391 PMCID: PMC7197992 DOI: 10.1590/1678-4685-gmb-2019-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Pathological processes such as bacterial, viral and parasitic infections can generate a plethora of responses such as, but not restricted to, oxidative stress that can be harmful to the host and the pathogen. This stress occurs when there is an imbalance between reactive oxygen species produced and antioxidant factors produced in response to the infection. This imbalance can lead to DNA lesions in both infected cells as well as in the pathogen. The effects of the host response on the parasite lead to several kinds of DNA damage, causing alterations in the parasite's metabolism; the reaction and sensitivity of the parasite to these responses are related to the DNA metabolism and life cycle of each parasite. The present review will discuss the survival strategies developed by host cells and Trypanosoma cruzi, focusing on the DNA repair mechanisms of these organisms throughout infection including the relationship between DNA damage, stress response features, and the unique characteristics of these diseases.
Collapse
Affiliation(s)
- Bruno M Repolês
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e Imunologia, Belo Horizonte MG, Brazil
| | | |
Collapse
|
24
|
de Oliveira VVG, Aranda de Souza MA, Cavalcanti RRM, de Oliveira Cardoso MV, Leite ACL, da Silva Junior VA, de Figueiredo RCBQ. Study of in vitro biological activity of thiazoles on Leishmania (Leishmania) infantum. J Glob Antimicrob Resist 2020; 22:414-421. [PMID: 32165288 DOI: 10.1016/j.jgar.2020.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/18/2019] [Accepted: 02/22/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In the prospection of possible agents against neglected diseases, thiazole compounds are presented as promising candidates and are known to have activity against trypanosomatid parasites. Thus, this work aimed to evaluate the effects of thiazole compounds on Leishmania infantum, the aetiological agent of visceral leishmaniasis. METHODS Thiazole compounds (five thiazoacetylpyridines [TAPs-01, -04, -05, -06, -09) and five thiazopyridines [TPs-01, -04, -05, -06, -09]) were tested regarding their leishmanicidal activity on both promastigote and amastigote forms of L. infantum. Cytotoxicity was tested using peritoneal macrophages of BALB/c mice. Ultrastructural analyses were performed to identify possible intracellular targets of the most effective compound on promastigote forms. To observe routes that can clarify the possible mechanism of action of the compounds on the intracellular amastigote forms, the nitrite dosage was performed. RESULTS All compounds inhibited the growth of promastigote and presented low cytotoxicity, being more selective to the parasite than to mammalian cells. All compounds tested were able to decrease macrophage infection. There was a significant decrease in the survival rate of the amastigote when compared with the untreated cells, with TAP-04 presenting the best index. TAP-04 induced ultrastructural changes that are related to cell death by apoptosis. None of the macrophage groups infected with L. infantum and subsequently treated showed increased nitrite release. CONCLUSIONS The low toxicity to mammalian cells and the leishmanicidal activity observed demonstrate that the synthesis of drugs based in thiosemicarbazone nucleus, thiazole and pyridine derivatives are promising for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil; Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Brazil.
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
25
|
Sandri TL, Andrade FA, Lidani KCF, Einig E, Boldt ABW, Mordmüller B, Esen M, Messias-Reason IJ. Human collectin-11 (COLEC11) and its synergic genetic interaction with MASP2 are associated with the pathophysiology of Chagas Disease. PLoS Negl Trop Dis 2019; 13:e0007324. [PMID: 30995222 PMCID: PMC6488100 DOI: 10.1371/journal.pntd.0007324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chagas Disease (CD) is an anthropozoonosis caused by Trypanosoma cruzi. With complex pathophysiology and variable clinical presentation, CD outcome can be influenced by parasite persistence and the host immune response. Complement activation is one of the primary defense mechanisms against pathogens, which can be initiated via pathogen recognition by pattern recognition molecules (PRMs). Collectin-11 is a multifunctional soluble PRM lectin, widely distributed throughout the body, with important participation in host defense, homeostasis, and embryogenesis. In complex with mannose-binding lectin-associated serine proteases (MASPs), collectin-11 may initiate the activation of complement, playing a role against pathogens, including T. cruzi. In this study, collectin-11 plasma levels and COLEC11 variants in exon 7 were assessed in a Brazilian cohort of 251 patients with chronic CD and 108 healthy controls. Gene-gene interactions between COLEC11 and MASP2 variants were analyzed. Collectin-11 levels were significantly decreased in CD patients compared to controls (p<0.0001). The allele rs7567833G, the genotypes rs7567833AG and rs7567833GG, and the COLEC11*GGC haplotype were related to T. cruzi infection and clinical progression towards symptomatic CD. COLEC11 and MASP2*CD risk genotypes were associated with cardiomyopathy (p = 0.014; OR 9.3, 95% CI 1.2–74) and with the cardiodigestive form of CD (p = 0.005; OR 15.2, 95% CI 1.7–137), suggesting that both loci act synergistically in immune modulation of the disease. The decreased levels of collectin-11 in CD patients may be associated with the disease process. The COLEC11 variant rs7567833G and also the COLEC11 and MASP2*CD risk genotype interaction were associated with the pathophysiology of CD. The heterogeneity of clinical progression during chronic Trypanosoma cruzi infection and the mechanisms determining why some individuals develop symptoms whereas others remain asymptomatic are still poorly understood. The pathogenesis of chronic Chagas Disease (CD) has been attributed mainly to the persistence of the causing parasite and the character of individual host immune responses. Collectin-11 is a host immune response molecule with affinity for sugars found on the T. cruzi’s surface. Together with mannose-binding lectin-associated serine proteases (MASPs), it triggers the host defense response against pathogens. Genetic variants and protein levels of MASP-2 and the mannose-binding lectin (MBL), a molecule structurally similar to collectin-11, have been found to be associated with susceptibility to T. cruzi infection and clinical progression to cardiomyopathy. This prompted us to investigate collectin-11 genetic variants and protein levels in 251 patients with chronic CD and 108 healthy individuals, and to examine the effect of gene interaction between COLEC11 and MASP2 risk mutations. We found an association to CD infection with COLEC11 gene variants and reduced collectin-11 levels. The concomitant presence of these genetic variants and MASP2 risk mutations greatly increased the odds for cardiomyopathy. This is the first study to reveal a role for collectin-11 and COLEC11-MASP2 gene interaction in the pathogenesis of CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- * E-mail:
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Elias Einig
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Angelica Beate Winter Boldt
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | | | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J. Messias-Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
26
|
Tabraue-Chávez M, Luque-González MA, Marín-Romero A, Sánchez-Martín RM, Escobedo-Araque P, Pernagallo S, Díaz-Mochón JJ. A colorimetric strategy based on dynamic chemistry for direct detection of Trypanosomatid species. Sci Rep 2019; 9:3696. [PMID: 30842455 PMCID: PMC6403333 DOI: 10.1038/s41598-019-39946-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Leishmaniasis and Chagas disease are endemic in many countries, and re-emerging in the developed countries. A rapid and accurate diagnosis is important for early treatment for reducing the duration of infection as well as for preventing further potential health complications. In this work, we have developed a novel colorimetric molecular assay that integrates nucleic acid analysis by dynamic chemistry (ChemNAT) with reverse dot-blot hybridization in an array format for a rapid and easy discrimination of Leishmania major and Trypanosoma cruzi. The assay consists of a singleplex PCR step that amplifies a highly homologous DNA sequence which encodes for the RNA component of the large ribosome subunit. The amplicons of the two different parasites differ between them by single nucleotide variations, known as “Single Nucleotide Fingerprint” (SNF) markers. The SNF markers can be easily identified by naked eye using a novel micro Spin-Tube device "Spin-Tube", as each of them creates a specific spot pattern. Moreover, the direct use of ribosomal RNA without requiring the PCR pre-amplification step is also feasible, further increasing the simplicity of the assay. The molecular assay delivers sensitivity capable of identifying up to 8.7 copies per µL with single mismatch specificity. The Spin-Tube thus represents an innovative solution providing benefits in terms of time, cost, and simplicity, all of which are crucial for the diagnosis of infectious disease in developing countries.
Collapse
Affiliation(s)
- Mavys Tabraue-Chávez
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain
| | - María Angélica Luque-González
- GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain.,Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
| | - Antonio Marín-Romero
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain.,GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain.,Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
| | - Rosario María Sánchez-Martín
- GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain.,Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain
| | - Pablo Escobedo-Araque
- ECsens, CITIC-UGR, Department of Electronics and Computer Technology, University of Granada, Campus Aynadamar, 18071, Granada, Spain
| | - Salvatore Pernagallo
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain. .,DestiNA Genomics Ltd., 7-11 Melville St, Edinburgh, EH3 7PE, United Kingdom.
| | - Juan José Díaz-Mochón
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, 18016, Armilla, Granada, Spain. .,GENYO Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. PTS Granada - Avenida de la Ilustración, 114- 18016, Granada, Spain. .,Department Medicinal and Organic Chemistry, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071, Granada, Spain.
| |
Collapse
|
27
|
|
28
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
29
|
Acevedo GR, Girard MC, Gómez KA. The Unsolved Jigsaw Puzzle of the Immune Response in Chagas Disease. Front Immunol 2018; 9:1929. [PMID: 30197647 PMCID: PMC6117404 DOI: 10.3389/fimmu.2018.01929] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
Trypanosoma cruzi interacts with the different arms of the innate and adaptive host's immune response in a very complex and flowery manner. The history of host-parasite co-evolution has provided this protozoan with means of resisting, escaping or subverting the mechanisms of immunity and establishing a chronic infection. Despite many decades of research on the subject, the infection remains incurable, and the factors that steer chronic Chagas disease from an asymptomatic state to clinical onset are still unclear. As the relationship between T. cruzi and the host immune system is intricate, so is the amount and diversity of scientific knowledge on the matter. Many of the mechanisms of immunity are fairly well understood, but unveiling the factors that lead each of these to success or failure, within the coordinated response as a whole, requires further research. The intention behind this Review is to compile the available information on the different aspects of the immune response, with an emphasis on those phenomena that have been studied and confirmed in the human host. For ease of comprehension, it has been subdivided in sections that cover the main humoral and cell-mediated components involved therein. However, we also intend to underline that these elements are not independent, but function intimately and concertedly. Here, we summarize years of investigation carried out to unravel the puzzling interplay between the host and the parasite.
Collapse
Affiliation(s)
| | | | - Karina A. Gómez
- Laboratorio de Inmunología de las Infecciones por Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
30
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
31
|
Host-symbiont-pathogen interactions in blood-feeding parasites: nutrition, immune cross-talk and gene exchange. Parasitology 2018; 145:1294-1303. [PMID: 29642965 DOI: 10.1017/s0031182018000574] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Animals are common hosts of mutualistic, commensal and pathogenic microorganisms. Blood-feeding parasites feed on a diet that is nutritionally unbalanced and thus often rely on symbionts to supplement essential nutrients. However, they are also of medical importance as they can be infected by pathogens such as bacteria, protists or viruses that take advantage of the blood-feeding nutritional strategy for own transmission. Since blood-feeding evolved multiple times independently in diverse animals, it showcases a gradient of host-microbe interactions. While some parasitic lineages are possibly asymbiotic and manage to supplement their diet from other food sources, other lineages are either loosely associated with extracellular gut symbionts or harbour intracellular obligate symbionts that are essential for the host development and reproduction. What is perhaps even more diverse are the pathogenic lineages that infect blood-feeding parasites. This microbial diversity not only puts the host into a complicated situation - distinguishing between microorganisms that can greatly decrease or increase its fitness - but also increases opportunity for horizontal gene transfer to occur in this environment. In this review, I first introduce this diversity of mutualistic and pathogenic microorganisms associated with blood-feeding animals and then focus on patterns in their interactions, particularly nutrition, immune cross-talk and gene exchange.
Collapse
|
32
|
Nunes S, Silva IB, Ampuero MR, de Noronha ALL, de Souza LCL, Correia TC, Khouri R, Boaventura VS, Barral A, Ramos PIP, Brodskyn C, Oliveira PRS, Tavares NM. Integrated Analysis Reveals That miR-193b, miR-671, and TREM-1 Correlate With a Good Response to Treatment of Human Localized Cutaneous Leishmaniasis Caused by Leishmania braziliensis. Front Immunol 2018; 9:640. [PMID: 29670621 PMCID: PMC5893808 DOI: 10.3389/fimmu.2018.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Localized cutaneous leishmaniasis (LCL) is a chronic disease characterized by ulcerated skin lesion(s) and uncontrolled inflammation. The mechanisms underlying the pathogenesis of LCL are not completely understood, and little is known about posttranscriptional regulation during LCL. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression and can be implicated in the pathogenesis of LCL. We investigated the involvement of miRNAs and their targets genes in human LCL using publicly available transcriptome data sets followed by ex vivo validation. Initial analysis highlighted that miRNA expression is altered during LCL, as patients clustered separately from controls. Joint analysis identified eight high confidence miRNAs that had altered expression (−1.5 ≤ fold change ≥ 1.5; p < 0.05) between cutaneous ulcers and uninfected skin. We found that the expression of miR-193b and miR-671 are greatly associated with their target genes, CD40 and TNFR, indicating the important role of these miRNAs in the expression of genes related to the inflammatory response observed in LCL. In addition, network analysis revealed that miR-193b, miR-671, and TREM1 correlate only in patients who show faster wound healing (up to 59 days) and not in patients who require longer cure times (more than 60 days). Given that these miRNAs are associated with control of inflammation and healing time, our findings reveal that they might influence the pathogenesis and prognosis of LCL.
Collapse
Affiliation(s)
- Sara Nunes
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Icaro Bonyek Silva
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Mariana Rosa Ampuero
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | | | | | | | - Ricardo Khouri
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Viviane Sampaio Boaventura
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Aldina Barral
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Ivan Pereira Ramos
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Cláudia Brodskyn
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| | - Pablo Rafael Silveira Oliveira
- Federal University of Bahia, Salvador, Brazil.,Centre for Data and Knowledge Integration for Health (CIDACS), FIOCRUZ, Salvador, Brazil
| | - Natalia Machado Tavares
- Oswaldo Cruz Foundation, Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
33
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
34
|
Sandri TL, Lidani KCF, Andrade FA, Meyer CG, Kremsner PG, de Messias-Reason IJ, Velavan TP. Human complement receptor type 1 (CR1) protein levels and genetic variants in chronic Chagas Disease. Sci Rep 2018; 8:526. [PMID: 29323238 PMCID: PMC5765048 DOI: 10.1038/s41598-017-18937-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Complement is an essential element in both innate and acquired immunity contributing to the immunopathogenesis of many disorders, including Chagas Disease (CD). Human complement receptor 1 (CR1) plays a role in the clearance of complement opsonized molecules and may facilitate the entry of pathogens into host cells. Distinct CR1 exon 29 variants have been found associated with CR1 expression levels, increased susceptibility and pathophysiology of several diseases. In this study, CR1 plasma levels were assessed by ELISA and CR1 variants in exon 29 by sequencing in a Brazilian cohort of 232 chronic CD patients and 104 healthy controls. CR1 levels were significantly decreased in CD patients compared to controls (p < 0.0001). The CR1 rs1704660G, rs17047661G and rs6691117G variants were significantly associated with CD and in high linkage disequilibrium. The CR1*AGAGTG haplotype was associated with T. cruzi infection (p = 0.035, OR 3.99, CI 1.1-14.15) whereas CR1*AGGGTG was related to the risk of chagasic cardiomyopathy (p = 0.028, OR 12.15, CI 1.13-113). This is the first study that provides insights on the role of CR1 in development and clinical presentation of chronic CD.
Collapse
Affiliation(s)
- Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Federal University of Paraná, Curitiba, Brazil
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
- Vietnamese - German Center for Medical Research, Hanoi, Vietnam.
| |
Collapse
|
35
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|
36
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
37
|
Lamotte S, Späth GF, Rachidi N, Prina E. The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery. PLoS Negl Trop Dis 2017; 11:e0005480. [PMID: 28594938 PMCID: PMC5464532 DOI: 10.1371/journal.pntd.0005480] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The state of antileishmanial chemotherapy is strongly compromised by the emergence of drug-resistant Leishmania. The evolution of drug-resistant phenotypes has been linked to the parasites’ intrinsic genome instability, with frequent gene and chromosome amplifications causing fitness gains that are directly selected by environmental factors, including the presence of antileishmanial drugs. Thus, even though the unique eukaryotic biology of Leishmania and its dependence on parasite-specific virulence factors provide valid opportunities for chemotherapeutical intervention, all strategies that target the parasite in a direct fashion are likely prone to select for resistance. Here, we review the current state of antileishmanial chemotherapy and discuss the limitations of ongoing drug discovery efforts. We finally propose new strategies that target Leishmania viability indirectly via mechanisms of host–parasite interaction, including parasite-released ectokinases and host epigenetic regulation, which modulate host cell signaling and transcriptional regulation, respectively, to establish permissive conditions for intracellular Leishmania survival.
Collapse
Affiliation(s)
- Suzanne Lamotte
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F. Späth
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Najma Rachidi
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS, Gonçalves AJS, Pereira LOR, Abreu L, De Oliveira MP. AIM2 inflammasome is associated with disease severity in tegumentary leishmaniasis caused by Leishmania (V.) braziliensis. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- R. B. Moreira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - C. Pirmez
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. de Oliveira-Neto
- Instituto Nacional de Infectologia; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. S. Aguiar
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - A. J. S. Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. O. R. Pereira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. Abreu
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. De Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| |
Collapse
|