1
|
Wu S, Zhou Y, Asakawa N, Wen M, Sun Y, Ming Y, Song T, Chen W, Ma G, Xia Y. Engineering CaP-Pickering emulsion for enhanced mRNA cancer vaccines via dual DC and NK activations. J Control Release 2024; 373:837-852. [PMID: 39059499 DOI: 10.1016/j.jconrel.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
mRNA delivery systems, such as lipid nanoparticle (LNP), have made remarkable strides in improving mRNA expression, whereas immune system activation operates on a threshold. Maintaining a delicate balance between antigen expression and dendritic cell (DC) activation is vital for effective immune recognition. Here, a water-in-oil-in-water (w/o/w) Pickering emulsion stabilized with calcium phosphate nanoparticles (CaP-PME) is developed for mRNA delivery in cancer vaccination. CaP-PME efficiently transports mRNA into the cytoplasm, induces pro-inflammatory responses and activates DCs by disrupting intracellular calcium/potassium ions balance. Unlike LNP, CaP-PME demonstrates a preference for DCs, enhancing their activation and migration to lymph nodes. It elicits interferon-γ-mediated CD8+ T cell responses and promotes NK cell proliferation and activation, leading to evident NK cells infiltration and ameliorated tumor microenvironment. The prepared w/o/w Pickering emulsion demonstrates superior anti-tumor effects in E.G7 and B16-OVA tumor models, offering promising prospects as an enhanced mRNA delivery vehicle for cancer vaccinations.
Collapse
Affiliation(s)
- Sihua Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Yan Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu 376-8515, Japan
| | - Mei Wen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Yu Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China
| | - Yali Ming
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wansong Chen
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China, Changsha 410083, PR China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100081, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Its high recurrence rate and lack of effective control drugs result in a 5-year survival rate of only about 10%. HCC is a tumor regulated by the immune system. Significant breakthroughs have occurred in treating solid tumors with immunotherapy in recent years. Various immunotherapies, such as immune checkpoint inhibitors (ICIs), including combination therapies, have demonstrated promising therapeutic effects in both clinical applications and research. Other immunotherapies, such as adoptive cell therapies and oncolytic viruses, are also emerging, offering hope for addressing long-term survival issues in HCC. This article reviews current commonly used immunotherapy strategies and the latest research findings for reference.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Medical Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University
| | - Jun Lu
- Department of Medical Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University
| |
Collapse
|
3
|
Yamasaki S, Shimizu K, Fujii SI. Tumor epitope spreading by a novel multivalent therapeutic cellular vaccine targeting cancer antigens to invariant NKT-triggered dendritic cells in situ. Front Immunol 2024; 15:1345037. [PMID: 38361934 PMCID: PMC10867576 DOI: 10.3389/fimmu.2024.1345037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Cancer is categorized into two types based on the microenvironment: cold and hot tumors. The former is challenging to stimulate through immunity. The immunogenicity of cancer relies on the quality and quantity of cancer antigens, whether recognized by T cells or not. Successful cancer immunotherapy hinges on the cancer cell type, antigenicity and subsequent immune reactions. The T cell response is particularly crucial for secondary epitope spreading, although the factors affecting these mechanisms remain unknown. Prostate cancer often becomes resistant to standard therapy despite identifying several antigens, placing it among immunologically cold tumors. We aim to leverage prostate cancer antigens to investigate the potential induction of epitope spreading in cold tumors. This study specifically focuses on identifying factors involved in secondary epitope spreading based on artificial adjuvant vector cell (aAVC) therapy, a method established as invariant natural killer T (iNKT) -licensed DC therapy. Methods We concentrated on three prostate cancer antigens (prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP)). By introducing allogeneic cells with the antigen and murine CD1d mRNA, followed by α-galactosylceramide (α-GalCer) loading, we generated five types of aAVCs, i.e, monovalent, divalent and trivalent antigen-expressing aAVCs and four types of prostate antigen-expressing cold tumors. We evaluated iNKT activation and antigen-specific CD8+ T cell responses against tumor cells prompted by the aAVCs. Results Our study revealed that monovalent aAVCs, expressing a single prostate antigen, primed T cells for primary tumor antigens and also induced T cells targeting additional tumor antigens by triggering a tumor antigen-spreading response. When we investigated the immune response by trivalent aAVC (aAVC-PROS), aAVC-PROS therapy elicited multiple antigen-specific CD8+ T cells simultaneously. These CD8+ T cells exhibited both preventive and therapeutic effects against tumor progression. Conclusions The findings from this study highlight the promising role of tumor antigen-expressing aAVCs, in inducing efficient epitope spreading and generating robust immune responses against cancer. Our results also propose that multivalent antigen-expressing aAVCs present a promising therapeutic option and could be a more comprehensive therapy for treating cold tumors like prostate cancer.
Collapse
Affiliation(s)
- Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Research Center for Integrative Medical Science (IMS), Yokohama, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science (IMS), Yokohama, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Japan
| |
Collapse
|
4
|
Fujii SI, Shimizu K. NKT-Licensed In Vivo Dendritic Cell-Based Immunotherapy as Cellular Immunodrugs for Cancer Treatment. Crit Rev Oncog 2024; 29:45-61. [PMID: 38421713 DOI: 10.1615/critrevoncog.2023048735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
With the advent of new therapies, immunotherapy has gained attention as a critical modality. After the discovery of the natural killer T (NKT) cells ligand, ex vivo cultured dendritic cells (DCs) loaded with NKT ligand (especially α-galactosylceramide (α-GalCer) (DC/Gal) or ex vivo expanded NKT transfer studies were clinically examined in several institutes. To prevent tumoral immune escape, the link between innate and adaptive immunity, in situ selective targeting of DCs has been attempted; however, protocol optimization was required. As a type of DC targeting therapy that combines the benefits of invariant natural killer T (iNKT) cells, we established an all-in-one, off-the-shelf drug, named the artificial adjuvant vector cell (aAVC), which consists of the tumor antigen and the CD1d-iNKT ligand complex. Here, to our knowledge, we first demonstrate the DC/GalCer therapy and NKT transfer therapy. Next, we introduce and discuss the use of aAVC therapy not only for efficient innate and adaptive immunity induction using fully matured DC in situ but also the characterization necessary for locally reprogramming the tumor microenvironment and systemically inducing long-term memory in T cells. We also discuss how the immune network mechanism is controlled by DCs. Next, we performed the first human clinical trial using WT1 antigen-expressing aAVC against relapse and refractory acute myelogenous leukemia. Thus, we highlight the challenges of using aAVCs as prodrugs for actively energizing DCs in vivo, underpinning immunological networks, and developing strategies for providing maximal benefits for patients.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), and RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Kanagawa, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), and RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Iyoda T, Yamasaki S, Ueda S, Shimizu K, Fujii SI. Natural Killer T and Natural Killer Cell-Based Immunotherapy Strategies Targeting Cancer. Biomolecules 2023; 13:biom13020348. [PMID: 36830717 PMCID: PMC9953375 DOI: 10.3390/biom13020348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Both natural killer T (NKT) and natural killer (NK) cells are innate cytotoxic lymphoid cells that produce inflammatory cytokines and chemokines, and their role in the innate immune response to tumors and microorganisms has been investigated. Especially, emerging evidence has revealed their status and function in the tumor microenvironment (TME) of tumor cells. Some bacteria producing NKT cell ligands have been identified to exert antitumor effects, even in the TME. By contrast, tumor-derived lipids or metabolites may reportedly suppress NKT and NK cells in situ. Since NKT and NK cells recognize stress-inducible molecules or inhibitory molecules on cancer cells, their status or function depends on the balance between inhibitory and activating receptor signals. As a recent strategy in cancer immunotherapy, the mobilization or restoration of endogenous NKT or NK cells by novel vaccines or therapies has become a focus of research. As a new biological evidence, after activation, effector memory-type NKT cells lasted in tumor-bearing models, and NK cell-based immune checkpoint inhibition potentiated the enhancement of NK cell cytotoxicity against cancer cells in preclinical and clinical trials. Furthermore, several new modalities based on the characteristics of NKT and NK cells, including artificial adjuvant vector cells, chimeric antigen receptor-expressing NK or NKT cell therapy, or their combination with immune checkpoint blockade have been developed. This review examines challenges and future directions for improving these therapies.
Collapse
Affiliation(s)
- Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, Yokohama 230-0045, Japan
- Correspondence: (K.S.); (S.F.); Tel.:+ 81-45-503-7062 (S.F.); Fax: +81-45-503-7061 (S.F.)
| |
Collapse
|
6
|
Role of NKT cells in cancer immunotherapy-from bench to bed. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:29. [PMID: 36460881 DOI: 10.1007/s12032-022-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Natural killer T (NKT) cells are a specific T cell subset known to express the αβ-T cell receptor (TCR) for antigens identification and express typical NK cell specifications, such as surface expression of CD56 and CD16 markers as well as production of granzyme. Human NKT cells are divided into two subgroups based on their cytokine receptor and TCR repertoire. Both of them are CD1-restricted and recognize lipid antigens presented by CD1d molecules. Studies have demonstrated that these cells are essential in defense against malignancies. These cells secret proinflammatory and regulatory cytokines that stimulate or suppress immune system responses. In several murine tumor models, activation of type I NKT cells induces tumor rejection and inhibits metastasis's spread. However, type II NKT cells are associated with an inhibitory and regulatory function during tumor immune responses. Variant NKT cells may suppress tumor immunity via different mechanisms that require cross-talk with other immune-regulatory cells. NKT-like cells display high tumor-killing abilities against many tumor cells. In the recent decade, different studies have been performed based on the application of NKT-based immunotherapy for cancer therapy. Moreover, manipulation of NKT cells through administering autologous dendritic cell (DC) loaded with α-galactosylceramide (α-GalCer) and direct α-GalCer injection has also been tested. In this review, we described different subtypes of NKT cells, their function in the anti-tumor immune responses, and the application of NKT cells in cancer immunotherapy from bench to bed.
Collapse
|
7
|
Shimizu K, Ueda S, Kawamura M, Satoh M, Fujii SI. A single immunization with cellular vaccine confers dual protection against SARS-CoV-2 and cancer. Cancer Sci 2022; 113:2536-2547. [PMID: 35598170 PMCID: PMC9348309 DOI: 10.1111/cas.15434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The efficacy of current coronavirus disease 2019 (COVID‐19) vaccines has been demonstrated; however, emerging evidence suggests insufficient protection in certain immunocompromised cancer patients. We previously developed a cell‐based anti‐cancer vaccine platform involving artificial adjuvant vector cells (aAVCs) capable of inducing a strong adaptive response by enhancing the innate immunity. aAVCs are target antigen‐transfected allogenic cells that simultaneously express the natural killer T‐cell ligand–CD1d complex on their surface. In the present study, we applied this system for targeting the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein (CoV‐2‐S) using CoV‐2‐S‐expressing aAVCs (aAVC‐CoV‐2) and evaluated the immune response in a murine model. A single dose of aAVC‐CoV‐2 induced a large amount of CoV‐2‐S‐specific, multifunctional CTLs in addition to CD4+ T‐cell‐dependent anti‐CoV‐2‐S‐specific Abs. CoV‐2‐S‐specific CTLs infiltrated the lung parenchyma and persisted as long‐term memory T cells. Furthermore, we immunized mice with CoV‐2‐S‐ and tumor‐associated antigen (TAA)‐co‐expressing aAVCs (aAVC‐TAA/CoV‐2) and evaluated whether the anti‐SARS‐CoV‐2 and antitumor CTLs were elicited. We found that the aAVC‐TAA/CoV‐2‐S therapy exerted apparent antitumor effects and induced CoV‐2‐S‐specific CTLs. These findings suggest aAVC‐TAA/CoV‐2‐S therapy as a promising vaccine candidate for preventing COVID‐19, as well as enhancing the effectiveness of cancer therapies.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Mikiko Satoh
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan.,Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Liu Y, Wang G, Chai D, Dang Y, Zheng J, Li H. iNKT: A new avenue for CAR-based cancer immunotherapy. Transl Oncol 2022; 17:101342. [PMID: 35063813 PMCID: PMC8784340 DOI: 10.1016/j.tranon.2022.101342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/16/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a T lymphocyte-based immunotherapy, which achieves great successes in treating blood malignancies and provides new hope to cue advanced cancer patients. Invariant natural killer T (iNKT) cells are a kind of special T lymphocytes characterized by expressing invariant TCR of Vα24Vβ11 to recognize CD1d-presented glycolipid antigens, which bridge innate and adaptive immune responses. iNKT cells themselves show strong anti-tumor effect in tumor models via CD1d-mediated killing of CD1d-positive tumor cells and immunosuppressive TAMs and MDSCs, and are closely related to the prognosis of cancer patients. iNKT cells are not restricted to polymorphic human leukocyte antigen (HLA) and can prevent Graft versus Host Disease (GvHD), which makes it to be an ideal CAR vector for allogeneic therapy. Although CAR-iNKT was developed and verified by several different teams and attracts more and more attentions, many obstacles are still needed to be resolved before obtaining CAR-iNKT therapeutics. In this review, we summarized the current status of clinical application of iNKT cells and the latest achievements of CAR-iNKT cells, which provides new insight in CAR-iNKT development and usages.
Collapse
Affiliation(s)
- Yilin Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yuanyuan Dang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
9
|
Anti-PD-1 therapy activates tumoricidic properties of NKT cells and contributes to the overall deceleration of tumor progression in a model of murine mammary carcinoma. VOJNOSANIT PREGL 2022. [DOI: 10.2298/vsp210126039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background/Aim. Immune checkpoint therapy is a well-established therapeutic approach in the treatment of malignant diseases and is thought to be mostly based on facilitating the adaptive immune response. However, the cells of the innate immune response, such as natural killer T (NKT) cells, might also be important for a successful anti-programmed cell death protein-1 (anti-PD-1) therapy, as they initiate the antitumor immune response. The aim of this study was to investigate the influence of anti-PD-1 therapy on the immune response against tumors. Methods. For tumor induction, 4T1 cells synergic to BALB/c back-ground were used, after which mice underwent anti-PD-1 treatment. After the mice were sacrificed, NKT cells, dendritic cells (DCs), and macrophages derived from spleen and primary tumor tissue were analyzed using flow cytometry. Results. Anti-PD-1 therapy enhanced the expression of activating molecules CD69, NKp46, and NKG2D in NKT cells of the tumor and spleen. This therapy activated NKT cells directly and indirectly via DCs. Activated NKT cells acquired tumoricidic properties directly, by secreting perforin, and indirectly by stimulating M1 macrophages polarization. Conclusion. Anti-PD-1 therapy activates changes in DCs and macrophages of primary tumor tissue towards protumoricidic activity. Since anti-PD-1 therapy induces significant changes in NKT cells, DCs, and macrophages, the efficacy of the overall antitumor response is increased and has significantly decelerated tumor growth.
Collapse
|
10
|
Guo X, Zheng J, Zhang S, Jiang X, Chen T, Yu J, Wang S, Ma X, Wu C. Advances in Unhealthy Nutrition and Circadian Dysregulation in Pathophysiology of NAFLD. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2021; 2:691828. [PMID: 36994336 PMCID: PMC10012147 DOI: 10.3389/fcdhc.2021.691828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
Unhealthy diets and lifestyle result in various metabolic conditions including metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Much evidence indicates that disruption of circadian rhythms contributes to the development and progression of excessive hepatic fat deposition and inflammation, as well as liver fibrosis, a key characteristic of non-steatohepatitis (NASH) or the advanced form of NAFLD. In this review, we emphasize the importance of nutrition as a critical factor in the regulation of circadian clock in the liver. We also focus on the roles of the rhythms of nutrient intake and the composition of diets in the regulation of circadian clocks in the context of controlling hepatic glucose and fat metabolism. We then summarize the effects of unhealthy nutrition and circadian dysregulation on the development of hepatic steatosis and inflammation. A better understanding of how the interplay among nutrition, circadian rhythms, and dysregulated metabolism result in hepatic steatosis and inflammation can help develop improved preventive and/or therapeutic strategies for managing NAFLD.
Collapse
Affiliation(s)
- Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xin Guo, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shu'e Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Xin Guo, ; Chaodong Wu,
| |
Collapse
|
11
|
Perez C, Gruber I, Arber C. Off-the-Shelf Allogeneic T Cell Therapies for Cancer: Opportunities and Challenges Using Naturally Occurring "Universal" Donor T Cells. Front Immunol 2020; 11:583716. [PMID: 33262761 PMCID: PMC7685996 DOI: 10.3389/fimmu.2020.583716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineered T cell therapies individually prepared for each patient with autologous T cells have recently changed clinical practice in the management of B cell malignancies. Even though CARs used to redirect polyclonal T cells to the tumor are not HLA restricted, CAR T cells are also characterized by their endogenous T cell receptor (TCR) repertoire. Tumor-antigen targeted TCR-based T cell therapies in clinical trials are thus far using “conventional” αβ-TCRs that recognize antigens presented as peptides in the context of the major histocompatibility complex. Thus, both CAR- and TCR-based adoptive T cell therapies (ACTs) are dictated by compatibility of the highly polymorphic HLA molecules between donors and recipients in order to avoid graft-versus-host disease and rejection. The development of third-party healthy donor derived well-characterized off-the-shelf cell therapy products that are readily available and broadly applicable is an intensive area of research. While genome engineering provides the tools to generate “universal” donor cells that can be redirected to cancers, we will focus our attention on third-party off-the-shelf strategies with T cells that are characterized by unique natural features and do not require genome editing for safe administration. Specifically, we will discuss the use of virus-specific T cells, lipid-restricted (CD1) T cells, MR1-restricted T cells, and γδ-TCR T cells. CD1- and MR1-restricted T cells are not HLA-restricted and have the potential to serve as a unique source of universal TCR sequences to be broadly applicable in TCR-based ACT as their targets are presented by the monomorphic CD1 or MR1 molecules on a wide variety of tumor types. For each cell type, we will summarize the stage of preclinical and clinical development and discuss opportunities and challenges to deliver off-the-shelf targeted cellular therapies against cancer.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Gruber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Shimizu K, Iyoda T, Yamasaki S, Kadowaki N, Tojo A, Fujii SI. NK and NKT Cell-Mediated Immune Surveillance against Hematological Malignancies. Cancers (Basel) 2020; 12:cancers12040817. [PMID: 32231116 PMCID: PMC7226455 DOI: 10.3390/cancers12040817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Recent cancer treatment modalities have been intensively focused on immunotherapy. The success of chimeric antigen receptor T cell therapy for treatment of refractory B cell acute lymphoblastic leukemia has pushed forward research on hematological malignancies. Among the effector types of innate lymphocytes, natural killer (NK) cells show great importance in immune surveillance against infectious and tumor diseases. Particularly, the role of NK cells has been argued in either elimination of target tumor cells or escape of tumor cells from immune surveillance. Therefore, an NK cell activation approach has been explored. Recent findings demonstrate that invariant natural killer T (iNKT) cells capable of producing IFN-γ when optimally activated can promptly trigger NK cells. Here, we review the role of NKT and/or NK cells and their interaction in anti-tumor responses by highlighting how innate immune cells recognize tumors, exert effector functions, and amplify adaptive immune responses. In addition, we discuss these innate lymphocytes in hematological disorders, particularly multiple myeloma and acute myeloid leukemia. The immune balance at different stages of both diseases is explored in light of disease progression. Various types of innate immunity-mediated therapeutic approaches, recent advances in clinical immunotherapies, and iNKT-mediated cancer immunotherapy as next-generation immunotherapy are then discussed.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan;
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| |
Collapse
|
13
|
Fujii SI, Shimizu K. Immune Networks and Therapeutic Targeting of iNKT Cells in Cancer. Trends Immunol 2019; 40:984-997. [PMID: 31676264 DOI: 10.1016/j.it.2019.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023]
Abstract
One of the primary goals in tumor immunotherapy is to reset the immune system from tolerogenic to immunogenic - a process in which invariant natural killer T (iNKT) cells are implicated. iNKT cells develop in the thymus and perform immunosurveillance against tumor cells peripherally. When optimally stimulated, iNKT cells differentiate and display more efficient immune functions. Some cells survive and act as effector memory cells. We discuss the putative roles of iNKT cells in antitumor immunity, and posit that it may be possible to develop novel therapeutic strategies to treat cancers using iNKT cells. In particular, we highlight the challenge of uniquely energizing iNKT cell-licensed dendritic cells to serve as effective immunoadjuvants for both arms of the immune system, thus coupling immunological networks.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan.
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Shimizu K, Yamasaki S, Sakurai M, Yumoto N, Ikeda M, Mishima-Tsumagari C, Kukimoto-Niino M, Watanabe T, Kawamura M, Shirouzu M, Fujii SI. Granzyme A Stimulates pDCs to Promote Adaptive Immunity via Induction of Type I IFN. Front Immunol 2019; 10:1450. [PMID: 31293597 PMCID: PMC6606709 DOI: 10.3389/fimmu.2019.01450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/10/2019] [Indexed: 01/01/2023] Open
Abstract
Granzyme A (GzmA), together with perforin, are well-known for their cytotoxic activity against tumor or virus-infected cells. In addition to this cytotoxic function, GzmA stimulates several immune cell types and induces inflammation in the absence of perforin, however, its effect on the dendritic cell (DC) is unknown. In the current study, we showed that recombinant GzmA induced the phenotypic maturation of plasmacytoid DCs (pDCs) and conventional DCs (cDCs), but not their apoptosis. Particularly, GzmA made pDCs more functional, thus leading to production of type I interferon (IFN) via the TLR9-MyD88 pathway. We also demonstrated that GzmA binds TLR9 and co-localizes with it in endosomes. When co-administered with antigen, GzmA acted as a powerful adjuvant for eliciting antigen-specific cytotoxic CD8+ T lymphocytes (CTLs) that protected mice from tumor challenge. The induction of CTL was completely abolished in XCR1+ DC-depleted mice, whereas it was reduced to less than half in pDC-depleted or IFN-α/β receptor knockout mice. Thus, CTL cross-priming was dependent on XCR1+cDC and also type I IFN, which was produced by GzmA-activated pDCs. These results indicate that GzmA -stimulated pDCs enhance the cross-priming activity of cDCs in situ. We also showed that the adjuvant effect of GzmA is superior to CpG-ODN and LPS. Our findings highlight the ability of GzmA to bridge innate and adaptive immune responses via pDC help and suggest that GzmA may be useful as a vaccine adjuvant.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Maki Sakurai
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Noriko Yumoto
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Ikeda
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Chiemi Mishima-Tsumagari
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
15
|
Lam PY, Kobayashi T, Soon M, Zeng B, Dolcetti R, Leggatt G, Thomas R, Mattarollo SR. NKT Cell-Driven Enhancement of Antitumor Immunity Induced by Clec9a-Targeted Tailorable Nanoemulsion. Cancer Immunol Res 2019; 7:952-962. [PMID: 31053598 DOI: 10.1158/2326-6066.cir-18-0650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 04/22/2019] [Indexed: 11/16/2022]
Abstract
Invariant natural killer T (iNKT) cells are a subset of lymphocytes with immune regulatory activity. Their ability to bridge the innate and adaptive immune systems has been studied using the glycolipid ligand α-galactosylceramide (αGC). To better harness the immune adjuvant properties of iNKT cells to enhance priming of antigen-specific CD8+ T cells, we encapsulated both αGC and antigen in a Clec9a-targeted nanoemulsion (TNE) to deliver these molecules to cross-presenting CD8+ dendritic cells (DC). We demonstrate that, even in the absence of exogenous glycolipid, iNKT cells supported the maturation of CD8α+ DCs to drive efficient cross-priming of antigen-specific CD8+ T cells upon delivery of Clec9a/OVA-TNE. The addition of αGC to the TNE (Clec9a/OVA/αGC) further enhanced activation of iNKT cells, NK cells, CD8α+ DCs, and polyfunctional CD8+ T cells. When tested therapeutically against HPVE7-expressing TC-1 tumors, long-term tumor suppression was achieved with a single administration of Clec9a/E7 peptide/αGC TNE. Antitumor activity was correlated with the recruitment of mature DCs, NK cells, and tumor-specific effector CD8+ T cells to the tumor-draining lymph node and tumor tissue. Thus, Clec9a-TNE codelivery of CD8+ T-cell epitopes with αGC induces alternative helper signals from activated iNKT cells, elicits innate (iNKT, NK) immunity, and enhances antitumor CD8+ T-cell responses for control of solid tumors.
Collapse
Affiliation(s)
- Pui Yeng Lam
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Megan Soon
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Bijun Zeng
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Graham Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
16
|
The Crosstalk between Fat Homeostasis and Liver Regional Immunity in NAFLD. J Immunol Res 2019; 2019:3954890. [PMID: 30719457 PMCID: PMC6335683 DOI: 10.1155/2019/3954890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/11/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
The liver is well known as the center of glucose and lipid metabolism in the human body. It also functions as an immune organ. Previous studies have suggested that liver nonparenchymal cells are crucial in the progression of NAFLD. In recent years, NAFLD's threat to human health has been becoming a global issue. And by far, there is no effective treatment for NAFLD. Liver nonparenchymal cells are stimulated by lipid antigens, adipokines, or other factors, and secreted immune factors can alter the expression of key proteins such as SREBP-1c, ChREBP, and PPARγ to regulate lipid metabolism, thus affecting the pathological process of NAFLD. Interestingly, some ncRNAs (including miRNAs and lncRNAs) participate in the pathological process of NAFLD by changing body fat homeostasis. And even some ncRNAs could regulate the activity of HSCs, thereby affecting the progression of inflammation and fibrosis in the course of NAFLD. In conclusion, immunotherapy could be an effective way to treat NAFLD.
Collapse
|
17
|
Fujii SI, Yamasaki S, Sato Y, Shimizu K. Vaccine Designs Utilizing Invariant NKT-Licensed Antigen-Presenting Cells Provide NKT or T Cell Help for B Cell Responses. Front Immunol 2018; 9:1267. [PMID: 29915600 PMCID: PMC5995044 DOI: 10.3389/fimmu.2018.01267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Vaccines against a variety of infectious diseases have been developed and tested. Although there have been some notable successes, most are less than optimal or have failed outright. There has been discussion about whether either B cells or dendritic cells (DCs) could be useful for the development of antimicrobial vaccines with the production of high titers of antibodies. Invariant (i)NKT cells have direct antimicrobial effects as well as adjuvant activity, and iNKT-stimulated antigen-presenting cells (APCs) can determine the form of the ensuing humoral and cellular immune responses. In fact, upon activation by ligand, iNKT cells can stimulate both B cells and DCs as via either cognate or non-cognate help. iNKT-licensed DCs generate antigen-specific follicular helper CD4+ T cells, which in turn stimulate B cells, thus leading to long-term antigen-specific antibody production. Follicular helper iNKT cell-licensed B cells generally produce rapid, but short-term antibody. However, under some conditions in the presence of Th cells, the antibody production can be prolonged. With regards to humoral immunity, the quality and quantity of Ab produced depends on the APC type and the form of the vaccine. In terms of cellular immunity and, in particular, the induction of cytotoxic CD8+ T cells, iNKT-licensed DCs show prominent activity. In this review, we discuss differences in iNKT-stimulated APC types and the quality of the ensuing immune response, and also discuss their application in vaccine models to develop successful preventive immunotherapy against infectious diseases.
Collapse
Affiliation(s)
- Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Yusuke Sato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|