1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Chen X, Fu C, Zheng Y, Li X, Liao Y, Zheng Y, Liang W, Zhao Y, Huang J, Huang T, Bu J, Shen E. Intermittent fasting alleviates IMQ-induced psoriasis-like dermatitis via reduced γδT17 and monocytes in mice. Arch Dermatol Res 2024; 316:176. [PMID: 38758283 DOI: 10.1007/s00403-024-02886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.
Collapse
Affiliation(s)
- Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Cheng Fu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, 200042, Jiangsu, China
| | - Wenting Liang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ting Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jin Bu
- National Center for STD Control, Chinese Center for Disease Control and Prevention, Nanjing, 200042, Jiangsu, China.
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Pishel I. Immune system rejuvenation—approaches and real achievements. EXPLORATION OF IMMUNOLOGY 2023:325-340. [DOI: 10.37349/ei.2023.00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 01/03/2025]
Abstract
Interest in the mechanisms of aging of the immune system has not faded over the past 100 years, and it is caused by the immune-mediated development of age-related pathology, including autoimmune organ damage, reduced vaccination efficiency, atherosclerosis, the development of cardiovascular pathology, etc. In contrast to many other organs and systems, the immune system aging begins at an early age and has more pronounced changes that lead to the development of secondary pathology, which significantly affects life expectancy. But an effective strategy to restore immune function has not been developed yet. During this time, the mechanisms of age-related dysfunction of organs and cells of both the adaptive and innate immune systems were studied in detail—thymus involution, a decrease in the potential of hematopoietic stem cells, impaired differentiation and functions of immunocompetent cells, as well as the ways of their interaction. Numerous potential therapeutic targets have been identified and various approaches have been used to implement such therapeutic interventions. The review is devoted to replacement therapy using transplantation of hematopoietic stem cells (HSCs) and young lymphoid cells and tissues, cellular and systemic factor exchange in heterochronic parabiosis, and some other widely used life extension approaches. It has been proven that cell therapy using young cells to rejuvenate the old immune system, unfortunately, often turns out to be ineffective because it does not eliminate the root cause of age-related changes. The phenomenon of inflamm-aging that develops with age can significantly affect both the aging of the organism in general and the functioning of immunocompetent cells in particular. Therefore, the most promising direction in the restoration of immune functions during aging is systemic approaches that have a complex effect on the organism as a whole and can slow down the aging process.
Collapse
Affiliation(s)
- Iryna Pishel
- Lab Applied Pharmacology and Toxicology, Bienta/Enamine Ltd, 02094 Kyiv, Ukraine
| |
Collapse
|
4
|
Marrella V, Facoetti A, Cassani B. Cellular Senescence in Immunity against Infections. Int J Mol Sci 2022; 23:11845. [PMID: 36233146 PMCID: PMC9570409 DOI: 10.3390/ijms231911845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host's ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections.
Collapse
Affiliation(s)
- Veronica Marrella
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Amanda Facoetti
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Barbara Cassani
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, Università Degli Studi di Milano, 20089 Milan, Italy
| |
Collapse
|
5
|
Sbierski-Kind J, Grenkowitz S, Schlickeiser S, Sandforth A, Friedrich M, Kunkel D, Glauben R, Brachs S, Mai K, Thürmer A, Radonić A, Drechsel O, Turnbaugh PJ, Bisanz JE, Volk HD, Spranger J, von Schwartzenberg RJ. Effects of caloric restriction on the gut microbiome are linked with immune senescence. MICROBIOME 2022; 10:57. [PMID: 35379337 PMCID: PMC8978410 DOI: 10.1186/s40168-022-01249-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Caloric restriction can delay the development of metabolic diseases ranging from insulin resistance to type 2 diabetes and is linked to both changes in the composition and metabolic function of the gut microbiota and immunological consequences. However, the interaction between dietary intake, the microbiome, and the immune system remains poorly described. RESULTS We transplanted the gut microbiota from an obese female before (AdLib) and after (CalRes) an 8-week very-low-calorie diet (800 kcal/day) into germ-free mice. We used 16S rRNA sequencing to evaluate taxa with differential abundance between the AdLib- and CalRes-microbiota recipients and single-cell multidimensional mass cytometry to define immune signatures in murine colon, liver, and spleen. Recipients of the CalRes sample exhibited overall higher alpha diversity and restructuring of the gut microbiota with decreased abundance of several microbial taxa (e.g., Clostridium ramosum, Hungatella hathewayi, Alistipi obesi). Transplantation of CalRes-microbiota into mice decreased their body fat accumulation and improved glucose tolerance compared to AdLib-microbiota recipients. Finally, the CalRes-associated microbiota reduced the levels of intestinal effector memory CD8+ T cells, intestinal memory B cells, and hepatic effector memory CD4+ and CD8+ T cells. CONCLUSION Caloric restriction shapes the gut microbiome which can improve metabolic health and may induce a shift towards the naïve T and B cell compartment and, thus, delay immune senescence. Understanding the role of the gut microbiome as mediator of beneficial effects of low calorie diets on inflammation and metabolism may enhance the development of new therapeutic treatment options for metabolic diseases. TRIAL REGISTRATION NCT01105143 , "Effects of negative energy balance on muscle mass regulation," registered 16 April 2010. Video Abstract.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sophia Grenkowitz
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Arvid Sandforth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Marie Friedrich
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Rainer Glauben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | | | | | | | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jordan E Bisanz
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
- Department for Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Reiner Jumpertz von Schwartzenberg
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Chariteplatz 1, 10117, Berlin, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
6
|
Liu P, Li Y, Ma L. Caloric Restriction May Help Delay the Onset of Frailty and Support Frailty Management. Front Nutr 2021; 8:731356. [PMID: 34552957 PMCID: PMC8450361 DOI: 10.3389/fnut.2021.731356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022] Open
Abstract
Frailty is an age-related clinical syndrome that may increase the risk of falls, disability, hospitalization, and death in older adults. Delaying the progression of frailty helps improve the quality of life in older adults. Caloric restriction (CR) may extend lifespan and reduce the risk of age-related diseases. However, few studies have explored the relationship between CR and frailty. In this review, we focused on the impact of CR on frailty and aimed to identify potential associated mechanisms. Although CR may help prevent frailty, further studies are required to determine the underlying mechanisms and specific CR regimens suitable for use in humans.
Collapse
Affiliation(s)
- Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Medicine, Beijing, China
| |
Collapse
|
7
|
Tan S, Guo X, Li M, Wang T, Wang Z, Li C, Wu Z, Li N, Gao L, Liang X, Ma C. Transcription factor Zhx2 restricts NK cell maturation and suppresses their antitumor immunity. J Exp Med 2021; 218:e20210009. [PMID: 34279541 PMCID: PMC8292132 DOI: 10.1084/jem.20210009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 02/03/2023] Open
Abstract
The maturation and functional competence of natural killer (NK) cells is a tightly controlled process that relies on transcription factors (TFs). Here, we identify transcriptional repressor zinc fingers and homeoboxes 2 (Zhx2) as a novel regulator that restricts NK cell maturation and function. Mice with Zhx2 conditional deletion in NK cells (Zhx2Δ/Δ) showed accumulation of matured NK cells. Loss of Zhx2 enhanced NK cell survival and NK cell response to IL-15. Transcriptomic analysis revealed Zeb2, a key TF in NK cell terminal maturation, as a direct downstream target of Zhx2. Therapeutically, transfer of Zhx2-deficient NK cells resulted in inhibition of tumor growth and metastasis in different murine models. Our findings collectively unmask a previously unrecognized role of Zhx2 as a novel negative regulator in NK cell maturation and highlight its therapeutic potential as a promising strategy to enhance NK cell-mediated tumor surveillance.
Collapse
Affiliation(s)
- Siyu Tan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
| | - Nailin Li
- Clinical Pharmacology Group, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Jinan, Shandong, China
| |
Collapse
|
8
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
9
|
Kowalczyk P, Majewska-Szczepanik M, Strzępa A, Biała D, Szczepanik M. Diet-induced obesity aggravates NK cell-mediated contact hypersensitivity reaction in Rag1 -/- mice. Contact Dermatitis 2021; 85:307-316. [PMID: 33899952 DOI: 10.1111/cod.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies showed that natural killer (NK) cells mediate contact hypersensitivity (CHS) reaction. Many reports are showing that obesity promotes several inflammatory diseases. It was shown that diet-induced obesity (DIO) aggravates classical T cell-mediated CHS in mice. OBJECTIVES To determine whether the high-fat diet (HFD)-induced obesity modulates antigen-specific NK cell-mediated response. METHODS We evaluated the effect of DIO on NK cell-mediated CHS reaction using a model of dinitrofluorobenzene (DNFB)-induced CHS in Rag1-/- mice. RESULTS Rag1-/- mice fed HFD for 8 but not for 4 weeks developed aggravated CHS reaction determined by ear swelling measurement when compared to animals kept on normal diet (ND) prior to DNFB sensitization. The obese Rag1-/- mice presented the adipose tissue inflammation. Furthermore, in vitro analysis showed that feeding with HFD significantly increases interferon γ (IFN-γ) and interleukin (IL)-12p70 and decreases adiponectin concentration in liver mononuclear cell (LMNC) culture supernatants. The flow cytometry analysis of LMNC revealed that HFD treatment prior to DNFB sensitization increases the percentage of NK1.1+ IFN-γ+ cell population and affects the development and maturation of NK1.1+ cells. CONCLUSIONS In summary, current results suggest that the DIO significantly modulates the local and systemic inflammatory response, contributing to exacerbation of the CHS response mediated by liver NK cells.
Collapse
Affiliation(s)
- Paulina Kowalczyk
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Dominika Biała
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
10
|
Yan X, Imano N, Tamaki K, Sano M, Shinmura K. The effect of caloric restriction on the increase in senescence-associated T cells and metabolic disorders in aged mice. PLoS One 2021; 16:e0252547. [PMID: 34143796 PMCID: PMC8213184 DOI: 10.1371/journal.pone.0252547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with functional decline in the immune system and increases the risk of chronic diseases owing to smoldering inflammation. In the present study, we demonstrated an age-related increase in the accumulation of Programmed Death-1 (PD-1)+ memory-phenotype T cells that are considered “senescence-associated T cells” in both the visceral adipose tissue and spleen. As caloric restriction is an established intervention scientifically proven to exert anti-aging effects and greatly affects physiological and pathophysiological alterations with advanced age, we evaluated the effect of caloric restriction on the increase in this T-cell subpopulation and glucose tolerance in aged mice. Long-term caloric restriction significantly decreased the number of PD-1+ memory-phenotype cluster of differentiation (CD) 4+ and CD8+ T cells in the spleen and visceral adipose tissue, decreased M1-type macrophage accumulation in visceral adipose tissue, and improved insulin resistance in aged mice. Furthermore, the immunological depletion of PD-1+ T cells reduced adipose inflammation and improved insulin resistance in aged mice. Taken together with our previous report, these results indicate that senescence-related T-cell subpopulations are involved in the development of chronic inflammation and insulin resistance in the context of chronological aging and obesity. Thus, long-term caloric restriction and specific deletion of senescence-related T cells are promising interventions to regulate age-related chronic diseases.
Collapse
Affiliation(s)
- Xiaoxiang Yan
- Ruijin Hospital, Institute of Cardiovascular Diseases and Department of Cardiology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Imano
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kayoko Tamaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- * E-mail: ,
| |
Collapse
|
11
|
Reduced frequency of cytotoxic CD56 dim CD16 + NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma. Cancer Immunol Immunother 2021; 71:13-24. [PMID: 33993319 PMCID: PMC8738354 DOI: 10.1007/s00262-021-02956-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Around 30–50% of classical Hodgkin lymphoma (cHL) cases in immunocompetent individuals from industrialized countries are associated with the B-lymphotropic Epstein-Barr virus (EBV). Although natural killer (NK) cells exhibit anti-viral and anti-tumoral functions, virtually nothing is known about quantitative and qualitative differences in NK cells in patients with EBV+ cHL vs. EBV- cHL. Here, we prospectively investigated 36 cHL patients without known immune suppression or overt immunodeficiency at diagnosis. All 10 EBV+ cHL patients and 25 out 26 EBV- cHL were seropositive for EBV antibodies, and EBV+ cHL patients presented with higher plasma EBV DNA levels compared to EBV- cHL patients. We show that the CD56dim CD16+ NK cell subset was decreased in frequency in EBV+ cHL patients compared to EBV- cHL patients. This quantitative deficiency translates into an impaired CD56dim NK cell mediated degranulation toward rituximab-coated HLA class 1 negative lymphoblastoid cells in EBV+ compared to EBV- cHL patients. We finally observed a trend to a decrease in the rituximab-associated degranulation and ADCC of in vitro expanded NK cells of EBV+ cHL compared to healthy controls. Our findings may impact on the design of adjunctive treatment targeting antibody-dependent cellular cytotoxicity in EBV+ cHL.
Collapse
|
12
|
Zhao P, Saltiel AR. Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Front Immunol 2020; 11:592949. [PMID: 33193441 PMCID: PMC7606291 DOI: 10.3389/fimmu.2020.592949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points. Both the expression and activity of the non-canonical IKK family member TBK1 are induced in adipose tissues during diet-induced obesity. TBK1 plays important roles in the regulation of both metabolism and inflammation in adipose tissue and thus affects glucose and energy metabolism. Here we review the regulation and functions of TBK1 and the molecular mechanisms by which TBK1 regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the potential of a TBK1/IKKε inhibitor as a new therapy for metabolic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Sbierski-Kind J, Mai K, Kath J, Jurisch A, Streitz M, Kuchenbecker L, Babel N, Nienen M, Jürchott K, Spranger L, Jumpertz von Schwartzenberg R, Decker AM, Krüger U, Volk HD, Spranger J. Association between Subcutaneous Adipose Tissue Inflammation, Insulin Resistance, and Calorie Restriction in Obese Females. THE JOURNAL OF IMMUNOLOGY 2020; 205:45-55. [PMID: 32482712 DOI: 10.4049/jimmunol.2000108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 01/30/2023]
Abstract
The worldwide epidemic of overweight and obesity has led to an increase in associated metabolic comorbidities. Obesity induces chronic low-grade inflammation in white adipose tissue (WAT). However, the function and regulation of both innate and adaptive immune cells in human WAT under conditions of obesity and calorie restriction (CR) is not fully understood yet. Using a randomized interventional design, we investigated postmenopausal overweight or obese female subjects who either underwent CR for 3 mo followed by a 4-wk phase of weight maintenance or had to maintain a stable weight over the whole study period. A comprehensive immune phenotyping protocol was conducted using validated multiparameter flow cytometry analysis in blood and s.c. WAT (SAT). The TCR repertoire was analyzed by next-generation sequencing and cytokine levels were determined in SAT. Metabolic parameters were determined by hyperinsulinemic-euglycemic clamp. We found that insulin resistance correlates significantly with a shift toward the memory T cell compartment in SAT. TCR analysis revealed a diverse repertoire in SAT of overweight or obese individuals. Additionally, whereas weight loss improved systemic insulin sensitivity in the intervention group, SAT displayed no significant improvement of inflammatory parameters (cytokine levels and leukocyte subpopulations) compared with the control group. Our data demonstrate the accumulation of effector memory T cells in obese SAT and an association between systemic glucose homeostasis and inflammatory parameters in obese females. The long-standing effect of obesity-induced changes in SAT was demonstrated by preserved immune cell composition after short-term CR-induced weight loss.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany; .,Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Knut Mai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Jonas Kath
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Anke Jurisch
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Mathias Streitz
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leon Kuchenbecker
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Mikalai Nienen
- Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Center for Translational Medicine, Department of Internal Medicine I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Bochum, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Leonard Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Reiner Jumpertz von Schwartzenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| | - Anne-Marie Decker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany
| | - Ulrike Krüger
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany.,Institute for Medical Immunology, Charité University Medicine Berlin, 10117 Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, 10117 Berlin, Germany
| | - Joachim Spranger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Department of Endocrinology and Metabolism, Berlin Institute of Health, 10178 Berlin, Germany.,Berlin Institute of Health, 10178 Berlin, Germany.,Charité - Center for Cardiovascular Research, 10117 Berlin, Germany.,German Center for Cardiovascular Research, partner site Berlin, 13353 Berlin, Germany; and
| |
Collapse
|
14
|
Cotter SC, Reavey CE, Tummala Y, Randall JL, Holdbrook R, Ponton F, Simpson SJ, Smith JA, Wilson K. Diet modulates the relationship between immune gene expression and functional immune responses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:128-141. [PMID: 30954680 PMCID: PMC6527921 DOI: 10.1016/j.ibmb.2019.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/02/2023]
Abstract
Nutrition is vital to health and the availability of resources has long been acknowledged as a key factor in the ability to fight off parasites, as investing in the immune system is costly. Resources have typically been considered as something of a "black box", with the quantity of available food being used as a proxy for resource limitation. However, food is a complex mixture of macro- and micronutrients, the precise balance of which determines an animal's fitness. Here we use a state-space modelling approach, the Geometric Framework for Nutrition (GFN), to assess for the first time, how the balance and amount of nutrients affects an animal's ability to mount an immune response to a pathogenic infection. Spodoptera littoralis caterpillars were assigned to one of 20 diets that varied in the ratio of macronutrients (protein and carbohydrate) and their calorie content to cover a large region of nutrient space. Caterpillars were then handled or injected with either live or dead Xenorhabdus nematophila bacterial cells. The expression of nine genes (5 immune, 4 non-immune) was measured 20 h post immune challenge. For two of the immune genes (PPO and Lysozyme) we also measured the relevant functional immune response in the hemolymph. Gene expression and functional immune responses were then mapped against nutritional intake. The expression of all immune genes was up-regulated by injection with dead bacteria, but only those in the IMD pathway (Moricin and Relish) were substantially up-regulated by both dead and live bacterial challenge. Functional immune responses increased with the protein content of the diet but the expression of immune genes was much less predictable. Our results indicate that diet does play an important role in the ability of an animal to mount an adequate immune response, with the availability of protein being the most important predictor of the functional (physiological) immune response. Importantly, however, immune gene expression responds quite differently to functional immunity and we would caution against using gene expression as a proxy for immune investment, as it is unlikely to be reliable indicator of the immune response, except under specific dietary conditions.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Catherine E Reavey
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Yamini Tummala
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Joanna L Randall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Robert Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Fleur Ponton
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia; Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| | | | - Judith A Smith
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
15
|
Transcriptome Analysis of the Thymus in Short-Term Calorie-Restricted Mice Using RNA-seq. Int J Genomics 2018; 2018:7647980. [PMID: 29511668 PMCID: PMC5817327 DOI: 10.1155/2018/7647980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR), which is a factor that expands lifespan and an important player in immune response, is an effective protective method against cancer development. Thymus, which plays a critical role in the development of the immune system, reacts to nutrition deficiency quickly. RNA-seq-based transcriptome sequencing was performed to thymus tissues of MMTV-TGF-α mice subjected to ad libitum (AL), chronic calorie restriction (CCR), and intermittent calorie restriction (ICR) diets in this study. Three cDNA libraries were sequenced using Illumina HiSeq™ 4000 to produce 100 base pair-end reads. On average, 105 million clean reads were mapped and in total 6091 significantly differentially expressed genes (DEGs) were identified (p < 0.05). These DEGs were clustered into Gene Ontology (GO) categories. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are leptin, ghrelin, Igf1, and adinopectin. RNA-seq data has been deposited in NCBI Gene Expression Omnibus (GEO) database (GSE95371). We report the use of RNA sequencing to find DEGs that are affected by different feeding regimes in the thymus.
Collapse
|
16
|
The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017; 7:5160. [PMID: 28698572 PMCID: PMC5505993 DOI: 10.1038/s41598-017-04896-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of skeletal muscle mass and function occurs with increasing age. Calorie restriction (CR) increases the lifespan of C57Bl/6 mice, but not in the shorter-lived DBA/2 strain. There is some evidence that calorie restriction reduces or delays many of the age-related defects that occur in rodent skeletal muscle. We therefore investigated the effect of short (2.5 month) and longer term (8.5 and 18.5 months) CR on skeletal muscle in male and female C57Bl/6 and DBA/2 mice. We found that short-term CR increased the satellite cell number and collagen VI content of muscle, but resulted in a delayed regenerative response to injury.Consistent with this, the in vitro proliferation of satellite cells derived from these muscles was reduced by CR. The percentage of stromal cells, macrophages, hematopoietic stem cells and fibroadipogenic cells in the mononucleated cell population derived from skeletal muscle was reduced by CR at various stages. But overall, these changes are neither consistent over time, nor between strain and sex. The fact that changes induced by CR do not persist with time and the dissimilarities between the two mouse strains, combined with sex differences, urge caution in applying CR to improve skeletal muscle function across the lifespan in humans.
Collapse
|