1
|
Kumashie KG, Cebula M, Hagedorn C, Kreppel F, Pils MC, Koch-Nolte F, Rissiek B, Wirth D. Improved Functionality of Exhausted Intrahepatic CXCR5+ CD8+ T Cells Contributes to Chronic Antigen Clearance Upon Immunomodulation. Front Immunol 2021; 11:592328. [PMID: 33613516 PMCID: PMC7886981 DOI: 10.3389/fimmu.2020.592328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.
Collapse
Affiliation(s)
- Kingsley Gideon Kumashie
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcin Cebula
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, University Witten/Herdecke, Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, University Witten/Herdecke, Witten, Germany
| | - Marina C Pils
- Mouse Pathology Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Institute of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, Suryadevara N, Wang-Bishop L, Boyd KL, Crowe JE, Joyce S, Wilson JT. Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8 + Lung-Resident Memory T Cells. ACS NANO 2019; 13:10939-10960. [PMID: 31553872 PMCID: PMC6832804 DOI: 10.1021/acsnano.9b00326] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tissue-resident memory T cells (TRM) patrol nonlymphoid organs and provide superior protection against pathogens that commonly infect mucosal and barrier tissues, such as the lungs, intestine, liver, and skin. Thus, there is a need for vaccine technologies that can induce a robust, protective TRM response in these tissues. Nanoparticle (NP) vaccines offer important advantages over conventional vaccines; however, there has been minimal investigation into the design of NP-based vaccines for eliciting TRM responses. Here, we describe a pH-responsive polymeric nanoparticle vaccine for generating antigen-specific CD8+ TRM cells in the lungs. With a single intranasal dose, the NP vaccine elicited airway- and lung-resident CD8+ TRM cells and protected against respiratory virus challenge in both sublethal (vaccinia) and lethal (influenza) infection models for up to 9 weeks after immunization. In elucidating the contribution of material properties to the resulting TRM response, we found that the pH-responsive activity of the carrier was important, as a structurally analogous non-pH-responsive control carrier elicited significantly fewer lung-resident CD8+ T cells. We also demonstrated that dual-delivery of protein antigen and nucleic acid adjuvant on the same NP substantially enhanced the magnitude, functionality, and longevity of the antigen-specific CD8+ TRM response in the lungs. Compared to administration of soluble antigen and adjuvant, the NP also mediated retention of vaccine cargo in pulmonary antigen-presenting cells (APCs), enhanced APC activation, and increased production of TRM-related cytokines. Overall, these data suggest a promising vaccine platform technology for rapid generation of protective CD8+ TRM cells in the lungs.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Amrendra Kumar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Kyle W. Becker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Max E. Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Lihong Wang-Bishop
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding Author:
| |
Collapse
|