1
|
Balduit A, Agostinis C, Bulla R. Beyond the Norm: The emerging interplay of complement system and extracellular matrix in the tumor microenvironment. Semin Immunol 2025; 77:101929. [PMID: 39793258 DOI: 10.1016/j.smim.2025.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Ground-breaking awareness has been reached about the intricate and dynamic connection between developing tumors and the host immune system. Being a powerful arm of innate immunity and a functional bridge with adaptive immunity, the complement system (C) has also emerged as a pivotal player in the tumor microenvironment (TME). Its "double-edged sword" role in cancer can find an explanation in the controversial relationship between C capability to mediate tumor cell cytolysis or, conversely, to sustain chronic inflammation and tumor progression by enhancing cell invasion, angiogenesis, and metastasis to distant organs. However, comprehensive knowledge about the actual role of C in cancer progression is impaired by several limitations of the currently available studies. In the current review, we aim to bring a fresh eye to the controversial role of C in cancer by analyzing the interplay between C and extracellular matrix (ECM) components as potential orchestrators of the TME. The interaction of C components with specific ECM components can determine C activation or inhibition and promote specific non-canonical functions, which can, in the tumor context, favor or limit progression based on the cancer setting. An in-depth and tumor-specific characterization of TME composition in terms of C components and ECM proteins could be essential to determine their potential interactions and become a key element for improving drug development, prognosis, and therapy response prediction in solid tumors.
Collapse
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
2
|
Zhu XL, Zhang L, Qi SX. Association of complement components with risk of colorectal cancer: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:2168-2180. [PMID: 38764810 PMCID: PMC11099464 DOI: 10.4251/wjgo.v16.i5.2168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Complement components could contribute to the tumor microenvironment and the systemic immune response. Nevertheless, their role in colorectal cancer (CRC) remains a contentious subject. AIM To elucidate the relationship between complement components and CRC risk and clinical characteristics. METHODS Searches were conducted in PubMed, the Cochrane Library, and the China National Knowledge Infrastructure database until June 1, 2023. We included cohort studies encompassing participants aged ≥ 18 years, investigating the association between complement components and CRC. The studies were of moderate quality or above, as determined by the Agency for Healthcare Research and Quality. The meta-analysis employed fixed-effects or random-effects models based on the I² test, utilizing risk ratio (RR) and their corresponding 95% confidence interval (CI) for outcomes. Sensitivity and subgroup analyses were performed to validate the robustness of the collective estimates and identify the source of heterogeneity. RESULTS Data from 15 studies, comprising 1631 participants that met the inclusion criteria, were included in the meta-analysis. Our findings indicated that protein levels of cluster of differentiation 46 (CD46) (RR = 3.66, 95%CI: 1.75-7.64, P < 0.001), CD59 (RR = 2.86, 95%CI: 1.36-6.01, P = 0.005), and component 1 (C1) (RR = 5.88, 95%CI: 1.75-19.73, P = 0.004) and serum levels of C3 (standardized mean difference = 1.82, 95%CI: 0.06-3.58, P = 0.040) were significantly elevated in patients with CRC compared to healthy controls. Strong expression of CD55 or CD59 was associated with a higher incidence of lymph node metastasis, whereas strong CD46 expression correlated with a higher incidence of tumor differentiation compared to low CD46 expression (P < 0.05 for all). Although specific pooled results demonstrated notable heterogeneity, subgroup analyses pointed to regional differences as the primary source of inconsistency among the studies. CONCLUSION Our analysis underscores that increased levels of specific complement components are associated with a heightened risk of CRC, emphasizing the potential significance of monitoring elevated complement component levels.
Collapse
Affiliation(s)
- Xiao-Lin Zhu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Lu Zhang
- Department of Medical Administration, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| | - Su-Xia Qi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266071, Shandong Province, China
| |
Collapse
|
3
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Simone S, Gesualdo L, Battaglia M, Ditonno P, Lucarelli G. Complement System and the Kidney: Its Role in Renal Diseases, Kidney Transplantation and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16515. [PMID: 38003705 PMCID: PMC10671650 DOI: 10.3390/ijms242216515] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simona Simone
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
4
|
Couto N, Elzanowska J, Maia J, Batista S, Pereira CE, Beck HC, Carvalho AS, Strano Moraes MC, Carvalho C, Oliveira M, Matthiesen R, Costa-Silva B. IgG+ Extracellular Vesicles Measure Therapeutic Response in Advanced Pancreatic Cancer. Cells 2022; 11:cells11182800. [PMID: 36139375 PMCID: PMC9496671 DOI: 10.3390/cells11182800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second-leading cause of cancer deaths by 2030. Imaging techniques are the standard for monitoring the therapy response in PDAC, but these techniques have considerable limits, including delayed disease progression detection and difficulty in distinguishing benign from malignant lesions. Extracellular vesicle (EV) liquid biopsy is an emerging diagnosis modality. Nonetheless, the majority of research for EV-based diagnosis relies on point analyses of EVs at specified times, while longitudinal EV population studies before and during therapeutic interventions remain largely unexplored. (2) Methods: We analyzed plasma EV protein composition at diagnosis and throughout PDAC therapy. (3) Results: We found that IgG is linked with the diagnosis of PDAC and the patient’s response to therapy, and that the IgG+ EV population increases with disease progression and reduces with treatment response. Importantly, this covers PDAC patients devoid of the standard PDAC seric marker CA19.9 expression. We also observed that IgG is bound to EVs via the tumor antigen MAGE B1, and that this is independent of the patient’s inflammatory condition and IgG seric levels. (4) Conclusions: We here propose that a population analysis of IgG+ EVs in PDAC plasma represents a novel method to supplement the monitoring of the PDAC treatment response.
Collapse
Affiliation(s)
- Nuno Couto
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Julia Elzanowska
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Joana Maia
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Silvia Batista
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Catarina Esteves Pereira
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, DK-5000 Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA MedicalSchool|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | | | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Manuela Oliveira
- Department of Mathematics and CIMA-Center for Research on Mathematics and Its Applications, University of Évora, 7004-516 Evora, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA MedicalSchool|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
- Correspondence: (R.M.); (B.C.-S.); Tel.: +351-939-218-696 (R.M.); +351-210-480-134 (B.C.-S.)
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Correspondence: (R.M.); (B.C.-S.); Tel.: +351-939-218-696 (R.M.); +351-210-480-134 (B.C.-S.)
| |
Collapse
|
5
|
Zhang L, Chai D, Chen C, Li C, Qiu Z, Kuang T, Parveena M, Dong K, Yu J, Deng W, Wang W. Mycobiota and C-Type Lectin Receptors in Cancers: Know thy Neighbors. Front Microbiol 2022; 13:946995. [PMID: 35910636 PMCID: PMC9326027 DOI: 10.3389/fmicb.2022.946995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Numerous studies have demonstrated the importance of gut bacteria in the development of malignancy, while relatively little research has been done on gut mycobiota. As a part of the gut microbiome, the percentage of gut mycobiota is negligible compared to gut bacteria. However, the effect of gut fungi on human health and disease is significant. This review systematically summarizes the research progress on mycobiota, especially gut fungi, in patients with head and neck cancer (HNC), esophageal cancer (EC), gastric cancer (GC), colorectal cancer (CRC), hepatocellular carcinoma (HCC), pancreatic cancer, melanoma, breast cancer, and lung carcinoma-induced cachexia. Moreover, we also describe, for the first time in detail, the role of the fungal recognition receptors, C-type lectin receptors (CLRs) (Dectin-1, Dectin-2, Dectin-3, and Mincle) and their downstream effector caspase recruitment domain-containing protein 9 (CARD9), in tumors to provide a reference for further research on intestinal fungi in the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lilong Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunlei Li
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Tianrui Kuang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Mungur Parveena
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Keshuai Dong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jia Yu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Wenhong Deng,
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Weixing Wang,
| |
Collapse
|
6
|
Wang Y, Xiang M, Zhang H, Lu Y. Decreased complement 4d increases poor prognosis in patients with non‑small cell lung cancer combined with gastrointestinal lymph node metastasis. Exp Ther Med 2022; 24:560. [PMID: 35978919 PMCID: PMC9366274 DOI: 10.3892/etm.2022.11497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is a common malignancy that is difficult to treat and has a high risk of mortality. Although gastrointestinal lymph node metastasis has long been known to exert major impact on the prognosis of lung cancer, the mechanism of its occurrence and potential biological markers remain elusive. Therefore, the present study retrospectively analyzed data from 132 patients with non-small cell lung cancer (NSCLC) combined with lymph node metastasis between February 2010 and April 2019 from the First Affiliated Hospital of Soochow University (Suzhou, China) and Sichuan Cancer Hospital (Chengdu, China). Overall survival was assessed using Kaplan-Meier analysis and Cox logistic regression model. In addition, a prediction model was constructed based on immune indicators such as complement C3b and C4d (measured by ELISA), before the accuracy of this model was validated using calibration curves for 5-year OS. Among the 132 included patients, a total of 92 (70.0%) succumbed to the disease within 5 years. Multifactorial analysis revealed that complement C3b deficiency increased the risk of mortality by nearly two-fold [hazard ratio (HR)=2.23; 95% CI=1.20-4.14; P=0.017], whilst complement C4d deficiency similarly increased the risk of mortality by two-fold (HR=2.14; 95% CI=1.14-4.00; P=0.012). The variables were subsequently screened using Cox model to construct a prediction model based on complement C3b and C4d levels before a Nomogram plotted. By internal validation for the 132 patients, the Nomogram accurately estimated the risk of mortality, with a corrected C-index of 0.810. External validation of the model in another 50 patients from Sichuan Cancer Hospital revealed an accuracy of 77.0%. Overall, this mortality risk prediction model constructed based on complement levels showed accuracy in assessing the prognosis of patients with metastatic NSCLC. Therefore, complement C3b and C4d have potential for use as biomarkers to predict the risk of mortality in such patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Mengqi Xiang
- Department of Medical Oncology, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P.R. China
| | - Yongda Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
7
|
Gao J, Zhang LX, Ao YQ, Jin C, Zhang PF, Wang HK, Wang S, Lin M, Jiang JH, Ding JY. Elevated circASCC3 limits antitumor immunity by sponging miR-432–5p to upregulate C5a in non-small cell lung cancer. Cancer Lett 2022; 543:215774. [DOI: 10.1016/j.canlet.2022.215774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
|
8
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
9
|
Huët MAL, Lee CZ, Rahman S. A review on association of fungi with the development and progression of carcinogenesis in the human body. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100090. [PMID: 34917994 PMCID: PMC8666644 DOI: 10.1016/j.crmicr.2021.100090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022] Open
Abstract
The role and impact of commensal and pathogenic fungi in different parts of the human body are being increasingly appreciated, unveiling the importance of such microorganisms in human health. A key function is the involvement of the mycobiota in cross-kingdom interactions within the microbiome. Any disturbance in the functionality of the microbiota could alter metabolic reactions, have a negative impact on homeostasis or induce diseases. The association of fungi with cancer development is the focus of this review. Several studies have reported direct or indirect involvement of fungal pathogens and mycobiome dysbiosis in induction of carcinogenesis. Most studies focused on cancers of the gastrointestinal tract. However, researchers are now investigating other organs, such as the skin, where the significant results obtained confirm the involvement of fungal pathogens and administration of antifungal drugs in development of cancer. This review gives an overview of the different organs affected and describes the mechanisms used by these eukaryotes or antifungals to induce oncogenesis.
Collapse
Affiliation(s)
- Marie Andrea Laetitia Huët
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway,Subang Jaya, Selangor 47500, Malaysia
| | - Chuen Zhang Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway,Subang Jaya, Selangor 47500, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway,Subang Jaya, Selangor 47500, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
10
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
11
|
Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic Insights and Opportunities for Therapeutics in Hepatocellular Carcinoma. Front Oncol 2021; 10:627701. [PMID: 33718121 PMCID: PMC7943925 DOI: 10.3389/fonc.2020.627701] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Surya Amarachintha
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shreya Nalluri
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander Bondoc
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
12
|
The Role of Complement in Angiogenesis. Antibodies (Basel) 2020; 9:antib9040067. [PMID: 33271774 PMCID: PMC7709120 DOI: 10.3390/antib9040067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The link of the complement system to angiogenesis has remained circumstantial and speculative for several years. Perhaps the most clinically relevant example of possible involvement of complement in pathological neovascularization is age-related macular degeneration. Recent studies, however, provide more direct and experimental evidence that indeed the complement system regulates physiological and pathological angiogenesis in models of wound healing, retinal regeneration, age-related macular degeneration, and cancer. Interestingly, complement-dependent mechanisms involved in angiogenesis are very much context dependent, including anti- and proangiogenic functions. Here, we discuss these new developments that place complement among other important regulators of homeostatic and pathological angiogenesis, and we provide the perspective on how these newly discovered complement functions can be targeted for therapy.
Collapse
|
13
|
Li J, Cao Z, Mi L, Xu Z, Wu X. Complement sC5b-9 and CH50 increase the risk of cancer-related mortality in patients with non-small cell lung cancer. J Cancer 2020; 11:7157-7165. [PMID: 33193878 PMCID: PMC7646172 DOI: 10.7150/jca.46721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/08/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives: Immunologic dysfunction occurred in most of patients with non-small cell lung cancer (NSCLC), which worsened the overall survival (OS) of patients. Complement activation plays a significant role in abnormal activation of immune system. However, the prognostic value of complement components such as CH50 and sC5b-9 in NSCLC patients remains unclear. This study evaluated the risk factors of NSCLC and created a prediction model. Methods: A real-world study was conducted including data from 928 patients with NSCLC between April 1, 2005 and June 1, 2015. CH50 and sC5b-9 were recorded during the admission. Cox proportional hazard model was applied for survival analyses and for assessing risk factors of cancer-related mortality and to create a nomogram for prediction. The accuracy of the model was evaluated by C-index and calibration curve. Results: In this study, the mortality in group with high CH50 level (≥ 480.56 umol/L) was 92.0%. Based on univariate analysis, we put factors (P <0.05) into a multivariate regression model, patients with high CH50 level (P <0.001, HR=1.59) and sC5b-9 >1422.18 μmol/L (P <0.001, HR=2.28) remained statistically factors for worsened OS and regarded as independent risk factors. These independently associated risk factors were applied to establish an OS estimation nomogram. Nomogram revealed good accuracy in estimating the risk, with a bootstrap-corrected C index of 0.741. Conclusion: sC5b-9 and CH50 increased the risk of cancer-related mortality in patients with NSCLC. Nomogram based on multivariate analysis demonstrated good accuracy in estimating the risk of overall mortality.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicine, Respiratory, Emergency and Intensive Care Medicine, The Affiliated Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Zhijun Cao
- Department of Urology, The Ninth People's Hospital of Suzhou, Suzhou, China
| | - Lijie Mi
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangmei Wu
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| |
Collapse
|
14
|
Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, Paterson Y, Woolford L, Christie A, Elias R, Brugarolas J, Wang T, Karbowniczek M, Markiewski MM. Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 205:3218-3229. [PMID: 33158953 DOI: 10.4049/jimmunol.2000511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.
Collapse
Affiliation(s)
- Britney Reese
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Ashok Silwal
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Elizabeth Daugherity
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Michael Daugherity
- Department of Engineering and Physics, Abilene Christian University, Abilene, TX 79601
| | - Mahshid Arabi
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Pierce Daly
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Yvonne Paterson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Layton Woolford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Alana Christie
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Roy Elias
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - James Brugarolas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,The Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601;
| |
Collapse
|
15
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
16
|
Wang H, Li Y, Shi G, Wang Y, Lin Y, Wang Q, Zhang Y, Yang Q, Dai L, Cheng L, Su X, Yang Y, Zhang S, Li Z, Li J, Wei Y, Yu D, Deng H. A Novel Antitumor Strategy: Simultaneously Inhibiting Angiogenesis and Complement by Targeting VEGFA/PIGF and C3b/C4b. Mol Ther Oncolytics 2020; 16:20-29. [PMID: 31909182 PMCID: PMC6940616 DOI: 10.1016/j.omto.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies targeting vascular endothelial growth factor (VEGF) have become a critical regimen for tumor therapy, but the efficacy of monotherapy is usually limited by drug resistance and multiple angiogenic mechanisms. Complement proteins are becoming potential candidates for cancer-targeted therapy based on their role in promoting cancer progression and angiogenesis. However, the antitumor abilities of simultaneous VEGF and complement blockade were unknown. We generated a humanized soluble VEGFR-Fc fusion protein (VID) binding VEGFA/PIGF and a CR1-Fc fusion protein (CID) targeting C3b/C4b. Both VID and CID had good affinities to their ligands and showed effective bioactivities. In vitro, angiogenesis effects induced by VEGF and hemolysis induced by complement were inhibited by VID and CID, respectively. Further, VID and CID confer a synergetic therapeutic effect in a colitis-associated colorectal cancer (CAC) model and an orthotopic 4T1 breast cancer model. Mechanically, combination therapy inhibited tumor angiogenesis, cell proliferation, and MDSC infiltration in the tumor microenvironment and promoted tumor cell apoptosis. Our study offers a novel therapeutic strategy for anti-VEGF-resistant tumors and chronic-inflammation-associated tumors.
Collapse
Affiliation(s)
- Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yiming Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qin Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Zhang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi Li
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Jia Li
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, Jiangsu 215000, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Ku X, Sun Q, Zhu L, Gu Z, Han Y, Xu N, Meng C, Yang X, Yan W, Fang W. Deciphering tissue-based proteome signatures revealed novel subtyping and prognostic markers for thymic epithelial tumors. Mol Oncol 2020; 14:721-741. [PMID: 31967407 PMCID: PMC7138395 DOI: 10.1002/1878-0261.12642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Thymic epithelial tumors (TETs) belong to a group of tumors that rarely occur, but have unresolved mechanisms and heterogeneous clinical behaviors. Current care of TET patients demands biomarkers of high sensitivity and specificity for accurate histological classification and prognosis management. In this study, 134 fresh‐frozen tissue samples (84 tumor, 40 tumor adjacent, and 10 normal thymus) were recruited to generate a quantitative and systematic view of proteomic landscape of TETs. Among them, 90 samples were analyzed by data‐independent acquisition mass spectrometry (DIA‐MS) leading to discovery of novel classifying molecules among different TET subtypes. The correlation between clinical outcome and the identified molecules was probed, and the prioritized proteins of interest were further validated on the remaining samples (n = 44) via parallel reaction monitoring (PRM) as well as immunohistochemical and confocal imaging analysis. In particular, two proteins, the cellular mRNA deadenylase CCR4 (carbon catabolite repressor 4)‐NOT (negative on TATA) complex subunit 2/9 (CNOT2/9) and the serine hydroxymethyltransferase that catalyzes the reversible interconversions of serine and glycine (SHMT1), were found at dramatic low levels in the thymic epithelia of more malignant subtype, thymic squamous cell carcinoma (TSCC). Interestingly, the mRNA levels of these two genes were shown to be closely correlated with prognosis of the TET patients. These results extended the existing human tissue proteome atlas and allowed us to identify several new protein classifiers for TET subtyping. Newly identified subtyping and prognosis markers, CNOT2/9 and SHMT1, will expand current diagnostic arsenal in terms of higher specificity and prognostic insights for TET diagnosis and management.
Collapse
Affiliation(s)
- Xin Ku
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, China.,Thoracic Cancer Institute, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Lei Zhu
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Zhitao Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Ning Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Xiaohua Yang
- Central Lab, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| | - Wei Yan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, China
| | - Wentao Fang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, China
| |
Collapse
|
18
|
Świerzko AS, Michalski M, Sokołowska A, Nowicki M, Szala-Poździej A, Eppa Ł, Mitrus I, Szmigielska-Kapłon A, Sobczyk-Kruszelnicka M, Michalak K, Gołos A, Wierzbowska A, Giebel S, Jamroziak K, Kowalski ML, Brzezińska O, Thiel S, Matsushita M, Jensenius JC, Gajek G, Cedzyński M. Associations of Ficolins With Hematological Malignancies in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantations. Front Immunol 2020; 10:3097. [PMID: 32047495 PMCID: PMC6997528 DOI: 10.3389/fimmu.2019.03097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/18/2019] [Indexed: 01/08/2023] Open
Abstract
A prospective study of 312 patients [194 with multiple myeloma (MM) and 118 with lymphomas (LYMPH)] receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HSCT) was conducted. Ficolins are innate immune defense factors, able to distinguish between "self" "abnormal self," and "non-self" and contribute to the elimination of the last two by direct opsonization and/or initiation of complement activation via the lectin pathway. Concentrations of ficolin-1, ficolin-2, and ficolin-3 in serially taken serum samples were determined as were the polymorphisms of the corresponding (FCN1, FCN2, and FCN3) genes. Serum samples were collected before conditioning chemotherapy, before HSCT, and once weekly post-HSCT (four to five samples in total); some patients were also sampled at 1 and/or 3 months post-transplantation. The control group (C) consisted of 267 healthy unrelated individuals. Median ficolin-1 and ficolin-2 (but not ficolin-3) levels in MM patients' sera taken before chemotherapy were lower (and correspondingly frequencies of the lowest concentrations were higher) compared with controls. That appeared to be associated with the malignant disease itself rather than with post-HSCT complications (febrile neutropenia, infections accompanied, or not with bacteremia). Higher frequencies of the FCN1 genotype G/A-C/C-G/G (corresponding to polymorphisms at positions -542, -144, and +6658, respectively) and FCN2 gene heterozygosity for the -857 C>A polymorphism were found among patients diagnosed with MM compared with the C group. Furthermore, FCN2 G/G homozygosity (-557 A>G) was found more frequently and heterozygosity G/T at +6424 less frequently among LYMPH patients than among the healthy subjects. Heterozygosity for +1637delC mutation of the FCN3 gene was more common among patients diagnosed with lymphomas who experienced hospital infections. Although no evidence for an association of low ficolin-1 or ficolin-2 with infections during neutropenia following chemotherapy before HSCT was found, we observed a possible protective effect of ficolins during follow-up.
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Comprehensive Cancer Center and Traumatology, Copernicus Memorial Hospital, Łódz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Łukasz Eppa
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Iwona Mitrus
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Katarzyna Michalak
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódz, Łódz, Poland
- Department of Rheumatology, Medical University of Łódz, Łódz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | | | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódz, Poland
| |
Collapse
|
19
|
Apanovich N, Peters M, Apanovich P, Mansorunov D, Markova A, Matveev V, Karpukhin A. The Genes-Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics (Basel) 2020; 10:diagnostics10010030. [PMID: 31936274 PMCID: PMC7168144 DOI: 10.3390/diagnostics10010030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular prognostic markers of metastasis are important for personalized approaches to clear cell renal cell carcinoma (ccRCC) treatment but markers for practical use are still missing. To address this gap we studied the expression of ten genes—CA9, NDUFA4L2, VWF, IGFBP3, BHLHE41, EGLN3, SAA1, CSF1R, C1QA, and FN1—through RT-PCR, in 56 ccRCC patients without metastases and with metastases. All of these, excluding CSF1R, showed differential and increased (besides SAA1) expression in non-metastasis tumors. The gene expression levels in metastasis tumors were decreased, besides CSF1R, FN1 (not changed), and SAA1 (increased). There were significant associations of the differentially expressed genes with ccRCC metastasis by ROC analysis and the Fisher exact test. The association of the NDUFA4L2, VWF, EGLN3, SAA1, and C1QA expression with ccRCC metastasis is shown for the first time. The CA9, NDUFA4L2, BHLHE4, and EGLN3 were distinguished as the strongest candidates for ccRCC metastasis biomarkers. We used an approach that presupposed that the metastasis marker was the expression levels of any three genes from the selected panel and received sensitivity (88%) and specificity (73%) levels with a relative risk of RR > 3. In conclusion, a panel of selected genes—the candidates in biomarkers of ccRCC metastasis—was created for the first time. The results might shed some light on the ccRCC metastasis processes.
Collapse
Affiliation(s)
- Natalya Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Maria Peters
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Pavel Apanovich
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Danzan Mansorunov
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
| | - Anna Markova
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Vsevolod Matveev
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (M.P.); (A.M.); (V.M.)
| | - Alexander Karpukhin
- Bochkov Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (N.A.); (P.A.); (D.M.)
- Correspondence: ; Tel.: +7-499-324-12-39
| |
Collapse
|
20
|
Mishra R, Rana S. A rational search for discovering potential neutraligands of human complement fragment 5a (hC5a). Bioorg Med Chem 2019; 27:115052. [DOI: 10.1016/j.bmc.2019.115052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
|
21
|
Riihilä P, Nissinen L, Knuutila J, Rahmati Nezhad P, Viiklepp K, Kähäri VM. Complement System in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20143550. [PMID: 31331124 PMCID: PMC6678994 DOI: 10.3390/ijms20143550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Epidermal keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer with high mortality rates in the advanced stage. Chronic inflammation is a recognized risk factor for cSCC progression and the complement system, as a part of innate immunity, belongs to the microenvironment of tumors. The complement system is a double-edged sword in cancer, since complement activation is involved in anti-tumor cytotoxicity and immune responses, but it also promotes cancer progression directly and indirectly. Recently, the role of several complement components and inhibitors in the regulation of progression of cSCC has been shown. In this review, we will discuss the role of complement system components and inhibitors as biomarkers and potential new targets for therapeutic intervention in cSCC.
Collapse
Affiliation(s)
- Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Jaakko Knuutila
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Pegah Rahmati Nezhad
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kristina Viiklepp
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Hämeentie 11 TE6, FI-20520 Turku, Finland.
- The Western Cancer Centre of the Cancer Center Finland (FICAN West), University of Turku and Turku University Hospital, Kiinamyllynkatu 10, FI-20520 Turku, Finland.
| |
Collapse
|
22
|
Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The Complement Cascade as a Mediator of Human Malignant Hematopoietic Cell Trafficking. Front Immunol 2019; 10:1292. [PMID: 31231394 PMCID: PMC6567995 DOI: 10.3389/fimmu.2019.01292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complement cascade (ComC) cleavage fragments C3a and C5a regulate the trafficking of normal, differentiated hematopoietic cells, although they do not chemoattract more primitive hematopoietic stem/progenitor cells (HSPCs). By contrast, human myeloid and lymphoid leukemia cell lines and clonogenic blasts from chronic myelogenous leukemia (CML) and acute myelogenous leukemia (AML) patients respond to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. Consistent with this finding, C3a and C5a receptors are expressed by leukemic cells at the mRNA (RT-PCR) and protein (FACS) levels, and these cells respond to C3a and C5a stimulation by phosphorylation of p44/42 MAPK and AKT. However, neither of these ComC cleavage fragments have an effect on cell proliferation or survival. In parallel, we found that inducible heme oxygenase 1 (HO-1)-an anti-inflammatory enzyme, is a negative regulator of ComC-mediated trafficking of malignant cells and that stimulation of these cells by C3 or C5 cleavage fragments downregulates HO-1 expression in a p38 MAPK-dependent manner, rendering cells exposed to C3a or C5a more mobile. We propose that, while the ComC is not directly involved in the proliferation of malignant hematopoietic cells, its activation in leukemia/lymphoma patients (e.g., as a result of accompanying infections or sterile inflammation after radio-chemotherapy) enhances the motility of malignant cells and contributes to their dissemination in a p38 MAPK-HO-1 axis-dependent manner. Based on this idea, we propose that inhibition of p38 MAPK or upregulation of HO-1 by available small-molecule modulators would have a beneficial effect on ameliorating expansion and dissemination of leukemia/lymphoma cells in clinical situations in which the ComC becomes activated. Finally, since we detected expression of C3 and C5 mRNA in human leukemic cell lines, further study of the potential role of the complosome in regulating the behavior of these cells is needed.
Collapse
Affiliation(s)
- Anna Lenkiewicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology of Xiamen University, Xiamen, China
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.,Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
23
|
Pio R, Ajona D, Ortiz-Espinosa S, Mantovani A, Lambris JD. Complementing the Cancer-Immunity Cycle. Front Immunol 2019; 10:774. [PMID: 31031765 PMCID: PMC6473060 DOI: 10.3389/fimmu.2019.00774] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Reactivation of cytotoxic CD8+ T-cell responses has set a new direction for cancer immunotherapy. Neutralizing antibodies targeting immune checkpoint programmed cell death protein 1 (PD-1) or its ligand (PD-L1) have been particularly successful for tumor types with limited therapeutic options such as melanoma and lung cancer. However, reactivation of T cells is only one step toward tumor elimination, and a substantial fraction of patients fails to respond to these therapies. In this context, combination therapies targeting more than one of the steps of the cancer-immune cycle may provide significant benefits. To find the best combinations, it is of upmost importance to understand the interplay between cancer cells and all the components of the immune response. This review focuses on the elements of the complement system that come into play in the cancer-immunity cycle. The complement system, an essential part of innate immunity, has emerged as a major regulator of cancer immunity. Complement effectors such as C1q, anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1, have been associated with tolerogenic cell death and inhibition of antitumor T-cell responses through the recruitment and/or activation of immunosuppressive cell subpopulations such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), or M2 tumor-associated macrophages (TAMs). Evidence is provided to support the idea that complement blocks many of the effector routes associated with the cancer-immunity cycle, providing the rationale for new therapeutic combinations aimed to enhance the antitumor efficacy of anti-PD-1/PD-L1 checkpoint inhibitors.
Collapse
Affiliation(s)
- Ruben Pio
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Daniel Ajona
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors (CIMA) and Department of Biochemistry and Genetics (School of Medicine), University of Navarra, Pamplona, Spain
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
24
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
25
|
Ratajczak MZ, Bujko K, Mack A, Kucia M, Ratajczak J. Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia 2018; 32:2519-2526. [PMID: 30375490 PMCID: PMC6286324 DOI: 10.1038/s41375-018-0294-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Tumorigenesis can be considered as pathologically misappropriated tissue regeneration. In this review we will address some unresolved issues that support this concept. First, we will address the issue of the identity of cancer-initiating cells and the presence of cancer stem cells in growing tumors. We will also ask are there rare and distinct populations of cancer stem cells in established tumor cell lines, or are all of the cells cancer stem cells? Second, the most important clinical problem with cancer is its metastasis, and here a challenging question arises: by employing radio-chemotherapy for tumor treatment, do we unintentionally create a prometastatic microenvironment in collateral organs? Specifically, many factors upregulated in response to radio-chemotherapy-induced injury may attract highly migratory cancer cells that survived initial treatment. Third, what is the contribution of normal circulating stem cells to the growing malignancy? Do circulating normal stem cells recognize a tumor as a hypoxia-damaged tissue that needs vascular and stromal support and thereby contribute to tumor expansion? Fourth, is it reasonable to inhibit only one prometastatic ligand-receptor axis when cancer stem cells express several receptors for several chemotactic factors that may compensate for inhibition of the targeted receptor? Fifth, since most aggressive cancer cells mimic early-development stem cells, which properties of embryonic stem cells are retained in cancer cells? Would it be reasonable to inhibit cancer cell signaling pathways involved in the migration and proliferation of embryonic stem cells? We will also briefly address some new players in cancerogenesis, including extracellular microvesicles, bioactive phospholipids, and extracellular nucleotides.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| | - Kamila Bujko
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| | - Aaron Mack
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| | - Magda Kucia
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| |
Collapse
|