1
|
Chennareddy S, Rindler K, Ruggiero JR, Alkon N, Cohenour E, Tran S, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell RNA sequencing comparison of CD4+, CD8+ and T-cell receptor γδ+ cutaneous T-cell lymphomas reveals subset-specific molecular phenotypes. Br J Dermatol 2025; 192:269-282. [PMID: 39133553 PMCID: PMC11758594 DOI: 10.1093/bjd/ljae313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Malignant clones of primary cutaneous T-cell lymphomas (CTCL) can show a CD4+, CD8+ or T-cell receptor (TCR)-γδ+ phenotype, but their individual impact on tumour biology and skin lesion formation remains ill defined. OBJECTIVES To perform a comprehensive molecular characterization of CD4+ vs. CD8+ and TCR-γδ+ CTCL lesions. METHODS We performed single-cell RNA sequencing (scRNAseq) of 18 CTCL skin biopsies to compare classic CD4+ advanced-stage mycosis fungoides (MF) with TCR-γ/δ+ MF and primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma (Berti lymphoma). RESULTS Malignant clones of TCR-γ/δ+ MF and Bertilymphoma showed similar clustering patterns distinct from CD4+ MF, along with increased expression of cytotoxic markers such as NKG7, CTSW, GZMA and GZMM. Only advanced-stage CD4+ MF clones expressed central memory T-cell markers (SELL, CCR7, LEF1), alongside B1/B2 blood involvement, whereas TCR-γδ+ MF and Berti lymphoma harboured a more tissue-resident phenotype (CD69, CXCR4, NR4A1) without detectable cells in the blood. CD4+ MF and TCR-γδ+ MF skin lesions harboured strong type 2 immune activation across myeloid cells, while Berti lymphoma was more skewed toward type 1 immune responses. Both CD4+ MF and TCR-γδ+ MF lesions showed upregulation of keratinocyte hyperactivation markers such as S100A genes and KRT16. This increase was entirely absent in Berti lymphoma, possibly reflecting an aberrant keratinocyte response to invading tumour cells, which could contribute to the formation of the typical ulceronecrotic lesions within this entity. CONCLUSIONS Our scRNAseq profiling study reveals specific molecular patterns associated with distinct CTCL subtypes.
Collapse
MESH Headings
- Humans
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/immunology
- Lymphoma, T-Cell, Cutaneous/genetics
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Male
- Single-Cell Analysis
- Female
- CD4-Positive T-Lymphocytes/immunology
- Middle Aged
- Phenotype
- CD8-Positive T-Lymphocytes/immunology
- Aged
- Skin/pathology
- Skin/immunology
- Adult
- Sequence Analysis, RNA
- Mycosis Fungoides/genetics
- Mycosis Fungoides/pathology
- Mycosis Fungoides/immunology
Collapse
Affiliation(s)
- Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Tran
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Wu X, Ban C, Deng W, Bao X, Tang N, Wu Y, Deng Z, Xiong J, Zhao Q. Unveiling the PDK4-centered rituximab-resistant mechanism in DLBCL: the potential of the "Smart" exosome nanoparticle therapy. Mol Cancer 2024; 23:144. [PMID: 39004737 PMCID: PMC11247735 DOI: 10.1186/s12943-024-02057-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.
Collapse
MESH Headings
- Humans
- Exosomes/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/therapy
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Animals
- Mice
- Nanoparticles/chemistry
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
- Apoptosis/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Ban
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewei Bao
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Wu
- Department of Spine Surgery, First Affiliated Hospital of University of South China, Hengyang, Hengyang, Hunan, China
| | - Zhixuan Deng
- Institute of Cell Biology, Hengyang Medical School, University of South China, Hengyang, Hengyang, Hunan, China
| | - Jianbin Xiong
- Department of Orthopaedics, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, Qinghai, China.
| |
Collapse
|
3
|
Rainey MA, Allen CT, Craveiro M. Egress of resident memory T cells from tissue with neoadjuvant immunotherapy: Implications for systemic anti-tumor immunity. Oral Oncol 2023; 146:106570. [PMID: 37738775 PMCID: PMC10591905 DOI: 10.1016/j.oraloncology.2023.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Resident memory T (TRM) cells are embedded in peripheral tissue and capable of acting as sentinels that can respond quickly to repeat pathogen exposure as part of an endogenous anti-microbial immune response. Recent evidence suggests that chronic antigen exposure and other microenvironment cues may promote the development of TRM cells within solid tumors as well, and that this TRM phenotype can sequester tumor-specific T cells into tumors and out of circulation resulting in limited systemic antitumor immunity. Here, we perform a review of the published English literature and describe tissue-specific mediators of TRM cell differentiation in states of infection and malignancy with special focus on the role of TGF-β and how targeting TGF-β signaling could be used as a therapeutical approach to promote tumor systemic immunity. DISCUSSION The presence of TRM cells with antigen specificity to neoepitopes in tumors associates with positive clinical prognosis and greater responsiveness to immunotherapy. Recent evidence indicates that solid tumors may act as reservoirs for tumor specific TRM cells and limit their circulation - possibly resulting in impaired systemic antitumor immunity. TRM cells utilize specific mechanisms to egress from peripheral tissues into circulation and other peripheral sites, and emerging evidence indicates that immunotherapeutic approaches may initiate these processes and increase systemic antitumor immunity. CONCLUSIONS Reversing tumor sequestration of tumor-specific T cells prior to surgical removal or radiation of tumor may increase systemic antitumor immunity. This finding may underlie the improved recurrence free survival observed with neoadjuvant immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Magdalena A Rainey
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- National Institutes of Health, 9000 Rockville Pike, Building 10, Room 7N240C, Bethesda, MD 20892, USA.
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Marchais M, Simula L, Phayanouvong M, Mami-Chouaib F, Bismuth G, Decroocq J, Bouscary D, Dutrieux J, Mangeney M. FOXO1 Inhibition Generates Potent Nonactivated CAR T Cells against Solid Tumors. Cancer Immunol Res 2023; 11:1508-1523. [PMID: 37649096 DOI: 10.1158/2326-6066.cir-22-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/09/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have shown promising results in the treatment of B-cell malignancies. Despite the successes, challenges remain. One of them directly involves the CAR T-cell manufacturing process and especially the ex vivo activation phase. While this is required to allow infection and expansion, ex vivo activation dampens the antitumor potential of CAR T cells. Optimizing the nature of the T cells harboring the CAR is a strategy to address this obstacle and has the potential to improve CAR T-cell therapy, including for solid tumors. Here, we describe a protocol to create CAR T cells without ex vivo preactivation by inhibiting the transcription factor FOXO1 (CAR TAS cells). This approach made T cells directly permissive to lentiviral infection, allowing CAR expression, with enhanced antitumor functions. FOXO1 inhibition in primary T cells (TAS cells) correlated with acquisition of a stem cell memory phenotype, high levels of granzyme B, and increased production of TNFα. TAS cells displayed enhanced proliferative and cytotoxic capacities as well as improved migratory properties. In vivo experiments showed that CAR TAS cells were more efficient at controlling solid tumor growth than classical CAR T cells. The production of CAR TAS from patients' cells confirmed the feasibility of the protocol in clinic.
Collapse
Affiliation(s)
- Maude Marchais
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Luca Simula
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Mélanie Phayanouvong
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Justine Decroocq
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Jacques Dutrieux
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marianne Mangeney
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| |
Collapse
|
5
|
Ueda Y, Higasa K, Kamioka Y, Kondo N, Horitani S, Ikeda Y, Bergmeier W, Fukui Y, Kinashi T. Rap1 organizes lymphocyte front-back polarity via RhoA signaling and talin1. iScience 2023; 26:107292. [PMID: 37520697 PMCID: PMC10374465 DOI: 10.1016/j.isci.2023.107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Lymphocyte trafficking requires fine-tuning of chemokine-mediated cell migration. This process depends on cytoskeletal dynamics and polarity, but its regulation remains elusive. We quantitatively measured cell polarity and revealed critical roles performed by integrin activator Rap1 in this process, independent of substrate adhesion. Rap1-deficient naive T cells exhibited impaired abilities to reorganize the actin cytoskeleton into pseudopods and actomyosin-rich uropods. Rap1-GTPase activating proteins (GAPs), Rasa3 and Sipa1, maintained an unpolarized shape; deletion of these GAPs spontaneously induced cell polarization, indicative of the polarizing effect of Rap1. Rap1 activation required F-actin scaffolds, and stimulated RhoA activation and actomyosin contractility at the rear. Furthermore, talin1 acted on Rap1 downstream effectors to promote actomyosin contractility in the uropod, which occurred independently of substrate adhesion and talin1 binding to integrins. These findings indicate that Rap1 signaling to RhoA and talin1 regulates chemokine-stimulated lymphocyte polarization and chemotaxis in a manner independent of adhesion.
Collapse
Affiliation(s)
- Yoshihiro Ueda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Koichiro Higasa
- The Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yuji Kamioka
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Shunsuke Horitani
- Division of Gastroenterology and Hepatology, The Third Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tatsuo Kinashi
- The Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
6
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
7
|
Mastrogiovanni M, Vargas P, Rose T, Cuche C, Esposito E, Juzans M, Laude H, Schneider A, Bernard M, Goyard S, Renaudat C, Ungeheuer MN, Delon J, Alcover A, Di Bartolo V. The tumor suppressor adenomatous polyposis coli regulates T lymphocyte migration. SCIENCE ADVANCES 2022; 8:eabl5942. [PMID: 35417240 PMCID: PMC9007504 DOI: 10.1126/sciadv.abl5942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Thierry Rose
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Céline Cuche
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Elric Esposito
- Institut Pasteur, Université de Paris, UTechS BioImagerie Photonique, F-75015 Paris, France
| | - Marie Juzans
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Hélène Laude
- Institut Pasteur, Université de Paris, ICAReB, F-75015 Paris, France
| | - Amandine Schneider
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | - Mathilde Bernard
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Sophie Goyard
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
| | | | | | - Jérôme Delon
- Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Andrés Alcover
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| | - Vincenzo Di Bartolo
- Institut Pasteur, Université de Paris, INSERM-U1224, Unité Biologie Cellulaire des Lymphocytes, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Corresponding author. (A.A.); (V.D.B.)
| |
Collapse
|
8
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW, Simons M. Role of Venous Endothelial Cells in Developmental and Pathologic Angiogenesis. Circulation 2021; 144:1308-1322. [PMID: 34474596 DOI: 10.1161/circulationaha.121.054071] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT
| | - Yanying Xu
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (Y.X.)
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (L.H.)
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - David Gonzalez
- Department of Genetics (D.G.), Yale University School of Medicine, New Haven, CT
| | - Suk-Won Jin
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (W.C., S.-W.J.)
| | - Michael Simons
- Yale Cardiovascular Research Center (H.-W.L., Y.X., S.-W.J., M.S.), Yale University School of Medicine, New Haven, CT.,Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
10
|
Zhang C, Zhang TX, Liu Y, Jia D, Zeng P, Du C, Yuan M, Liu Q, Wang Y, Shi FD. B-Cell Compartmental Features and Molecular Basis for Therapy in Autoimmune Disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1070. [PMID: 34465614 PMCID: PMC8409132 DOI: 10.1212/nxi.0000000000001070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives To assess the molecular landscape of B-cell subpopulations across different compartments in patients with neuromyelitis optica spectrum disorder (NMOSD). Methods We performed B-cell transcriptomic profiles via single-cell RNA sequencing across CSF, blood, and bone marrow in patients with NMOSD. Results Across the tissue types tested, 4 major subpopulations of B cells with distinct signatures were identified: naive B cells, memory B cells, age-associated B cells, and antibody-secreting cells (ASCs). NMOSD B cells show proinflammatory activity and increased expression of chemokine receptor genes (CXCR3 and CXCR4). Circulating B cells display an increase of antigen presentation markers (CD40 and CD83), as well as activation signatures (FOS, CD69, and JUN). In contrast, the bone marrow B-cell population contains a large ASC fraction with increased oxidative and metabolic activity reflected by COX genes and ATP synthase genes. Typically, NMOSD B cells become hyperresponsive to type I interferon, which facilitates B-cell maturation and anti–aquaporin-4 autoantibody production. The pool of ASCs in blood and CSF were significantly elevated in NMOSD. Both CD19− and CD19+ ASCs could be ablated by tocilizumab, but not rituximab treatment in NMOSD. Discussion B cells are compartmentally fine tuned toward autoreactivity in NMOSD and become hyperreactive to type I interferon. Inhibition of type I interferon pathway may provide a new therapeutic avenue for NMOSD.
Collapse
Affiliation(s)
- Chao Zhang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Tian-Xiang Zhang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Ye Liu
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Dongmei Jia
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Pei Zeng
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Chen Du
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China.
| | - Meng Yuan
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Qiang Liu
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Yongjun Wang
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China
| | - Fu-Dong Shi
- From the China National Clinical Research Center for Neurological Diseases (C.Z., Y.W., F.-D.S.), Beijing Tiantan Hospital, Capital Medical University; and Department of Neurology (C.Z., T.-X.Z., Y.L., D.J., P.Z., C.D., M.Y., Q.L., F.-D.S.), Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, China.
| |
Collapse
|
11
|
Johansen KH, Golec DP, Thomsen JH, Schwartzberg PL, Okkenhaug K. PI3K in T Cell Adhesion and Trafficking. Front Immunol 2021; 12:708908. [PMID: 34421914 PMCID: PMC8377255 DOI: 10.3389/fimmu.2021.708908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Abstract
Ras homology (RHO) GTPases are signalling proteins that have crucial roles in triggering multiple immune functions. Through their interactions with a broad range of effectors and kinases, they regulate cytoskeletal dynamics, cell polarity and the trafficking and proliferation of immune cells. The activity and localization of RHO GTPases are highly controlled by classical families of regulators that share consensus motifs. In this Review, we describe the recent discovery of atypical modulators and partners of RHO GTPases, which bring an additional layer of regulation and plasticity to the control of RHO GTPase activities in the immune system. Furthermore, the development of large-scale genetic screening has now enabled researchers to identify dysregulation of RHO GTPase signalling pathways as a cause of many immune system-related diseases. We discuss the mutations that have been identified in RHO GTPases and their signalling circuits in patients with rare diseases. The discoveries of new RHO GTPase partners and genetic mutations in RHO GTPase signalling hubs have uncovered unsuspected layers of crosstalk with other signalling pathways and may provide novel therapeutic opportunities for patients affected by complex immune or broader syndromes.
Collapse
|
13
|
Montemagno C, Cassim S, De Leiris N, Durivault J, Faraggi M, Pagès G. Pancreatic Ductal Adenocarcinoma: The Dawn of the Era of Nuclear Medicine? Int J Mol Sci 2021; 22:6413. [PMID: 34203923 PMCID: PMC8232627 DOI: 10.3390/ijms22126413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90-95% of all pancreatic tumors, is a highly devastating disease associated with poor prognosis. The lack of accurate diagnostic tests and failure of conventional therapies contribute to this pejorative issue. Over the last decade, the advent of theranostics in nuclear medicine has opened great opportunities for the diagnosis and treatment of several solid tumors. Several radiotracers dedicated to PDAC imaging or internal vectorized radiotherapy have been developed and some of them are currently under clinical consideration. The functional information provided by Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) could indeed provide an additive diagnostic value and thus help in the selection of patients for targeted therapies. Moreover, the therapeutic potential of β-- and α-emitter-radiolabeled agents could also overcome the resistance to conventional therapies. This review summarizes the current knowledge concerning the recent developments in the nuclear medicine field for the management of PDAC patients.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Nicolas De Leiris
- Nuclear Medicine Department, Grenoble-Alpes University Hospital, 38000 Grenoble, France;
- Laboratoire Radiopharmaceutiques Biocliniques, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Jérôme Durivault
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| | - Marc Faraggi
- Centre Hospitalier Princesse Grace, Nuclear Medicine Department, 98000 Monaco, Monaco;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.D.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Centre Antoine Lacassagne, CNRS UMR 7284 and IN-SERM U1081, Université Cote d’Azur, 06200 Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur—Centre Scientifique de Monaco, 98000 Monaco, Monaco
| |
Collapse
|
14
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
15
|
Mei J, Xing Y, Lv J, Gu D, Pan J, Zhang Y, Liu J. Construction of an immune-related gene signature for prediction of prognosis in patients with cervical cancer. Int Immunopharmacol 2020; 88:106882. [PMID: 32799114 DOI: 10.1016/j.intimp.2020.106882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Cervical cancer (CeCa) is becoming an intractable public health issue worldwide. Emerging evidence uncovers that the tumor progression and prognosis of patients with CeCa are tightly associated with the abundance of tumor-infiltrating immune cells. In the current study, the abundance of tumor-infiltrating immune cells in CeCa samples was assessed by using the ssGSEA, thereby generating two immune-related groups according to the immune status. A 4-gene prognostic signature (RIPOR2, DAAM2, SORBS1, and CXCL8) was next established based on the grouping and its predictive capability was validated by multiple analyses. The TIMER database was used to evaluate the association between 4 hub gene expression and immune cell infiltration. Immunophenoscore (IPS) was used to assess response to immune checkpoint inhibitors in CeCa samples. As the results, a novel grouping strategy based on immune cell infiltration was developed and validated. Based on the grouping, a 4-gene signature was identified to be an independent prognostic indicator for overall survival (OS) in CeCa patients. Among the 4 hub genes, RIPOR2 and CXCL8 expression were significantly correlated with immune cell infiltration. Besides, higher immune checkpoints expression and IPS scores were found in the 4-gene signature low-risk group, suggesting a more immunoactive status that tended to respond to immune checkpoint inhibitors. To sum up, a novel immune-related signature is established to predict CeCa patients' prognosis and also associated with response to immune checkpoint inhibitors, which might be a promising prognostic stratification strategy and innovate therapeutic management.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jinru Lv
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Dingyi Gu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Jiadong Pan
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214000, Jiangsu, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi 214000, Jiangsu, China.
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
16
|
Stein JV, Ruef N. Regulation of global CD8 + T-cell positioning by the actomyosin cytoskeleton. Immunol Rev 2020; 289:232-249. [PMID: 30977193 DOI: 10.1111/imr.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
CD8+ T cells have evolved as one of the most motile mammalian cell types, designed to continuously scan peptide-major histocompatibility complexes class I on the surfaces of other cells. Chemoattractants and adhesion molecules direct CD8+ T-cell homing to and migration within secondary lymphoid organs, where these cells colocalize with antigen-presenting dendritic cells in confined tissue volumes. CD8+ T-cell activation induces a switch to infiltration of non-lymphoid tissue (NLT), which differ in their topology and biophysical properties from lymphoid tissue. Here, we provide a short overview on regulation of organism-wide trafficking patterns during naive T-cell recirculation and their switch to non-lymphoid tissue homing during activation. The migratory lifestyle of CD8+ T cells is regulated by their actomyosin cytoskeleton, which translates chemical signals from surface receptors into mechanical work. We explore how properties of the actomyosin cytoskeleton and its regulators affect CD8+ T cell function in lymphoid and non-lymphoid tissue, combining recent findings in the field of cell migration and actin network regulation with tissue anatomy. Finally, we hypothesize that under certain conditions, intrinsic regulation of actomyosin dynamics may render NLT CD8+ T-cell populations less dependent on input from extrinsic signals during tissue scanning.
Collapse
Affiliation(s)
- Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
18
|
Association of FAM65B, AGBL4, and CUX2 genetic polymorphisms with susceptibility to antituberculosis drug-induced hepatotoxicity: validation study in a Chinese Han population. Pharmacogenet Genomics 2019; 29:84-90. [PMID: 30720667 DOI: 10.1097/fpc.0000000000000370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Antituberculosis (anti-TB) drug-induced hepatotoxicity (ATDH) is a serious adverse drug reaction, and its pathogenic mechanism has not been elucidated thoroughly to date. A recent genome-wide association study reported that seven single-nucleotide polymorphisms (SNPs) in the family with sequence similarity 65, member B gene (FAM65B), ATP/GTP-binding protein-like 4 gene (AGBL4), and cut-like homeobox 2 gene (CUX2) were associated strongly with ATDH in Ethiopian patients. We validated this relationship in a Chinese Han anti-TB treatment population. PATIENTS AND METHODS A 1 : 2 matched case-control study was carried out of 235 ATDH cases and 470 controls. Multivariate conditional logistic regression analysis was used to estimate the association between genotypes and risk of ATDH by odds ratios with 95% confidence intervals, and weight and hepatoprotectant use were used as covariates. RESULTS Patients with a polymorphism at rs10946737 in the FAM65B gene were at an increased risk of moderate and severe liver injury under the dominant model (adjusted odds ratio=2.147, 95% confidence interval: 1.067-4.323, P=0.032). No other genotypes or genetic risk scores were found to be significantly related to ATDH. CONCLUSION This is the first study to explore and validate the relationships between seven SNPs in the FAM65B, AGBL4, and CUX2 genes and ATDH in a Chinese population. On the basis of this case-control study, SNP rs10946737 in FAM65B may be associated with susceptibility to ATDH in Chinese Han anti-TB treatment patients. Further research is warranted to explain the role of the FAM65B gene and its contribution toward individual differences in susceptibility to ATDH.
Collapse
|
19
|
The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ 2018; 26:1299-1315. [PMID: 30349076 DOI: 10.1038/s41418-018-0206-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 02/03/2023] Open
Abstract
Dysregulated autophagy is associated with many pathological disorders such as cardiovascular diseases. Emerging evidence has suggested that circular RNAs (circRNAs) have important roles in some biological processes. However, it remains unclear whether circRNAs participate in the regulation of autophagy. Here we report that a circRNA, termed autophagy-related circular RNA (ACR), represses autophagy and myocardial infarction by targeting Pink1-mediated phosphorylation of FAM65B. ACR attenuates autophagy and cell death in cardiomyocytes. Moreover, ACR protects the heart from ischemia/reperfusion (I/R) injury and reduces myocardial infarct sizes. We identify Pink1 as an ACR target to mediate the function of ACR in cardiomyocyte autophagy. ACR activates Pink1 expression through directly binding to Dnmt3B and blocking Dnmt3B-mediated DNA methylation of Pink1 promoter. Pink1 suppresses autophagy and Pink1 transgenic mice show reduced myocardial infarction sizes. Further, we find that FAM65B is a downstream target of Pink1 and Pink1 phosphorylates FAM65B at serine 46. Phosphorylated FAM65B inhibits autophagy and cell death in the heart. Our findings reveal a novel role for the circRNA in regulating autophagy and ACR-Pink1-FAM65B axis as a regulator of autophagy in the heart will be potential therapeutic targets in treatment of cardiovascular diseases.
Collapse
|