1
|
Bruschi M, Granata S, Leone F, Barberio L, Candiano G, Pontrelli P, Petretto A, Bartolucci M, Spinelli S, Gesualdo L, Zaza G. Omics data integration analysis identified new biological insights into chronic antibody-mediated rejection (CAMR). J Transl Med 2025; 23:209. [PMID: 39979925 PMCID: PMC11844005 DOI: 10.1186/s12967-025-06203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND In the last two decades, many studies based on omics technologies have contributed to defining the clinical, immunological, and histological fingerprints of chronic antibody-mediated rejection (CAMR), the leading cause of long-term kidney allograft failure. However, the full biological machinery underlying CAMR has only been partially defined, likely due to the fact thatsingle-omics technologies capture only specific aspects of the biological system and fail to provide a comprehensive understanding of this clinical complication. METHODS This study integrated mass spectrometry-based proteomic profiling of serum samples from 19 patients with clinical and histological evidence of CAMR and 26 kidney transplant recipients with normal graft function and histology (CTR) with transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from an independent cohort of 10 CAMR and 8 CTR patients. Data analysis was conducted using unsupervised hierarchical clustering (multidimensional scaling with k-means) and Spearman's correlation test. Partial least squares discriminant analysis (PLS-DA) with the importance in projection (VIP) score identified key proteins differentiating CAMR from CTR. ELISA was used to validate the omics results. RESULTS Proteomic analysis identified 18 proteins that significantly differentiated CAMR from CTR (p < 0.01): five were more abundant (CHI3L1, LYZ, PRSS2, CPQ, IGLV3-32), while 13 were less abundant (SERPINA5, SERPING1, KNG1, CAMP, VNN1, BTD, WDR1, PON3, AHNAK2, MELTF, CA1, CD44, CUL1). Transcriptomic profiling revealed 6 downregulated and 33 upregulated genes in CAMR versus CTR (p < 0.01). Notably, only 2 biological elements were significantly deregulated in both omics analyses: chitinase-3-like protein 1 (CHI3L1) and plasma protease inhibitor C1 (SERPING1). CHI3L1, previously associated with the severity of tissue damage in kidney diseases, was up-regulated in CAMR in both transcriptomics and proteomics, while SERPING1, a serine esterase inhibitor that blocks the classical and lectin pathway of complement, was up-regulated in CAMR in transcriptomics but down-regulated in proteomics. ELISA validated the omics results, and the ROC curve showed that CHI3L1 has good discrimination power between CAMR and CTR (AUC of ROC curve of 0.81). CONCLUSIONS Our multi-omics data, although performed in a relatively small cohort of patients, revealed new systemic biological elements involved in the pathogenesis of CAMR and identified CHI3L1 as a new potential biomarker and/or therapeutic target for this important clinical complication. Future validation of these findings in larger patient cohorts should be conducted to better evaluate their clinical utility.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Simona Granata
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Leone
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Andrea Petretto
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Martina Bartolucci
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Gianluigi Zaza
- Division of Nephrology, Dialysis and Transplantation, Annunziata Hospital, Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| |
Collapse
|
2
|
Delsante M, Gandolfini I, Palmisano A, Benigno GD, Gentile M, Rossi GM, Fiaccadori E, Maggiore U. Early and late antibody mediated rejection: Which game is the complement playing? Transplant Rev (Orlando) 2025; 39:100889. [PMID: 39591699 DOI: 10.1016/j.trre.2024.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The role of the complement system in antibody mediated rejection (AMR) emerged in the last decades, and the demonstration of the presence of complement fragments in renal allograft biopsies is a consolidated diagnostic sign of AMR. However, antibodies against donor antigens may lead to microvascular inflammation and endothelial injury even in the absence of complement activation, and growing evidence suggests that complement-independent mechanisms may be prominent in late (i.e., occurring >6 months after transplantation) vs early AMR. Different donor specific antibodies (DSA) with different biological features and complement activation ability may be involved in late or early AMR. Downregulation of tissue complement inhibitors may happen early after transplantation, partially due to ischemia reperfusion injury, and could facilitate complement activation in early vs late AMR. Clinical and histological features of late AMR and C4d negative AMR seem to converge, and this narrative review analyzes the evidence that supports lower complement activation in late vs early AMR, including differential C4d staining prevalence based on the time after transplantation, differential response to anti-complement therapy and other direct and indirect signs of the complement system activation. The therapeutic approach in early vs late AMR should take into account possible differences in the pathophysiological mechanisms of microvascular inflammation and endothelial injury in early vs late AMR.
Collapse
Affiliation(s)
- Marco Delsante
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Ilaria Gandolfini
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessandra Palmisano
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Daniele Benigno
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Micaela Gentile
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Maria Rossi
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Umberto Maggiore
- Nephrology Unit, Parma University Hospital, & Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Bednarova K, Mjøen G, Hruba P, Modos I, Voska L, Kollar M, Viklicky O. A novel prognostic nomogram predicts premature failure of kidney allografts with IgA nephropathy recurrence. Nephrol Dial Transplant 2023; 38:2627-2636. [PMID: 37202220 PMCID: PMC10660147 DOI: 10.1093/ndt/gfad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Recurrence of immunoglobulin A nephropathy (IgAN) limits graft survival in kidney transplantation. However, predictors of a worse outcome are poorly understood. METHODS Among 442 kidney transplant recipients (KTRs) with IgAN, 83 (18.8%) KTRs exhibited biopsy-proven IgAN recurrence between 1994 and 2020 and were enrolled in the derivation cohort. A multivariable Cox model predicting allograft loss based on clinical data at the biopsy and a web-based nomogram were developed. The nomogram was externally validated using an independent cohort (n = 67). RESULTS Patient age <43 years {hazard ratio [HR] 2.20 [95% confidence interval (CI) 1.41-3.43], P < .001}, female gender [HR 1.72 (95% CI 1.07-2.76), P = .026] and retransplantation status [HR 1.98 (95% CI 1.13-3.36), P = .016] were identified as independent risk factors for IgAN recurrence. Patient age <43 years [HR 2.77 (95% CI 1.17-6.56), P = .02], proteinuria >1 g/24 hours [HR 3.12 (95% CI 1.40-6.91), P = .005] and C4d positivity [HR 2.93 (95% CI 1.26-6.83), P = .013] were found to be associated with graft loss in patients with IgAN recurrence. A nomogram predicting graft loss was constructed based on clinical and histological variables, with a C statistic of 0.736 for the derivation cohort and 0.807 for the external validation cohort. CONCLUSIONS The established nomogram identified patients with recurrent IgAN at risk for premature graft loss with good predictive performance.
Collapse
Affiliation(s)
- Kamila Bednarova
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Geir Mjøen
- Department of Nephrology, Oslo University Hospital, Oslo, Norway
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Istvan Modos
- Department of Informatics, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludek Voska
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marek Kollar
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Viklicky
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
4
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
5
|
Franzin R, Stasi A, Sallustio F, Bruno S, Merlotti G, Quaglia M, Grandaliano G, Pontrelli P, Thurman JM, Camussi G, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. Am J Transplant 2022; 22:2139-2157. [PMID: 35583104 PMCID: PMC9546277 DOI: 10.1111/ajt.17097] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Extracellular vesicles (EV) are emerging mediators in several diseases. However, their role in the pathophysiology of antibody-mediated allograft rejection (AMR) has been poorly investigated. Here, we investigated the role of EV isolated from AMR patients in inducing tubular senescence and endothelial to mesenchymal transition (EndMT) and analyzed their miRNA expression profile. By multiplex bead flow cytometry, we characterized the immunophenotype of plasma AMR-derived EV and found a prevalent platelet and endothelial cell origin. In vitro, AMR-derived EV induced tubular senescence by upregulating SA-β Gal and CDKN1A mRNA. Furthermore, AMR-derived EV induced EndMT. The occurrence of tubular senescence and EndMT was confirmed by analysis of renal biopsies from the same AMR patients. Moreover, AMR-derived EV induced C3 gene upregulation and CFH downregulation in tubular epithelial cells, with C4d deposition on endothelial cells. Interestingly, RNase-mediated digestion of EV cargo completely abrogated tubular senescence and EndMT. By microarray analysis, miR-604, miR-515-3p, miR-let-7d-5p, and miR-590-3p were significantly upregulated in EV from AMR group compared with transplant controls, whereas miR-24-3p and miR-29a-3p were downregulated. Therefore, EV-associated miRNA could act as active player in AMR pathogenesis, unraveling potential mechanisms of accelerated graft senescence, complement activation and early fibrosis that might lead to new therapeutic intervention.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Fabio Sallustio
- Interdisciplinary Department of Medicine (DIM)University of Bari "Aldo Moro"BariItaly
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Giuseppe Grandaliano
- Department Translational Medicine and SurgeryUniversità Cattolica Sacro CuoreRomeItaly
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Joshua M. Thurman
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Giuseppe Castellano
- Unit of NephrologyDialysis and Renal Transplantation ‐ Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di MilanoMilanItaly
| |
Collapse
|
6
|
Estrada CC, Cardona S, Guo Y, Revelo MP, D'Agati VD, Koganti S, Devaraj J, He JC, Heeger PS, Mallipattu SK. Endothelial-specific loss of Krüppel-Like Factor 4 triggers complement-mediated endothelial injury. Kidney Int 2022; 102:58-77. [PMID: 35483525 DOI: 10.1016/j.kint.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Thrombotic microangiopathy (TMA) in the kidney represents the most severe manifestation of kidney microvascular endothelial injury. Despite the source of the inciting event, the diverse clinical forms of kidney TMA share dysregulation of endothelial cell transcripts and complement activation. Here, we show that endothelial-specific knockdown of Krüppel-Like Factor 4 (Klf4)ΔEC, an anti-inflammatory and antithrombotic zinc-finger transcription factor, increases the susceptibility to glomerular endothelial injury and microangiopathy in two genetic murine models that included endothelial nitric oxide synthase knockout mice and aged mice (52 weeks), as well as in a pharmacologic model of TMA using Shiga-toxin 2. In all models, Klf4ΔEC mice exhibit increased pro-thrombotic and pro-inflammatory transcripts, as well as increased complement factors C3 and C5b-9 deposition and histologic features consistent with subacute TMA. Interestingly, complement activation in Klf4ΔEC mice was accompanied by reduced expression of a key KLF4 transcriptional target and membrane bound complement regulatory gene, Cd55. To assess a potential mechanism by which KLF4 might regulate CD55 expression, we performed in silico chromatin immunoprecipitation enrichment analysis of the CD55 promotor and found KLF4 binding sites upstream from the CD55 transcription start site. Using patient-derived kidney biopsy specimens, we found glomerular expression of KLF4 and CD55 was reduced in patients with TMA as compared to control biopsies of the unaffected pole of patient kidneys removed due to kidney cancer. Thus, our data support that endothelial Klf4 is necessary for maintenance of a quiescent glomerular endothelial phenotype and its loss increases susceptibility to complement activation and induction of prothrombotic and pro-inflammatory pathways.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Stephanie Cardona
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vivette D D'Agati
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Siva Koganti
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jason Devaraj
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA; Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, USA.
| |
Collapse
|
7
|
Khedraki R, Noguchi H, Baldwin WM. Balancing the View of C1q in Transplantation: Consideration of the Beneficial and Detrimental Aspects. Front Immunol 2022; 13:873479. [PMID: 35401517 PMCID: PMC8988182 DOI: 10.3389/fimmu.2022.873479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Raneem Khedraki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| | - Hirotsugu Noguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
| |
Collapse
|
8
|
Witczak BJ, Pischke SE, Reisæter AV, Midtvedt K, Ludviksen JK, Heldal K, Jenssen T, Hartmann A, Åsberg A, Mollnes TE. Elevated Terminal C5b-9 Complement Complex 10 Weeks Post Kidney Transplantation Was Associated With Reduced Long-Term Patient and Kidney Graft Survival. Front Immunol 2021; 12:738927. [PMID: 34759922 PMCID: PMC8573334 DOI: 10.3389/fimmu.2021.738927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background The major reason for graft loss is chronic tissue damage, as interstitial fibrosis and tubular atrophy (IF/TA), where complement activation may serve as a mediator. The association of complement activation in a stable phase early after kidney transplantation with long-term outcomes is unexplored. Methods We examined plasma terminal C5b-9 complement complex (TCC) 10 weeks posttransplant in 900 patients receiving a kidney between 2007 and 2012. Clinical outcomes were assessed after a median observation time of 9.3 years [interquartile range (IQR) 7.5–10.6]. Results Elevated TCC plasma values (≥0.7 CAU/ml) were present in 138 patients (15.3%) and associated with a lower 10-year patient survival rate (65.7% vs. 75.5%, P < 0.003). Similarly, 10-year graft survival was lower with elevated TCC; 56.9% vs. 67.3% (P < 0.002). Graft survival was also lower when censored for death; 81.5% vs. 87.3% (P = 0.04). In multivariable Cox analyses, impaired patient survival was significantly associated with elevated TCC [hazard ratio (HR) 1.40 (1.02–1.91), P = 0.04] along with male sex, recipient and donor age, smoking, diabetes, and overall survival more than 1 year in renal replacement therapy prior to engraftment. Likewise, elevated TCC was independently associated with graft loss [HR 1.40 (1.06–1.85), P = 0.02] along with the same covariates. Finally, elevated TCC was in addition independently associated with death-censored graft loss [HR 1.69 (1.06–2.71), P = 0.03] as were also HLA-DR mismatches and higher immunological risk. Conclusions Early complement activation, assessed by plasma TCC, was associated with impaired long-term patient and graft survival.
Collapse
Affiliation(s)
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Department of Anaesthesiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Anna V Reisæter
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Kristian Heldal
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Trond Jenssen
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Hartmann
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Norwegian Renal Registry, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Faculty of Health Sciences, KG Jebsen Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Trailin A, Mrazova P, Hruba P, Voska L, Sticova E, Slavcev A, Novotny M, Kocik M, Viklicky O. Chronic Active Antibody-Mediated Rejection Is Associated With the Upregulation of Interstitial But Not Glomerular Transcripts. Front Immunol 2021; 12:729558. [PMID: 34616398 PMCID: PMC8488163 DOI: 10.3389/fimmu.2021.729558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Molecular assessment of renal allografts has already been suggested in antibody-mediated rejection (ABMR), but little is known about the gene transcript patterns in particular renal compartments. We used laser capture microdissection coupled with quantitative RT-PCR to distinguish the transcript patterns in the glomeruli and tubulointerstitium of kidney allografts in sensitized retransplant recipients at high risk of ABMR. The expressions of 13 genes were quantified in biopsies with acute active ABMR, chronic active ABMR, acute tubular necrosis (ATN), and normal findings. The transcripts were either compartment specific (TGFB1 in the glomeruli and HAVCR1 and IGHG1 in the tubulointerstitium), ABMR specific (GNLY), or follow-up specific (CXCL10 and CX3CR1). The transcriptional profiles of early acute ABMR shared similarities with ATN. The transcripts of CXCL10 and TGFB1 increased in the glomeruli in both acute ABMR and chronic active ABMR. Chronic active ABMR was associated with the upregulation of most genes (SH2D1B, CX3CR1, IGHG1, MS4A1, C5, CD46, and TGFB1) in the tubulointerstitium. In this study, we show distinct gene expression patterns in specific renal compartments reflecting cellular infiltration observed by conventional histology. In comparison with active ABMR, chronic active ABMR is associated with increased transcripts of tubulointerstitial origin.
Collapse
Affiliation(s)
- Andriy Trailin
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Mrazova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Eva Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Antonij Slavcev
- Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Marek Novotny
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Matej Kocik
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
10
|
Multiplex gene analysis reveals T-cell and antibody-mediated rejection-specific upregulation of complement in renal transplants. Sci Rep 2021; 11:15464. [PMID: 34326417 PMCID: PMC8322413 DOI: 10.1038/s41598-021-94954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.
Collapse
|
11
|
Trimarchi H, Coppo R. Glomerular endothelial activation, C4d deposits and microangiopathy in immunoglobulin A nephropathy. Nephrol Dial Transplant 2021; 36:581-586. [PMID: 31755918 DOI: 10.1093/ndt/gfz241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 11/14/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is considered as mesangiopathy since it initiates in the mesangium; however, other glomerular components are involved and the glomerular capillary wall offers the first contact to circulating macromolecular IgA1. Acute and active forms of IgAN are associated with endocapillary hypercellularity and vascular damage of various degrees, in severe cases with microangiopathy (MA) without or with thrombosis [thrombotic microangiopathy (TMA)]. Vascular damage activates complement and coagulation cascades. A defective complement regulation has recently been detected in active and progressive cases of IgAN. C4d deposits in renal biopsies have been found to be an early risk factor. These observations have raised interest in manifestation of MA and TMA in progressive cases of IgAN. MA-TMA lesions have been found in various percentages (2-53%) of patients with IgAN according to patients' selection and pathology definition of TMA. The association with hypertension (HTN) was so strong that it led to the hypothesis that MA/TMA in IgAN was a mere consequence of severe HTN. Old and new clinical and experimental data indicate that in IgAN the interaction of the glomerular capillary wall with immune reactants and complement uncontrolled activation leading to C4b deposits favours the development of MA-TMA, which plays a role in progression and renal function decline. The central role of complement activation is relevant also for the new therapeutic interventions offered by the pharma.
Collapse
Affiliation(s)
- Hernán Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
12
|
Infante B, Rossini M, Di Lorenzo A, Coviello N, Giuseppe C, Gesualdo L, Giuseppe G, Stallone G. Recurrence of immunoglobulin A nephropathy after kidney transplantation: a narrative review of the incidence, risk factors, pathophysiology and management of immunosuppressive therapy. Clin Kidney J 2020; 13:758-767. [PMID: 33123355 PMCID: PMC7577761 DOI: 10.1093/ckj/sfaa060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Glomerulonephritis (GN) is the underlying cause of end-stage renal failure in 30–50% of kidney transplant recipients. It represents the primary cause of end-stage renal disease for 25% of the dialysis population and 45% of the transplant population. For patients with GN requiring renal replacement therapy, kidney transplantation is associated with superior outcomes compared with dialysis. Recurrent GN was previously considered to be a minor contributor to graft loss, but with the prolongation of graft survival, the effect of recurrent disease on graft outcome assumes increasing importance. Thus the extent of recurrence of original kidney disease after kidney transplantation has been underestimated for several reasons. This review aims to provide updated knowledge on one particular recurrent renal disease after kidney transplantation, immunoglobulin A nephropathy (IgAN). IgAN is one of the most common GNs worldwide. The pathogenesis of IgAN is complex and remains incompletely understood. Evidence to date is most supportive of a several hit hypothesis. Biopsy is mandatory not only to diagnose the disease in the native kidney, but also to identify and characterize graft recurrence of IgAN in the kidney graft. The optimal therapy for IgAN recurrence in the renal graft is unknown. Supportive therapy aiming to reduce proteinuria and control hypertension is the mainstream, with corticosteroids and immunosuppressive treatment tailored for certain subgroups of patients experiencing a rapidly progressive course of the disease with active lesions on renal biopsy and considering safety issues related to infectious complications.
Collapse
Affiliation(s)
- Barbara Infante
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Michele Rossini
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Adelaide Di Lorenzo
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Nicola Coviello
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Castellano Giuseppe
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giovanni Stallone
- Department of Medical and Surgical Sciences, Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Geoghegan L, Al-Khalil M, Scarborough A, Murray A, Issa F. Pre-transplant management and sensitisation in vascularised composite allotransplantation: A systematic review. J Plast Reconstr Aesthet Surg 2020; 73:1593-1603. [PMID: 32475735 DOI: 10.1016/j.bjps.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Vascularised composite allotransplantation (VCA) permits like-for-like reconstruction following extensive soft tissue injuries. The initial management of extensive soft tissue injury can lead to the development of anti-HLA antibodies through injury-related factors, transfusion and cadaveric grafting. The role of antibody-mediated rejection, donor-specific antibody formation and graft rejection in the context of VCA remains unclear. This systematic review aimed to determine whether pre-transplant management strategies influence immunological outcome following VCA. METHODS A systematic review of MEDLINE, EMBASE and CINAHL using a PRISMA-compliant methodology up to February 2019 was conducted. Pre-transplant, procedural and long-term outcome data were collected and recorded for all VCA recipients on an individual patient basis. RESULTS The search revealed 3,847 records of which 114 met inclusion criteria and reported clinical data related to 100 patients who underwent 129 VCA transplants. Trauma (50%) and burns (15%) were the most frequent indications for VCA. Of all 114 studies, only one reported acute resuscitative management. Fifteen patients were sensitised prior to reconstructive transplantation with an 80%%incidence of acute rejection in the first post-operative year. Seven patients demonstrated graft vasculopathy, only one of whom had demonstrated panel reactive antibodies. CONCLUSIONS Currently employed acute management strategies may predispose to the development of anti-HLA antibodies, adding to the already complex immunological challenge of VCA. To determine whether association between pre-transplant management and outcomes exists, further refinement of international registries is required.
Collapse
Affiliation(s)
- Luke Geoghegan
- Imperial College NHS Trust, London, UK; Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science (NDORMS), University of Oxford, Oxford, UK
| | | | | | - Alexandra Murray
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville Hospital, Aylesbury, UK
| | - Fadi Issa
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville Hospital, Aylesbury, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Kummer L, Zaradzki M, Vijayan V, Arif R, Weigand MA, Immenschuh S, Wagner AH, Larmann J. Vascular Signaling in Allogenic Solid Organ Transplantation - The Role of Endothelial Cells. Front Physiol 2020; 11:443. [PMID: 32457653 PMCID: PMC7227440 DOI: 10.3389/fphys.2020.00443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host’s immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis. The established forms of immunosuppressive therapy provide effective treatment options, but the treatment of chronic rejection of solid organs remains challenging. Chronic rejection is mainly based on production of donor-specific antibodies that induce endothelial cell activation—a condition which phenotypically resembles chronic inflammation. Activated endothelial cells produce chemokines, and expression of adhesion molecules increases. Due to this pro-inflammatory microenvironment, leukocytes are recruited and transmigrate from the bloodstream across the endothelial monolayer into the vessel wall. This mononuclear infiltrate is a hallmark of transplant vasculopathy. Furthermore, expression profiles of different cytokines serve as clinical markers for the patient’s outcome. Besides their effects on immune cells, activated endothelial cells support the migration and proliferation of vascular smooth muscle cells. In turn, muscle cell recruitment leads to neointima formation followed by reduction in organ perfusion and eventually results in tissue injury. Activation of endothelial cells involves antibody ligation to the surface of endothelial cells. Subsequently, intracellular signaling pathways are initiated. These signaling cascades may serve as targets to prevent or treat adverse effects in antibody-activated endothelial cells. Preventive or therapeutic strategies for chronic rejection can be investigated in sophisticated mouse models of transplant vasculopathy, mimicking interactions between immune cells and endothelium.
Collapse
Affiliation(s)
- Laura Kummer
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcin Zaradzki
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Rawa Arif
- Institute of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hanover, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jan Larmann
- Department of Anesthesiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Pan B, Wan X, Ma M, Cao C. Complement C3 and Nonalcoholic Fatty Liver Disease in Chronic Kidney Disease Patients: A Pilot Study. Kidney Blood Press Res 2020; 45:61-69. [PMID: 31968339 DOI: 10.1159/000504172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Evidences have suggested complement C3 is a biomarker for nonalcoholic fatty liver disease (NAFLD) in the general population. OBJECTIVE The present study was conducted to explore the predictive function of C3 for NAFLD in chronic kidney disease (CKD) patients. DESIGN, SETTING, AND PARTICIPANTS CKD patients were recruited for evaluation of their liver function, kidney function, serum lipids, glycated hemoglobin, blood, and immune function. The glomerular filtration rate was calculated using the CKD-EPI equation. NAFLD was diagnosed according to predefined ultrasonographic criteria. RESULTS A total of 648 consecutive CKD patients were included, with 216 (33.3%) patients diagnosed with NAFLD. The NAFLD group had significant higher levels of serum protein, serum albumin, triglycerides, glycated hemoglobin, complement C3, hemoglobin (p = 0.001), alanine aminotransferase (p = 0.002), estimated glomerular filtration rate (p = 0.007), and C4 (p = 0.043) and lower levels of cystatin C, β2-microglobulin, proteinuria (p = 0.001), and high-density lipoprotein cholesterol (p = 0.008). In a logistic regression model, only complement C3 (OR = 1.003; 95% CI 1.002-1.004, p = 0.001) was associated with a higher likelihood of being diagnosed with NAFLD. Finally, we constructed ROC curves for complement C3 for prediction of having NAFLD. The best cut-off for complement C3 was 993.5 mg/L and it yielded a sensitivity of 63.9% and a specificity of 70.1%. CONCLUSION Our study revealed that complement C3 can be used as a surrogate biomarker of NAFLD in CKD patients.
Collapse
Affiliation(s)
- Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
16
|
Molecular Patterns Discriminate Accommodation and Subclinical Antibody-mediated Rejection in Kidney Transplantation. Transplantation 2019; 103:909-917. [PMID: 30801516 DOI: 10.1097/tp.0000000000002604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Accommodation in ABO-incompatible (ABOi) transplantation and subclinical antibody-mediated rejection in HLA-incompatible (HLAi) transplantation share several morphological similarities. Because the clinical long-term outcomes differ, we hypothesized different molecular processes involved in ABOi transplantation and subclinical antibody-mediated rejection. METHODS Using Illumina Human HT-12 v4 Expression BeadChips, the whole transcriptome was evaluated based on 3-month protocol C4d+ biopsies in otherwise stable ABOi and HLAi kidney grafts, as well as in C4d-negative HLA-compatible grafts exhibiting normal histological findings. Top differently regulated genes were further validated using real-time quantitative polymerase chain reaction in another patient cohort and complement regulatory proteins by immunohistochemistry. RESULTS In the case of genes involved in immune response-related biological processes, ABOi and HLAi cohorts had similar transcriptomic profiles to C4d-negative controls. The majority of deregulated genes in the ABOi and HLAi groups consisted of metallothioneins and epithelial transporter genes. Increased expression of epithelial transporters (SLC4A1, SLC4A9, SLC17A3, SLC12A3, and SLC30A2) and class 1 metallothioneins (MT1F, MT1G, and MT1X) in HLAi transplantation was validated by real-time quantitative polymerase chain reaction. In comparison to controls, both incompatible cohorts were characterized by the upregulation of intrarenal complement regulatory genes. CD46 and CD59 transcripts were increased in the ABOi cohort, whereas CD46 solely in HLAi group, and CD59 protein expression was similar in both incompatible groups. CONCLUSIONS Several epithelial transporters and metallothioneins discriminate subclinical antibody-mediated rejection in HLAi transplantation from accommodation in ABOi transplantation, which suggest different involved downstream mechanisms and increased risk of injury in HLAi settings. Metallothioneins with their antioxidative properties may help to attenuate the inflammation response induced by donor-specific anti-HLA antibody binding.
Collapse
|
17
|
Aristolochic acid I aggravates renal injury by activating the C3a/C3aR complement system. Toxicol Lett 2019; 312:118-124. [PMID: 31048001 DOI: 10.1016/j.toxlet.2019.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Previous studies have reported that the complement system is unconventionally activated in many kinds of glomerulonephritis. Multiple complement components participate in the pathogenic process by triggering immune response or other intracellular signaling pathways. Here, we have investigated the role of C3a and its receptor C3aR in aristolochic acid nephropathy (AAN), which, is featured with progressive interstitial fibrosis. Over release of C3a and increased expression of C3aR parallels to the up-regulation of α-SMA and TGF-β1 in AAN, which appeared to promote epithelial-mesenchymal-transition (EMT). To identify the role of complement activation in AAN, we used an inhibitor of C3aR (C3aRA) to block the coupling of C3a to its receptor. Our results confirmed from decreased EMT, the protective effect of C3aRA in cell apoptosis and inflammatory response induced by aristolochic acid I. These results showed that C3a and its receptor C3aR played pathogenic roles in AAN, and renal tubular epithelial cells were potentially pivotal targets of complement activation that could cause pro-fibrotic effects.
Collapse
|