1
|
Li Y, Baniel A, Diaz D, Ogawa-Momohara M, Ricco C, Eldaboush A, Bashir M, Sharma M, Liu ML, Werth VP. Keratinocyte derived extracellular vesicles mediated crosstalk between epidermis and dermis in UVB-induced skin inflammation. Cell Commun Signal 2024; 22:461. [PMID: 39350252 PMCID: PMC11441254 DOI: 10.1186/s12964-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND RATIONALE Ultraviolet-B (UVB) light induces dermal inflammation, although it is mostly absorbed in the epidermis. Recent reports suggest extracellular vesicles (EVs) act as a mediator of photodamage signaling. Melatonin is reported to be a protective factor against UV-induced damage. We hypothesized that EVs derived from UVB-irradiated keratinocytes might trigger proinflammatory responses in dermal cells and tested whether melatonin can ameliorate UVB-induced inflammation. METHODS We used UVB-irradiated HaCaT cells, primary keratinocytes and STING knock-out mice to model production of EVs under photodamaging conditions and performed immunoblotting and ELISA to measure their effect on dermal macrophages. RESULTS UVB-irradiated keratinocytes produce an increased number of EVs that contain higher concentrations of DNA and protein compared with controls. KC-derived EVs (KEVs) induced a STING- and inflammasome-mediated proinflammatory response in macrophages in vitro, and a pronounced inflammatory infiltrate in mouse dermis in vivo. Melatonin ameliorated KEVs inflammatory effect both in vitro and in vivo. CONCLUSIONS This data suggests EVs are mediators in a crosstalk that takes place between keratinocytes and their neighboring cells as a result of photodamage. Further studies exploring EVs induced by damaging doses of UVB, and their impact on other cells will provide insight into photodamage and may help develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Avital Baniel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mariko Ogawa-Momohara
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Cristina Ricco
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed Eldaboush
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Muhammad Bashir
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ming-Lin Liu
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
- Department of Dermatology, School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Miyauchi H, Okubo K, Iida K, Kawakami H, Takayama K, Hayashi Y, Haruta J, Sasaki J, Hayashi K, Hirahashi J. Multiple site inflammation and acute kidney injury in crush syndrome. Front Pharmacol 2024; 15:1458997. [PMID: 39281284 PMCID: PMC11392879 DOI: 10.3389/fphar.2024.1458997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Crush syndrome, which frequently occurs in earthquake disasters, often leads to rhabdomyolysis induced acute kidney injury (RIAKI). Recent findings indicate that systemic inflammatory response syndrome (SIRS) exacerbates muscle collapse, contributing to RIAKI. The purpose of this study is to investigate the involvement of multiple site inflammation, including intraperitoneal, in crush syndrome. In a mouse model of RIAKI, elevated levels of inflammatory mediators such as TNFα, IL-6, myoglobin, and dsDNA were observed in serum and the peritoneal cavity, peaking earlier in the intraperitoneal cavity than in serum or urine. Our previously developed novel peptide inhibiting leukocyte extracellular traps was administered intraperitoneally and blocked all of these mediators in the intraperitoneal cavity and serum, ameliorating muscle damage and consequent RIAKI. Although further studies are needed to determine whether intraperitoneal inflammation associated with muscle collapse can lead to systemic inflammation, resulting in more severe and prolonged muscle damage and renal injury, early suppression of multiple site inflammation, including intraperitoneal, might be an effective therapeutic target.
Collapse
Affiliation(s)
- Hiroaki Miyauchi
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Koshu Okubo
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
| | - Kiriko Iida
- Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women's University, Tokyo, Japan
| | - Hiroshi Kawakami
- Division of Food and Nutrition, Graduate School of Human Sciences, Kyoritsu Women's University, Tokyo, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- Laboratory of Environmental Biochemistry Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Junji Haruta
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Medical Education Center, School of Medicine, Keio University, Tokyo, Japan
| | - Junichi Sasaki
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Endocrinology, Metabolism and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Junichi Hirahashi
- Department of General Medicine Education, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
3
|
Maisat W, Hou L, Sandhu S, Sin YC, Kim S, Pelt HV, Chen Y, Emani S, Kong SW, Emani S, Ibla J, Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572768. [PMID: 38187754 PMCID: PMC10769315 DOI: 10.1101/2023.12.21.572768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pediatric patients with congenital heart diseases (CHD) often undergo surgical repair on cardiopulmonary bypass (CPB). Despite a significant medical and surgical improvement, the mortality of neonates and infants remains high. Damage-associated molecular patterns (DAMPs) are endogenous molecules released from injured/damaged tissues as danger signals. We examined 101 pediatric patients who underwent congenital cardiac surgery on CPB. The mortality rate was 4.0%, and the complication rate was 31.6%. We found that neonates/infants experienced multiple complications most, consistent with the previous knowledge. Neonates and infants in the complication group had received more transfusion intraoperatively than the non-complication arm with lower maximum amplitude (MA) on rewarming CPB thromboelastography (TEG). Despite TEG profiles were comparable at ICU admission between the two groups, the complication arm had higher postoperative chest tube output, requiring more blood transfusion. The complication group showed greater neutrophil extracellular traps (NETs) formation at the end of CPB and postoperatively. Plasma histones and high mobility group box 1 (HMGB1) levels were significantly higher in the complication arm. Both induced NETs in vitro and in vivo . As histones and HMGB1 target Toll-like receptor (TLR)2 and TLR4, their mRNA expression in neutrophils was upregulated in the complication arm. Taken together, NETs play a major role in postoperative complication in pediatric cardiac surgery and would be considered a target for intervention. Key points Neonates and infants showed highest postoperative complications with more upregulation of inflammatory transcriptomes of neutrophils.Neonates and infants with organ dysfunction had more NETs formation with higher plasma histones and HMGB1 levels.
Collapse
|
4
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Qiu M, Zhou X, Zippi M, Goyal H, Basharat Z, Jagielski M, Hong W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann Med 2023; 55:2265939. [PMID: 37813108 PMCID: PMC10563627 DOI: 10.1080/07853890.2023.2265939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
It is well known, that the inflammatory process that characterizes acute pancreatitis (AP) can lead to both pancreatic damage and systemic inflammatory response syndrome (SIRS). During the last 20 years, there has been a growing incidence of episodes of acute pancreatitis associated with hypertriglyceridaemia (HTAP). This review provides an overview of triglyceride metabolism and the potential mechanisms that may contribute to developing or exacerbating HTAP. The article comprehensively discusses the various pathological roles of free fatty acid, inflammatory response mechanisms, the involvement of microcirculation, serum calcium overload, oxidative stress and the endoplasmic reticulum, genetic polymorphism, and gut microbiota, which are known to trigger or escalate this condition. Future perspectives on HTAP appear promising, with ongoing research focused on developing more specific and effective treatment strategies.
Collapse
Affiliation(s)
- Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiaoying Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Hemant Goyal
- Department of Surgery, University of TX Health Sciences Center, Houston, TX, United States
| | | | - Mateusz Jagielski
- Department of General, Gastroenterological and Oncological Surgery, Nicolaus Copernicus University in Toruń, Poland
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Shimono K, Ito T, Kamikokuryo C, Niiyama S, Yamada S, Onishi H, Yoshihara H, Maruyama I, Kakihana Y. Damage-associated molecular patterns and fibrinolysis perturbation are associated with lethal outcomes in traumatic injury. Thromb J 2023; 21:91. [PMID: 37674235 PMCID: PMC10481518 DOI: 10.1186/s12959-023-00536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Upon cellular injury, damage-associated molecular patterns (DAMPs) are released into the extracellular space and evoke proinflammatory and prothrombotic responses in animal models of sterile inflammation. However, in clinical settings, the dynamics of DAMP levels after trauma and links between DAMPs and trauma-associated coagulopathy remain largely undetermined. METHODS Thirty-one patients with severe trauma, who were transferred to Kagoshima City Hospital between June 2018 and December 2019, were consecutively enrolled in this study. Blood samples were taken at the time of delivery, and 6 and 12 h after the injury, and once daily thereafter. The time-dependent changes of coagulation/fibrinolysis markers, including thrombin-antithrombin complex, α2-plasmin inhibitor (α2-PI), plasmin-α2-PI complex, and plasminogen activator inhibitor-1 (PAI-1), and DAMPs, including high mobility group box 1 and histone H3, were analyzed. The relationship between coagulation/fibrinolysis markers, DAMPs, Injury Severity Score, in-hospital death, and amount of blood transfusion were analyzed. RESULTS The activation of coagulation/fibrinolysis pathways was evident at the time of delivery. In contrast, PAI-1 levels remained low at the time of delivery, and then were elevated at 6-12 h after traumatic injury. Histone H3 and high mobility group box 1 levels were elevated at admission, and gradually subsided over time. PAI-1 levels at 6 h were associated with serum histone H3 levels at admission. Increased histone H3 levels and plasmin-α2-PI complex levels were associated with in-hospital mortality. α2-PI levels at admission showed the strongest negative correlation with the amount of blood transfusion. CONCLUSION The elevation of histone H3 levels and fibrinolysis perturbation are associated with fatal outcomes in patients with traumatic injury. Patients with low α2-PI levels at admission tend to require blood transfusion.
Collapse
Affiliation(s)
- Kenshin Shimono
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan.
| | - Chinatsu Kamikokuryo
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuhei Niiyama
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shingo Yamada
- Shino-Test Corporation, R&D Center, Sagamihara, Japan
| | - Hirokazu Onishi
- Emergency and Critical Care Center, Kagoshima City Hospital, Kagoshima, Japan
| | - Hideaki Yoshihara
- Emergency and Critical Care Center, Kagoshima City Hospital, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
7
|
Hayes AJ, Zheng X, O'Kelly J, Neyton LPA, Bochkina NA, Uings I, Liddle J, Baillie JK, Just G, Binnie M, Homer NZM, Murray TBJ, Baily J, McGuire K, Skouras C, Garden OJ, Webster SP, Iredale JP, Howie SEM, Mole DJ. Kynurenine monooxygenase regulates inflammation during critical illness and recovery in experimental acute pancreatitis. Cell Rep 2023; 42:112763. [PMID: 37478012 DOI: 10.1016/j.celrep.2023.112763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1β to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.
Collapse
Affiliation(s)
- Alastair J Hayes
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Xiaozhong Zheng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - James O'Kelly
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Lucile P A Neyton
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Natalia A Bochkina
- School of Mathematics and Maxwell Institute, University of Edinburgh, Edinburgh, UK
| | - Iain Uings
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - John Liddle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | | | - George Just
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Margaret Binnie
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | | | - James Baily
- Charles River Laboratories, East Lothian, UK
| | - Kris McGuire
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - O James Garden
- Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Scott P Webster
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Sarah E M Howie
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Damian J Mole
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Clinical Surgery, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Deng Y, Zou Y, Song X, Jiang A, Wang M, Qin Q, Song Y, Yue C, Yang D, Yu B, Lu H, Zheng Y. Potential of extracellular vesicles for early prediction of severity and potential risk stratification in critical inflammatory diseases. J Cell Commun Signal 2023:10.1007/s12079-023-00763-w. [PMID: 37195382 DOI: 10.1007/s12079-023-00763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Some acute inflammatory diseases are often exacerbated during or after hospitalization, leading to some severe manifestations like systemic inflammatory response syndrome, multiple organ failure, and high mortality. Early clinical predictors of disease severity are urgently needed to optimize patient management for better prognosis. The existing clinical scoring system and laboratory tests cannot circumvent the problems of low sensitivity and limited specificity. Extracellular vesicles (EVs) are heterogeneous nanosecretory vesicles containing various biomolecules related to immune regulation, inflammation activation, and inflammation-related complications. This review provides an overview of EVs as inflammatory mediators, inflammatory signaling pathway regulators, promoters of inflammatory exacerbation, and markers of severity and prognosis. Currently, although relevant biomarkers are clinically available or are in the preclinical research stage, searching for new markers and detection methods is still warranted, as the problems of low sensitivity/specificity, cumbersome laboratory operation and high cost still plague clinicians. In-depth study of EVs might open a door in the search for novel predictors.
Collapse
Affiliation(s)
- Yuchuan Deng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yu Zou
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Ailing Jiang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Mao Wang
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Qin Qin
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Yiran Song
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China
| | - Chao Yue
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Yu
- Zhejiang Pushkang Biotechnology Co., Ltd, Shaoxing, Zhejiang Province, China
| | - Huimin Lu
- Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yu Zheng
- Department of Biotherapy,Cancer Center and State Key Laboratory of Biotherapy,West China Hospital, Sichuan University, Chengdu, 6110041, Sichuan, China.
| |
Collapse
|
9
|
Vidaurre MDPH, Osborn BK, Lowak KD, McDonald MM, Wang YWW, Pa V, Richter JR, Xu Y, Arnold K, Liu J, Cardenas JC. A 3- O-sulfated heparan sulfate dodecasaccharide (12-mer) suppresses thromboinflammation and attenuates early organ injury following trauma and hemorrhagic shock. Front Immunol 2023; 14:1158457. [PMID: 37122735 PMCID: PMC10140401 DOI: 10.3389/fimmu.2023.1158457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Dysregulated inflammation and coagulation are underlying mechanisms driving organ injury after trauma and hemorrhagic shock. Heparan sulfates, cell surface glycosaminoglycans abundantly expressed on the endothelial surface, regulate a variety of cellular processes. Endothelial heparan sulfate containing a rare 3-O-sulfate modification on a glucosamine residue is anticoagulant and anti-inflammatory through high-affinity antithrombin binding and sequestering of circulating damage-associated molecular pattern molecules. Our goal was to evaluate therapeutic potential of a synthetic 3-O-sulfated heparan sulfate dodecasaccharide (12-mer, or dekaparin) to attenuate thromboinflammation and prevent organ injury. Methods Male Sprague-Dawley rats were pre-treated subcutaneously with vehicle (saline) or dekaparin (2 mg/kg) and subjected to a trauma/hemorrhagic shock model through laparotomy, gut distention, and fixed-pressure hemorrhage. Vehicle and dekaparin-treated rats were resuscitated with Lactated Ringer's solution (LR) and compared to vehicle-treated fresh-frozen-plasma-(FFP)-resuscitated rats. Serial blood samples were collected at baseline, after induction of shock, and 3 hours after fluid resuscitation to measure hemodynamic and metabolic shock indicators, inflammatory mediators, and thrombin-antithrombin complex formation. Lungs and kidneys were processed for organ injury scoring and immunohistochemical analysis to quantify presence of neutrophils. Results Induction of trauma and hemorrhagic shock resulted in significant increases in thrombin-antithrombin complex, inflammatory markers, and lung and kidney injury scores. Compared to vehicle, dekaparin treatment did not affect induction, severity, or recovery of shock as indicated by hemodynamics, metabolic indicators of shock (lactate and base excess), or metrics of bleeding, including overall blood loss, resuscitation volume, or hematocrit. While LR-vehicle-resuscitated rodents exhibited increased lung and kidney injury, administration of dekaparin significantly reduced organ injury scores and was similar to organ protection conferred by FFP resuscitation. This was associated with a significant reduction in neutrophil infiltration in lungs and kidneys and reduced lung fibrin deposition among dekaparin-treated rats compared to vehicle. No differences in organ injury, neutrophil infiltrates, or fibrin staining between dekaparin and FFP groups were observed. Finally, dekaparin treatment attenuated induction of thrombin-antithrombin complex and inflammatory mediators in plasma following trauma and hemorrhagic shock. Conclusion Anti-thromboinflammatory properties of a synthetic 3-O-sulfated heparan sulfate 12-mer, dekaparin, could provide therapeutic benefit for mitigating organ injury following major trauma and hemorrhagic shock.
Collapse
Affiliation(s)
- Maria del Pilar Huby Vidaurre
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Baron K. Osborn
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaylie D. Lowak
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michelle M. McDonald
- Department of Pathology and Laboratory Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yao-Wei W. Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Veda Pa
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Department of Surgery, Division of Trauma and Acute Care Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katelyn Arnold
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jessica C. Cardenas
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Maisat W, Yuki K. Narrative review of systemic inflammatory response mechanisms in cardiac surgery and immunomodulatory role of anesthetic agents. Ann Card Anaesth 2023; 26:133-142. [PMID: 37706376 PMCID: PMC10284469 DOI: 10.4103/aca.aca_147_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/05/2022] [Accepted: 12/18/2022] [Indexed: 09/15/2023] Open
Abstract
Although surgical techniques and perioperative care have made significant advances, perioperative mortality in cardiac surgery remains relatively high. Single- or multiple-organ failure remains the leading cause of postoperative mortality. Systemic inflammatory response syndrome (SIRS) is a common trigger for organ injury or dysfunction in surgical patients. Cardiac surgery involves major surgical dissection, the use of cardiopulmonary bypass (CPB), and frequent blood transfusions. Ischemia-reperfusion injury and contact activation from CPB are among the major triggers for SIRS. Blood transfusion can also induce proinflammatory responses. Here, we review the immunological mechanisms of organ injury and the role of anesthetic regimens in cardiac surgery.
Collapse
Affiliation(s)
- Wiriya Maisat
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Koichi Yuki
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, USA
- Department of Anaesthesia, Harvard Medical School, Boston, USA
- Department of Immunology, Harvard Medical School, Boston, USA
| |
Collapse
|
11
|
Cui Y, Xu L, Wang F, Wang Z, Tong X, Yan H. Orally Administered Brain Protein Combined With Probiotics Increases Treg Differentiation to Reduce Secondary Inflammatory Damage Following Craniocerebral Trauma. Front Immunol 2022; 13:928343. [PMID: 35874774 PMCID: PMC9298786 DOI: 10.3389/fimmu.2022.928343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Craniocerebral trauma is caused by external forces that can have detrimental effects on the vasculature and adjacent nerve cells at the site. After the mechanical and structural primary injury, a complex series of secondary cascades of injury exacerbates brain damage and cognitive dysfunction following mechanical and structural primary injury. Disruption of the blood-brain barrier and exposure of brain proteins following craniocerebral trauma, recognition by the immune system triggering autoimmune attack, and excessive secondary inflammatory responses causing malignant brain swelling, cerebral edema, and subsequent brain cell apoptosis provide a new direction for the suppression of brain inflammatory responses in the treatment of craniocerebral trauma. We observed that CD4+T/CD8+T in peripheral blood T cells of craniocerebral trauma rats were significantly higher than those of normal rats, and the ratio of CD4+CD25+Foxp3 (Foxp3)+Regulatory T cell (Treg) was significantly lower than that of normal rats and caused increased secondary inflammation. We constructed a rat model of post-surgical brain injury and orally administered brain protein combined with probiotics, which was observed to significantly reduce CD4+T/CD8+T and induce T-cell differentiation into CD4+CD25+Foxp3+Treg, thus, reducing secondary inflammatory responses following craniocerebral trauma. However, collecting intestinal stool and small intestinal tissues for broad target metabolomics, 16s rRNA bacteriomics, and the combined analysis of intestinal tissue proteomics revealed that oral administration of brain protein combined with probiotics activates glycerophospholipid and vitamin B6 metabolic pathways to promote the production of CD4+CD25+Foxp3+Treg. Therefore, we propose the novel idea that oral administration of brain protein combined with probiotics can induce immune tolerance by increasing Treg differentiation, thus, reducing secondary inflammatory injury following craniocerebral trauma.
Collapse
Affiliation(s)
- Yang Cui
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Hebei Yanda Hospital, Langfang, China
| | - Lixia Xu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Fanchen Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zhengang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
12
|
Wu H, Bao H, Liu C, Zhang Q, Huang A, Quan M, Li C, Xiong Y, Chen G, Hou L. Extracellular Nucleosomes Accelerate Microglial Inflammation via C-Type Lectin Receptor 2D and Toll-Like Receptor 9 in mPFC of Mice With Chronic Stress. Front Immunol 2022; 13:854202. [PMID: 35844599 PMCID: PMC9276970 DOI: 10.3389/fimmu.2022.854202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are the primary promoter of progressive neuroinflammation and are associated with chronic stress-related emotional disorders. The present study investigated the role and mechanism of extracellular nucleosomes and histones, the newly defined DAMPs, in mice with chronic stress. C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) and corticosterone drinking, respectively, for 4 weeks. Negative emotional behaviors were comprehensively investigated. Microglial morphology, oxidative stress, and inflammation, as well as C-type lectin receptor 2D (Clec2d) and Toll-like receptor 9 (TLR9) expression in medial prefrontal cortex (mPFC) were assessed with flow cytometer and cell sorting. Specifically, microglial pro-inflammatory activation and inflammation were further investigated with stereotactic injection of recombinant nucleosomes and histones in mPFC and further evaluated with AAV-Clec2d knocking-down, DNase I, and activated protein C (APC) pretreatment. Moreover, the rescue effect by AAV-Clec2d knocking-down was observed in mice with chronic stress. Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors and accompanied with significant microglial oxidative stress and inflammation, indicating by reactive oxygen species (ROS) production, primed nuclear factor-κB (NF-κB) signaling pathway, activated NACHT, LRR, and PYD domain–containing protein 3 (NLRP3) inflammasome, and upregulated Clec2d and TLR9 in mPFC, together with histones dictation in cerebrospinal fluid and extracellular trap formation. Stereotactic injection of nucleosomes was contributed to promote microglial inflammation rather than histones in mPFC, indicating that the pro-inflammatory role was derived from extracellular histones-bound DNA but not freely histones. AAV-Clec2d knocking-down, DNase I, and APC were all effective to inhibit nucleosome-induced microglial oxidative stress and inflammation. Moreover, AAV-Clec2d knocking-down in mice with chronic stress exhibited reduced microglial inflammation and improved negative emotional behaviors. Our findings reveal a novel mechanism of DAMP-associated inflammation that extracellular nucleosomes accelerate microglial inflammation via Clec2d and TLR9, and then contribute to chronic stress-induced emotional disorders.
Collapse
Affiliation(s)
- Huanghui Wu
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Han Bao
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Cong Liu
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiao Zhang
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ailing Huang
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Minxue Quan
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chunhui Li
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Xiong
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guozhong Chen
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
- *Correspondence: Guozhong Chen, ; Lichao Hou,
| | - Lichao Hou
- Department of Anesthesiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Guozhong Chen, ; Lichao Hou,
| |
Collapse
|
13
|
Lv Z, Xiong LL, Qin X, Zhang H, Luo X, Peng W, Kilby MD, Saffery R, Baker PN, Qi HB. Role of GRK2 in Trophoblast Necroptosis and Spiral Artery Remodeling: Implications for Preeclampsia Pathogenesis. Front Cell Dev Biol 2021; 9:694261. [PMID: 34917606 PMCID: PMC8670385 DOI: 10.3389/fcell.2021.694261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Impaired invasion of extravillous trophoblasts and severe oxidative stress manifest the poor placentation in preeclampsia, which is life-threatening and more than a hypertensive disease of pregnancy. Previous studies have reported that G protein-coupled receptor kinases (GRKs) play a key role in initiating hypertension and hypertensive renal damage, yet little evidence so far suggests a link between GRKs and preeclampsia-related hypertension. Here, we demonstrate GRK2 expression is significantly downregulated (P < 0.0001) in preeclamptic placentae compared to normotensive controls. Knockdown or inhibition of GRK2 in placentae caused insufficient arterial remodeling and elevated trophoblast necroptosis in vivo. These further induced preeclampsia-like phenotype in mice: hypertension, proteinuria, and elevated pro-angiogenic cytokines. By human extra-villous invasive trophoblast cell line (HTR8/SVneo cells), we revealed the knockdown or inhibition of GRK2 triggered excessive death with typical necroptotic characteristics: nuclear envelope rupture and the activation of RIPK1, RIPK3, and MLKL. Necrostatin-1, an inhibitor of RIPK1, is able to restore the survival of trophoblasts. Together, our findings demonstrated that insufficient GRK2 activity compromises spiral artery remodeling and initiates necrotic events in placentae, thereby leading to preeclampsia. These findings advance our understanding of GRK2 in the pathogenesis of preeclampsia and could shed light on a potential treatment for preeclampsia.
Collapse
Affiliation(s)
- Zi Lv
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Li-Ling Xiong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xian Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wei Peng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- Centre for Women's and New Born Health, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Richard Saffery
- Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| | - Hong-Bo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|
15
|
Hovhannisyan L, Czechowska E, Gutowska-Owsiak D. The Role of Non-Immune Cell-Derived Extracellular Vesicles in Allergy. Front Immunol 2021; 12:702381. [PMID: 34489951 PMCID: PMC8417238 DOI: 10.3389/fimmu.2021.702381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate information exchange between distant cells; this process directly affects the biological characteristics and functionality of the recipient cell. As such, EVs significantly contribute to the shaping of immune responses in both physiology and disease states. While vesicles secreted by immune cells are often implicated in the allergic process, growing evidence indicates that EVs from non-immune cells, produced in the stroma or epithelia of the organs directly affected by inflammation may also play a significant role. In this review, we provide an overview of the mechanisms of allergy to which those EVs contribute, with a particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding the utilization of the EV-mediated communication route for the benefit of allergic patients.
Collapse
Affiliation(s)
- Lilit Hovhannisyan
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Department of in vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Ewa Czechowska
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Danuta Gutowska-Owsiak
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Removal of Circulating Neutrophil Extracellular Trap Components With an Immobilized Polymyxin B Filter: A Preliminary Study. Shock 2021; 54:44-49. [PMID: 31764624 DOI: 10.1097/shk.0000000000001476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Components of neutrophil extracellular traps (NETs) are released into the circulation by neutrophils and contribute to microcirculatory disturbance in sepsis. Removing NET components (DNA, histones, and proteases) from the circulation could be a new strategy for counteracting NET-dependent tissue damage. We evaluated the effect of hemoperfusion with a polymyxin B (PMX) cartridge, which was originally developed for treating gram-negative infection, on circulating NET components in patients with septic shock, as well as the effect on phorbol myristate acetate (PMA)-stimulated neutrophils obtained from healthy volunteers. Ex vivo closed loop hemoperfusion was performed through PMX filters in a laboratory circuit. Whole blood from healthy volunteers (incubated with or without PMA) or from septic shock patients was perfused through the circuit. For in vivo experiment blood samples were collected before and immediately after hemoperfusion with PMX to measure the plasma levels of cell-free NETs. The level of cell-free NETs was assessed by measuring myeloperoxidase-associated DNA (MPO-DNA), neutrophil elastase-associated DNA (NE-DNA), and cell-free DNA (cf-DNA). Plasma levels of MPO-DNA, NE-DNA, and cf-DNA were significantly increased after 2 h of PMA stimulation. When the circuit was perfused with blood from septic shock patients or PMA-stimulated neutrophils from healthy volunteers, circulating levels of MPO-DNA, NE-DNA, and cf-DNA were significantly reduced after 1 and 2 h of perfusion with a PMX filter compared with perfusion without a PMX filter. In 10 patients with sepsis, direct hemoperfusion through filters with immobilized PMX significantly reduced plasma levels of MPO-DNA and NE-DNA. These ex vivo and in vivo findings demonstrated that hemoperfusion with PMX removes circulating NET components. Selective removal of circulating NET components from the blood could be effective for prevention/treatment of NET-related inappropriate inflammation and thrombogenesis in patients with sepsis.
Collapse
|
17
|
Zhao C, Chen J, Ye J, Li Z, Su L, Wang J, Zhang Y, Chen J, Yang H, Shi J, Song J. Structural Transformative Antioxidants for Dual-Responsive Anti-Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angew Chem Int Ed Engl 2021; 60:14458-14466. [PMID: 33835672 DOI: 10.1002/anie.202100873] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/12/2022]
Abstract
We have synthesized a PEGylated, phenylboronic acid modified L-DOPA pro-antioxidant (pPAD) that can self-assemble into nanoparticles (pPADN) for the loading of a model glucocorticoid dexamethasone (Dex) through 1,3-diol/phenylboronic acid chemistry and hydrophobic interactions for more effective treatment of inflammation. Upon exposure to ROS, pPADN convert into the active form of L-DOPA, and a cascade of oxidative reactions transform it into antioxidative melanin-like materials. Concomitantly, the structural transformation of pPADN triggers the specific release of Dex, along with the acidic pH of inflammatory tissue. In a rat model of osteoarthritis, Dex-loaded pPADN markedly mitigate synovial inflammation, suppress joint destruction and cartilage matrix degradation, with negligible in vivo toxicity. Moreover, in situ structural transformation makes pPADN suitable for noninvasive monitoring of therapeutic effects as a photoacoustic imaging contrast agent.
Collapse
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China.,Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jingxiao Chen
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zhi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Junqing Wang
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Ye Zhang
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
18
|
Zhao C, Chen J, Ye J, Li Z, Su L, Wang J, Zhang Y, Chen J, Yang H, Shi J, Song J. Structural Transformative Antioxidants for Dual‐Responsive Anti‐Inflammatory Delivery and Photoacoustic Inflammation Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jingxiao Chen
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 P. R. China
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Zhi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Junqing Wang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Ye Zhang
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Jinjun Shi
- Center for Nanomedicine Brigham and Women's Hospital Harvard Medical School Boston Massachusetts 02115 USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
19
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
20
|
Yang Q, Zhang R, Tang P, Sun Y, Johnson C, Saredy J, Wu S, Wang J, Lu Y, Saaoud F, Shao Y, Drummer C, Xu K, Yu D, Li R, Ge S, Jiang X, Wang H, Yang X. Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance. J Immunol Res 2021; 2021:6664453. [PMID: 33628851 PMCID: PMC7889351 DOI: 10.1155/2021/6664453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The immune mechanisms underlying low-intensity ultrasound- (LIUS-) mediated suppression of inflammation and tumorigenesis remain poorly determined. METHODS We used microarray datasets from the NCBI GEO DataSet repository and conducted comprehensive data-mining analyses, where we examined the gene expression of 1376 innate immune regulators (innatome genes (IGs) in cells treated with LIUS. RESULTS We made the following findings: (1) LIUS upregulates proinflammatory IGs and downregulates metastasis genes in cancer cells, and LIUS upregulates adaptive immunity pathways but inhibits danger-sensing and inflammation pathways and promote tolerogenic differentiation in bone marrow (BM) cells. (2) LIUS upregulates IGs encoded for proteins localized in the cytoplasm, extracellular space, and others, but downregulates IG proteins localized in nuclear and plasma membranes, and LIUS downregulates phosphatases. (3) LIUS-modulated IGs act partially via several important pathways of reactive oxygen species (ROS), reverse signaling of immune checkpoint receptors B7-H4 and BTNL2, inflammatory cytokines, and static or oscillatory shear stress and heat generation, among which ROS is a dominant mechanism. (4) LIUS upregulates trained immunity enzymes in lymphoma cells and downregulates trained immunity enzymes and presumably establishes trained tolerance in BM cells. (5) LIUS modulates chromatin long-range interactions to differentially regulate IGs expression in cancer cells and noncancer cells. CONCLUSIONS Our analysis suggests novel molecular mechanisms that are utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.
Collapse
Affiliation(s)
- Qian Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Ultrasonic Diagnosis and Treatment Center, XiAn International Medical Center Hospital, XiAn, China
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Ruijing Zhang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Peng Tang
- Department of Orthopedics, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing, China
| | - Yu Sun
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jason Saredy
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Susu Wu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jiwei Wang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Charles Drummer
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rongshan Li
- Department of Nephrology, Second Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Shuping Ge
- Heart Center, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research and Inflammation, Translational, & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
21
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
22
|
Khalaj K, Figueira RL, Antounians L, Lauriti G, Zani A. Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J Extracell Vesicles 2020; 9:1795365. [PMID: 32944185 PMCID: PMC7481829 DOI: 10.1080/20013078.2020.1795365] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Severe COVID-19 infection results in bilateral interstitial pneumonia, often leading to
acute respiratory distress syndrome (ARDS) and pulmonary fibrosis in survivors. Most
patients with severe COVID-19 infections who died had developed ARDS. Currently, ARDS is
treated with supportive measures, but regenerative medicine approaches including
extracellular vesicle (EV)-based therapies have shown promise. Herein, we aimed to analyse
whether EV-based therapies could be effective in treating severe pulmonary conditions that
affect COVID-19 patients and to understand their relevance for an eventual therapeutic
application to human patients. Using a defined search strategy, we conducted a systematic
review of the literature and found 39 articles (2014–2020) that reported effects of EVs,
mainly derived from stem cells, in lung injury models (one large animal study, none in
human). EV treatment resulted in: (1) attenuation of inflammation (reduction of
pro-inflammatory cytokines and neutrophil infiltration, M2 macrophage polarization); (2)
regeneration of alveolar epithelium (decreased apoptosis and stimulation of surfactant
production); (3) repair of microvascular permeability (increased endothelial cell junction
proteins); (4) prevention of fibrosis (reduced fibrin production). These effects were
mediated by the release of EV cargo and identified factors including miRs-126, −30b-3p,
−145, −27a-3p, syndecan-1, hepatocyte growth factor and angiopoietin-1. This review
indicates that EV-based therapies hold great potential for COVID-19 related lung injuries
as they target multiple pathways and enhance tissue regeneration. However, before
translating EV therapies into human clinical trials, efforts should be directed at
developing good manufacturing practice solutions for EVs and testing optimal dosage and
administration route in large animal models.
Collapse
Affiliation(s)
- Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giuseppe Lauriti
- Department of Pediatric Surgery, Spirito Santo Hospital, Pescara, Italy.,Department of Medicine and Aging Sciences, G. D'Annunzio University, Chieti-Pescara, Italy
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Wang JW, Wu AS, Yue Y, Wu Y. Perioperative Ulinastatin helps preserve endothelial glycocalyx layer in periampullary carcinoma patients undergoing Traditional Whipple Procedure. Clin Hemorheol Microcirc 2020; 75:135-142. [PMID: 31903986 DOI: 10.3233/ch-190688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jia-Wan Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
25
|
Structural alterations and inflammation in the heart after multiple trauma followed by reamed versus non-reamed femoral nailing. PLoS One 2020; 15:e0235220. [PMID: 32584885 PMCID: PMC7316303 DOI: 10.1371/journal.pone.0235220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Approximately 30,000 patients with blunt cardiac trauma are recorded each year in the United States. Blunt cardiac injuries after trauma are associated with a longer hospital stay and a poor overall outcome. Organ damage after trauma is linked to increased systemic release of pro-inflammatory cytokines and damage-associated molecular patterns. However, the interplay between polytrauma and local cardiac injury is unclear. Additionally, the impact of surgical intervention on this process is currently unknown. This study aimed to determine local cardiac immunological and structural alterations after multiple trauma. Furthermore, the impact of the chosen fracture stabilization strategy (reamed versus non-reamed femoral nailing) on cardiac alterations was studied. EXPERIMENTAL APPROACH 15 male pigs were either exposed to multiple trauma (blunt chest trauma, laparotomy, liver laceration, femur fracture and haemorrhagic shock) or sham conditions. Blood samples as well as cardiac tissue were analysed 4 h and 6 h after trauma. Additionally, murine HL-1 cells were exposed to a defined polytrauma-cocktail, mimicking the pro-inflammatory conditions after multiple trauma in vitro. RESULTS After multiple trauma, cardiac structural changes were observed in the left ventricle. More specifically, alterations in the alpha-actinin and desmin protein expression were found. Cardiac structural alterations were accompanied by enhanced local nitrosative stress, increased local inflammation and elevated systemic levels of the high-mobility group box 1 protein. Furthermore, cardiac alterations were observed predominantly in pigs that were treated by non-reamed intramedullary reaming. The polytrauma-cocktail impaired the viability of HL-1 cells in vitro, which was accompanied by a release of troponin I and HFABP. DISCUSSION Multiple trauma induced cardiac structural alterations in vivo, which might contribute to the development of early myocardial damage (EMD). This study also revealed that reamed femoral nailing (reamed) is associated with more prominent immunological cardiac alterations compared to nailing without reaming (non-reamed). This suggests that the choice of the initial fracture treatment strategy might be crucial for the overall outcome as well as for any post-traumatic cardiac consequences.
Collapse
|
26
|
Liao P, He Q, Zhou X, Ma K, Wen J, Chen H, Li Q, Qin D, Wang H. Repetitive Bouts of Exhaustive Exercise Induces a Systemic Inflammatory Response and Multi-Organ Damage in Rats. Front Physiol 2020; 11:685. [PMID: 32655413 PMCID: PMC7324715 DOI: 10.3389/fphys.2020.00685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple organ dysfunction syndrome can follow severe infection or injury, but its relationship to exercise is not well understood. Previous studies have observed that prolonged strenuous exercise can lead to transiently increased level and/or activity of markers for systemic inflammatory response and multiple organ damage. However, few studies have analyzed the pathogenesis of the inflammatory response and subsequent multi-organ injury in exhaustive exercise conditions. In this study, we established a rat model of repetitive bouts of exhaustive running (RBER) and investigated its effects on multiple organ damage. Rats were subjected to RBER in either uphill or downhill running modes daily for a period of 7 days. Morphologically, RBER causes tissue structural destruction and infiltration of inflammatory cells in the skeletal muscles and many visceral organs. RBER also causes sustained quantitative changes in leukocytes, erythrocytes, and platelets, and changes in the concentration of blood inflammatory factors. These inflammatory alterations are accompanied by increases in serum enzyme levels/activities which serve as functional markers of organ damage. In general, RBER in the downhill mode seemed to cause more damage evaluated by the above-mentioned measures than that produced in the uphill mode. A period of rest could recover some degree of damage, especially for organs such as the heart and kidneys with strong compensatory capacities. Together, our data suggest that, as a result of multi-organ interactions, RBER could cause a sustained inflammatory response for at least 24 h, resulting in tissue lesion and ultimately multiple organ dysfunction.
Collapse
Affiliation(s)
- Peng Liao
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Qinghua He
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Xuan Zhou
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, Jiangyin, China.,Probiotics Australia, Ormeau, QLD, Australia
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, Beijing, China
| | - Hang Chen
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Qingwen Li
- Research Center for Sports Nutrition and Eudainomics, Institute for Sports Training Science, Tianjin University of Sport, Tianjin, China
| | - Di Qin
- Beijing Tong Ren Tang Health-Pharmaceutical, Beijing, China
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
27
|
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Fila M, Chojnacki C. Vitamin D in Triple-Negative and BRCA1-Deficient Breast Cancer-Implications for Pathogenesis and Therapy. Int J Mol Sci 2020; 21:E3670. [PMID: 32456160 PMCID: PMC7279503 DOI: 10.3390/ijms21103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Several studies show that triple-negative breast cancer (TNBC) patients have the lowest vitamin D concentration among all breast cancer types, suggesting that this vitamin may induce a protective effect against TNBC. This effect of the active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D), can be attributed to its potential to modulate proliferation, differentiation, apoptosis, inflammation, angiogenesis, invasion and metastasis and is supported by many in vitro and animal studies, but its exact mechanism is poorly known. In a fraction of TNBCs that harbor mutations that cause the loss of function of the DNA repair-associated breast cancer type 1 susceptibility (BRCA1) gene, 1,25(OH)2D may induce protective effects by activating its receptor and inactivating cathepsin L-mediated degradation of tumor protein P53 binding protein 1 (TP53BP1), preventing deficiency in DNA double-strand break repair and contributing to genome stability. Similar effects can be induced by the interaction of 1,25(OH)2D with proteins of the growth arrest and DNA damage-inducible 45 (GADD45) family. Further studies on TNBC cell lines with exact molecular characteristics and clinical trials with well-defined cases are needed to determine the mechanism of action of vitamin D in TNBC to assess its preventive and therapeutic potential.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| |
Collapse
|
28
|
Carlton EF, Flori HR. Biomarkers in pediatric acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:505. [PMID: 31728358 DOI: 10.21037/atm.2019.09.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a heterogenous process resulting in a severe acute lung injury. A single indicator does not exist for PARDS diagnosis. Rather, current diagnosis requires a combination of clinical and physiologic variables. Similarly, there is little ability to predict the path of disease, identify those at high risk of poor outcomes or target therapies specific to the underlying pathophysiology. Biomarkers, a measured indicator of a pathologic state or response to intervention, have been studied in PARDS due to their potential in diagnosis, prognostication and measurement of therapeutic response. Additionally, PARDS biomarkers show great promise in furthering our understanding of specific subgroups or endotypes in this highly variable disease, and thereby predict which patients may benefit and which may be harmed by PARDS specific therapies. In this chapter, we review the what, when, why and how of biomarkers in PARDS and discuss future directions in this quickly changing landscape.
Collapse
Affiliation(s)
- Erin F Carlton
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Heidi R Flori
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Eppensteiner J, Kwun J, Scheuermann U, Barbas A, Limkakeng AT, Kuchibhatla M, Elster EA, Kirk AD, Lee J. Damage- and pathogen-associated molecular patterns play differential roles in late mortality after critical illness. JCI Insight 2019; 4:127925. [PMID: 31434802 DOI: 10.1172/jci.insight.127925] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple organ failure (MOF) is the leading cause of late mortality and morbidity in patients who are admitted to intensive care units (ICUs). However, there is an epidemiologic discrepancy in the mechanism of underlying immunologic derangement dependent on etiology between sepsis and trauma patients in MOF. We hypothesized that damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), while both involved in the development of MOF, contribute differently to the systemic innate immune derangement and coagulopathic changes. We found that DAMPs not only produce weaker innate immune activation than counterpart PAMPs, but also induce less TLR signal desensitization, contribute to less innate immune cell death, and propagate more robust systemic coagulopathic effects than PAMPs. This differential contribution to MOF provides further insight into the contributing factors to late mortality in critically ill trauma and sepsis patients. These findings will help to better prognosticate patients at risk of MOF and may provide future therapeutic molecular targets in this disease process.
Collapse
Affiliation(s)
- John Eppensteiner
- Department of Surgery and.,Division of Emergency Medicine, Duke University, Durham, North Carolina, USA.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | | | | | | | - Alexander T Limkakeng
- Department of Surgery and.,Division of Emergency Medicine, Duke University, Durham, North Carolina, USA.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | - Maggie Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Eric A Elster
- Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Allan D Kirk
- Department of Surgery and.,Surgical Critical Care Initiative (SC2i), Bethesda, Maryland, USA
| | | |
Collapse
|
30
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
31
|
Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front Neurol 2019; 10:409. [PMID: 31068896 PMCID: PMC6491577 DOI: 10.3389/fneur.2019.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in understanding the complex interactions between the coagulation system and inflammation and autoimmunity. Increased blood-brain-barrier (BBB) permeability, a key event in the pathophysiology of multiple sclerosis (MS), leads to the irruption into the central nervous system of blood components that include virtually all coagulation/hemostasis factors. Besides their cytotoxic deposition and role as a possible trigger of the coagulation cascade, hemostasis components cause inflammatory response and immune activation, sustaining neurodegenerative events in MS. Early studies showing the contribution of altered hemostasis in the complex pathophysiology of MS have been strengthened by recent studies using methodologies that permitted deeper investigation. Fibrin(ogen), an abundant protein in plasma, has been identified as a key contributor to neuroinflammation. Perturbed fibrinolysis was found to be a hallmark of progressive MS with abundant cortical fibrin(ogen) deposition. The immune-modulatory function of the intrinsic coagulation pathway still remains to be elucidated in MS. New molecular details in key hemostasis components participating in MS pathophysiology, and particularly involved in inflammatory and immune responses, could favor the development of novel therapeutic targets to ameliorate the evolution of MS. This review article introduces essential information on coagulation factors, inhibitors, and the fibrinolytic pathway, and highlights key aspects of their involvement in the immune system and inflammatory response. It discusses how hemostasis components are (dys)regulated in MS, and summarizes histopathological post-mortem human brain evidence, as well as cerebrospinal fluid, plasma, and serum studies of hemostasis and fibrinolytic pathways in MS. Studies of disease-modifying treatments as potential modifiers of coagulation factor levels, and case reports of autoimmunity affecting hemostasis in MS are also discussed.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States.,Clinical Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
32
|
Kerr NA, de Rivero Vaccari JP, Umland O, Bullock MR, Conner GE, Dietrich WD, Keane RW. Human Lung Cell Pyroptosis Following Traumatic Brain Injury. Cells 2019; 8:E69. [PMID: 30669285 PMCID: PMC6356886 DOI: 10.3390/cells8010069] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Approximately 30% of traumatic brain injured patients suffer from acute lung injury or acute respiratory distress syndrome. Our previous work revealed that extracellular vesicle (EV)-mediated inflammasome signaling plays a crucial role in the pathophysiology of traumatic brain injury (TBI)-induced lung injury. Here, serum-derived EVs from severe TBI patients were analyzed for particle size, concentration, origin, and levels of the inflammasome component, an apoptosis-associated speck-like protein containing a caspase-recruiting domain (ASC). Serum ASC levels were analyzed from EV obtained from patients that presented lung injury after TBI and compared them to EV obtained from patients that did not show any signs of lung injury. EVs were co-cultured with lung human microvascular endothelial cells (HMVEC-L) to evaluate inflammasome activation and endothelial cell pyroptosis. TBI patients had a significant increase in the number of serum-derived EVs and levels of ASC. Severe TBI patients with lung injury had a significantly higher level of ASC in serum and serum-derived EVs compared to individuals without lung injury. Only EVs isolated from head trauma patients with gunshot wounds were of neural origin. Delivery of serum-derived EVs to HMVEC-L activated the inflammasome and resulted in endothelial cell pyroptosis. Thus, serum-derived EVs and inflammasome proteins play a critical role in the pathogenesis of TBI-induced lung injury, supporting activation of an EV-mediated neural-respiratory inflammasome axis in TBI-induced lung injury.
Collapse
Affiliation(s)
- Nadine A Kerr
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA.
| | | | - Oliver Umland
- Diabetes Research Institute, University of Miami; Miami, FL 33136, USA.
| | - M Ross Bullock
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA.
| | - Gregory E Conner
- Department of Cell Biology, University of Miami, Miami, FL 33136, USA.
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami, Miami, FL 33136, USA.
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10th Ave. RMSB 5054, Miami, FL 33136, USA.
| |
Collapse
|
33
|
Tosson AMS, Glaser K, Weinhage T, Foell D, Aboualam MS, Edris AA, El Ansary M, Lotfy S, Speer CP. Evaluation of the S100 protein A12 as a biomarker of neonatal sepsis. J Matern Fetal Neonatal Med 2019; 33:2768-2774. [PMID: 30563403 DOI: 10.1080/14767058.2018.1560411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction: Sepsis has a grave impact on neonatal morbidity and mortality. Proper timely diagnosis and a subsequently tailored management are crucial to improving neonatal outcome and survival. New diagnostic methods are needed and much effort is directed to this objective. In this work, we aimed to evaluate S100A12 protein as a biomarker of neonatal sepsis.Materials and methods: In this prospective single-center study, 118 preterm and term neonates were enrolled and assigned to four groups: controls, infants with no infection, infants with probable infection and infants with proven infection. Clinical and routine laboratory data, the serum levels of S100A12 and additional cytokines (interleukin (IL)-1β, IL-2, IL-6, IL-17A, IL-18, IL-22, IL-10, and interferon (IFN)-γ) were assessed. Using stepwise multivariate logistic regression analysis, S100A12 protein was evaluated as a biomarker of neonatal infection.Results: Significant differences of the parameters of complete blood count and level of C-reactive protein were documented between the study/the four groups. The studied marker S100A12, as well as IL-6 and IL-10, were highly significant (p < .001) between infected and control groups. S100A12 had a sensitivity of 96.8% and a specificity of 93.3%. Even after adjusting for the confounding factors sex, body weight, gestational age, mode of delivery, number of pregnancies, premature rupture of membranes, and preeclampsia S100A12 remained significant between the infected and control groups.Conclusions: S100A12 may be considered as a new biomarker of neonatal sepsis.
Collapse
Affiliation(s)
| | - Kirsten Glaser
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | | | - Amira A Edris
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Mervat El Ansary
- Clinical and Chemical Pathology Department, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Department of Pediatrics, Cairo University, Cairo, Egypt
| | - Christian P Speer
- University Children's Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
34
|
Pohlman TH, Fecher AM, Arreola-Garcia C. Optimizing transfusion strategies in damage control resuscitation: current insights. J Blood Med 2018; 9:117-133. [PMID: 30154676 PMCID: PMC6108342 DOI: 10.2147/jbm.s165394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
From clinical and laboratory studies of specific coagulation defects induced by injury, damage control resuscitation (DCR) emerged as the most effective management strategy for hemorrhagic shock. DCR of the trauma patient who has sustained massive blood loss consists of 1) hemorrhage control; 2) permissive hypotension; and 3) the prevention and correction of trauma-induced coagulopathies, referred to collectively here as acute coagulopathy of trauma (ACOT). Trauma patients with ACOT have higher transfusion requirements, may eventually require massive transfusion, and are at higher risk of exsanguinating. Distinct impairments in the hemostatic system associated with trauma include acquired quantitative and qualitative platelet defects, hypocoagulable and hypercoagulable states, and dysregulation of the fibrinolytic system giving rise to hyperfibrinolysis or a phenomenon referred to as fibrinolytic shutdown. Furthermore, ACOT is a component of a systemic host defense dysregulation syndrome that bears several phenotypic features comparable with other acute systemic physiological insults such as sepsis, myocardial infarction, and postcardiac arrest syndrome. Progress in the science of resuscitation has been continuing at an accelerated rate, and clinicians who manage catastrophic blood loss may be incompletely informed of important advances that pertain to DCR. Therefore, we review recent findings that further characterize the pathophysiology of ACOT and describe the application of this new information to optimization of resuscitation strategies for the patient in hemorrhagic shock.
Collapse
Affiliation(s)
- Timothy H Pohlman
- Department of Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN, USA,
| | - Alison M Fecher
- Department of Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN, USA
| | - Cecivon Arreola-Garcia
- Department of Surgery, Section of Acute Care Surgery, Indiana University Health, Indianapolis, IN, USA
| |
Collapse
|
35
|
Thom SR, Bhopale VM, Yu K, Yang M. Provocative decompression causes diffuse vascular injury in mice mediated by microparticles containing interleukin-1β. J Appl Physiol (1985) 2018; 125:1339-1348. [PMID: 30113270 DOI: 10.1152/japplphysiol.00620.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory mediators are known to be elevated in association with decompression from elevated ambient pressure, but their role in tissue damage or overt decompression sickness is unclear. Circulating microparticles (MPs) are also know to increase and because interleukin (IL)-1β is packaged within these particles, we hypothesized that IL-1β was responsible for tissue injuries. Here, we demonstrate that elevations of circulating MPs containing up to 9-fold higher concentrations of IL-1β occur while mice are exposed to high air pressure (790 kPa), whereas smaller particles carrying proteins specific to exosomes are not elevated. MPs number and intra-particle IL-1β concentration increase further over 13 hours post-decompression. MPs also exhibit intra-particle elevations of tumor necrosis factor-α, caspase-1, inhibitor of κB kinase -β and -γ, and elevated IL-6 is adsorbed to the surface of MPs. Contrary to lymphocytes, neutrophil NLRP3 inflammasome oligomerization and cell activation parameters occur during high pressure exposure, and additional evidence for activation are manifested post-decompression. Diffuse vascular damage, while not apparent immediately post-decompression, was present 2 hours later and remained elevated for at least 13 hours. Prophylactic administration of an IL-1β receptor inhibitor or neutralizing antibody to IL-1β inhibited MPs elevations, increases of all MPs-associated pro-inflammatory agents, and vascular damage. We conclude that an auto-activation process triggered by high pressure stimulates MPs production and concurrent inflammasome activation, and IL-1β is a proximal factor responsible for further cytokine production and decompression-associated vascular injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Veena M Bhopale
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Kevin Yu
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Ming Yang
- Emergency Medicine, University of Maryland School of Medicine, United States
| |
Collapse
|
36
|
He W, Ye S, Zeng C, Xue S, Hu X, Zhang X, Gao S, Xiong Y, He X, Vivalda S, Li L, Wang Y, Ye Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death. FASEB J 2018; 32:fj201800028RR. [PMID: 29870680 DOI: 10.1096/fj.201800028rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothermic oxygenated perfusion (HOPE) is a relatively new dynamic preservation procedure that has not been widely implemented in liver transplantation despite its advantages. Improved graft protection is one such advantage offered by HOPE and has been attributed to multiple mechanisms, one of which may be the modulation of the thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) inflammasome pathway. The TXNIP/NLRP3 inflammasome pathway plays a critical role in sterile inflammation under oxidative stress as a result of ischemia/reperfusion injury (IRI). In the current study, we aimed to investigate the graft protection offered by HOPE and its impact on the TXNIP/NLRP3 inflammasome pathway. To simulate conditions of donation after cardiac death (DCD) liver transplantation, rat livers were exposed to 30 min of warm ischemia after cardiac arrest. Livers were then preserved under cold storage (CS) or with HOPE for 3 h. Livers were then subjected to 1 h of isolated reperfusion. Liver injuries were assessed on the isolated perfusion rat liver model system before and after reperfusion. Compared with the CS group, the HOPE group had a significant reduction in liver injury and improvement in liver function. Our findings also revealed that reperfusion injury induced liver damage and activated the TXNIP/NLRP3 inflammasome pathway in DCD rat livers. Pretreatment of DCD rat livers with HOPE inhibited the TXNIP/NLRP3 inflammasome pathway and attenuated liver IRI. Attenuation of oxidative stress as a result of HOPE led to the down-regulation of the TXNIP/NLRP3 inflammasome pathway and thus offered superior protection compared with the traditional CS method of organ preservation.-He, W., Ye, S., Zeng, C., Xue, S., Hu, X., Zhang, X., Gao, S., Xiong, Y., He, X., Vivalda, S., Li, L., Wang, Y., Ye, Q. Hypothermic oxygenated perfusion (HOPE) attenuates ischemia/reperfusion injury in the liver through inhibition of the TXNIP/NLRP3 inflammasome pathway in a rat model of donation after cardiac death.
Collapse
Affiliation(s)
- Weiyang He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shaojun Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Cheng Zeng
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Shuai Xue
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoyan Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xingjian Zhang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Siqi Gao
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xueyu He
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Soatina Vivalda
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ling Li
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, China
- Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Ziliotto N, Baroni M, Straudi S, Manfredini F, Mari R, Menegatti E, Voltan R, Secchiero P, Zamboni P, Basaglia N, Marchetti G, Bernardi F. Coagulation Factor XII Levels and Intrinsic Thrombin Generation in Multiple Sclerosis. Front Neurol 2018; 9:245. [PMID: 29731736 PMCID: PMC5919941 DOI: 10.3389/fneur.2018.00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
Background Factor XII (FXII) activation initiates the intrinsic (contact) coagulation pathway. It has been recently suggested that FXII could act as an autoimmunity mediator in multiple sclerosis (MS). FXII depositions nearby dentritic cells were detected in the central nervous system of MS patients and increased FXII activity has been reported in plasma of relapsing remitting and secondary progressive MS patients. FXII inhibition has been proposed to treat MS. Objective To investigate in MS patients multiple FXII-related variables, including the circulating amount of protein, its pro-coagulant function, and their variation over time. To explore kinetic activation features of FXII in thrombin generation (TG). Methods In plasma from 74 MS patients and 49 healthy subjects (HS), FXII procoagulant activity (FXII:c) and FXII protein (FXII:Ag) levels were assessed. Their ratio (FXII:ratio) values were derived. Intrinsic TG was evaluated by different triggers. Results Higher FXII:Ag levels (p = 0.003) and lower FXII:ratio (p < 0.001) were detected in MS patients compared with HS. FXII variables were highly correlated over four time points, which supports investigation of FXII contribution to disease phenotype and progression. A significant difference over time was detected for FXII:c (p = 0.031). In patients selected for the lowest FXII:ratio, TG triggered by ellagic acid showed a trend in lower endogenous thrombin potential (ETP) in MS patients compared with HS (p = 0.042). Intrinsic triggering of TG by nucleic acid addition produced longer time parameters in patients than in HS and substantially increased ETP in MS patients (p = 0.004) and TG peak height in HS (p = 0.008). Coherently, lower FXII:ratio and longer lag time (p = 0.02) and time to peak (p = 0.007) point out a reduced response of FXII to activation in part of MS patients. Conclusion In MS patients, factor-specific and modified global assays suggest the presence of increased FXII protein level and reduced function within the intrinsic coagulation pathway. These novel findings support further investigation by multiple approaches of FXII contribution to disease phenotype and progression.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy.,Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Rosella Mari
- Hematology Section, Department of Medical Sciences, Centre for Hemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Erica Menegatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|