1
|
Schwalb AM, Anwar I, DeLaura I, Ladowski JM, Yoon J, Belloni R, Song M, Glass C, Wang J, Knechtle S, Kwun J. Immunoproteasome inhibition reduces donor specific antibody production and cardiac allograft vasculopathy in a mouse heart transplantation model. FRONTIERS IN TRANSPLANTATION 2024; 3:1494455. [PMID: 39737411 PMCID: PMC11683062 DOI: 10.3389/frtra.2024.1494455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
Objective Cardiac Allograft Vasculopathy (CAV), a process of vascular damage accelerated by antibody-mediated rejection (AMR), is one of the leading causes of cardiac transplant failure. Proteasome inhibitors (PIs) are utilized to treat AMR, however PI-associated toxicity limits their therapeutic utility. Novel immunoproteasome inhibitors (IPIs) have higher specificity for immune cells and have not been investigated for AMR in cardiac transplant patients. We sought to evaluate IPI effect on AMR in a murine cardiac transplant model. Methods Fully MHC mismatched C57BL/6 to huCD52Tg heterotopic heart transplantations were performed. Recipients were treated with alemtuzumab (10 µg, IP) on days -2, -1, 2, and 4 and anti-CD25mAb (PC61, 100 µg, IP) on day 7 to accelerate AMR with or without IPI (ONX-0914,15 mg/kg, SQ), administered on transplant day and three times a week thereafter. Results Animals without IPI gradually developed post-transplant donor-specific antibody (DSA) and showed a significantly elevated DSA level compared to animals receiving IPI. (TFXM 48.86 vs. 14.17; p = 0.0291, BFXM 43.53 vs. 6.114; p = 0.0031). Accordingly, H&E staining of allograft showed reduced evidence of AMR with IPI compared to controls (P = 0.0410). Notably, increased mortality was observed in the IPI treated group. Conclusion This study demonstrated the ability of ONYX-0914, an IPI, to control post-transplant DSA production and the AMR development in a heart transplant model. However, IPI-resistant DSA production was also observed and increased mortality with IPI therapy raises concerns about potential toxicity. Further investigation is warranted to assess the utility and potential risk associated with the use of IPI as a post-transplant maintenance immunosuppression.
Collapse
Affiliation(s)
- Allison M. Schwalb
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Imran Anwar
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Isabel DeLaura
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Joseph M. Ladowski
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Janghoon Yoon
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Rafaela Belloni
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Mingqing Song
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Carolyn Glass
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Jun Wang
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Stuart Knechtle
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
2
|
Louis K, Macedo C, Lefaucheur C, Metes D. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection. Trends Mol Med 2022; 28:237-250. [PMID: 35093288 PMCID: PMC8882148 DOI: 10.1016/j.molmed.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Humoral alloimmunity of organ transplant recipient to donor can lead to antibody-mediated rejection (ABMR), causing thousands of organ transplants to fail each year worldwide. However, the mechanisms of adaptive immune cell responses at the basis of humoral alloimmunity have not been entirely understood. In this review, we discuss how recent investigations have uncovered the key contributions of T follicular helper (TFH) and B cells and their coordinated actions in driving donor-specific antibody generation and immune progression towards ABMR. We show how recognition of the role of TFH-B cell interactions may allow the elaboration of improved clinical strategies for immune monitoring and the identification of novel therapeutic targets to tackle ABMR that will ultimately improve organ transplant survival.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR 970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Vakrakou AG, Tzanetakos D, Evangelopoulos ME, Fragoulis GE, Kazakou P, Lekka E, Kafasi N, Tzartos JS, Andreadou E, Koutsis G, Gialafos E, Dimitrakopoulos A, Zampeli E, Rontogianni D, Theocharis S, Zapanti E, Stathopoulos PA, Anagnostouli M, Stefanis L, Kilidireas C. IgG4-related autoimmune manifestations in Alemtuzumab-treated multiple sclerosis patients. J Neuroimmunol 2021; 361:577759. [PMID: 34742035 DOI: 10.1016/j.jneuroim.2021.577759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
We aimed to determine whether Alemtuzumab-induced immune reconstitution affects immunoglobulin and complement levels in the serum of Relapsing-Remitting Multiple Sclerosis (RRMS) patients. IgG4-levels were increased 24-months after treatment initiation compared to baseline levels in twenty-nine patients. Alemtuzumab-treated patients with the highest IgG4-levels were more prone to thyroid-related autoimmune manifestations and specific autoimmune adverse events such as Crohn's disease, Graves' disease, and hemolytic anemia. Compared to baseline, total IgG-levels showed a trend towards reduced levels following two-courses of Alemtuzumab, but no significant change of C3 and/or C4-levels was observed. In conclusion, monitoring of IgG4-levels can serve as a marker for secondary autoimmunity risk in multiple sclerosis patients treated with Alemtuzumab.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece.
| | - Dimitrios Tzanetakos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria-Eleptheria Evangelopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - George E Fragoulis
- Department of Propaedeutic Internal Medicine, Medical School, Rheumatology Unit, "Laiko" General Hospital, National and Kapodistrian University of Athens, Greece
| | - Paraskevi Kazakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - Eleni Lekka
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - Nikolitsa Kafasi
- Department of Immunology, Laiko General Hospital, 17 Agiou Thoma str, Athens 11527, Greece
| | - John S Tzartos
- Second Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, "Attikon" University Hospital, Rimini 1, Chaidari, 12462, Athens, Greece; Tzartos NeuroDiagnostics, Neuroimmunology, Eslin street 3, 115 23 Athens, Greece
| | - Elissavet Andreadou
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Georgios Koutsis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Elias Gialafos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Antonios Dimitrakopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Evanthia Zampeli
- Gastroenterology Department, "Alexandra" Hospital, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Panos-Alexis Stathopoulos
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Maria Anagnostouli
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Leonidas Stefanis
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| | - Constantinos Kilidireas
- Multiple Sclerosis & Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Eginition Hospital, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
4
|
Louis K, Macedo C, Metes D. Targeting T Follicular Helper Cells to Control Humoral Allogeneic Immunity. Transplantation 2021; 105:e168-e180. [PMID: 33909968 PMCID: PMC8484368 DOI: 10.1097/tp.0000000000003776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Humoral allogeneic immunity driven by anti-HLA donor-specific antibodies and antibody-mediated rejection (AMR) significantly impede prolonged survival of organ allografts after transplantation. Although the importance of T follicular helper (TFH) cells in controlling antibody responses has been long established, their role in directing donor-specific antibody generation leading to AMR was only recently appreciated in the clinical setting of organ transplantation. In this review, we provide a comprehensive summary of the current knowledge on the biology of human TFH cells as well as their circulating counterparts and describe their pivotal role in driving humoral alloimmunity. In addition, we discuss the intrinsic effects of current induction therapies and maintenance immunosuppressive drugs as well as of biotherapies on TFH cells and provide future directions and novel opportunities of biotherapeutic targeting of TFH cells that have the potential of bringing the prophylactic and curative treatments of AMR toward personalized and precision medicine.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Human Immunology and Immunopathology, Inserm UMR 976, Université de Paris, Paris, France
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Louis K, Bailly E, Macedo C, Lau L, Ramaswami B, Chang A, Chandran U, Landsittel D, Gu X, Chalasani G, Zeevi A, Randhawa P, Singh H, Lefaucheur C, Metes D. T-bet+CD27+CD21- B cells poised for plasma cell differentiation during antibody-mediated rejection of kidney transplants. JCI Insight 2021; 6:148881. [PMID: 34032636 PMCID: PMC8262465 DOI: 10.1172/jci.insight.148881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Alloimmune responses driven by donor-specific antibodies (DSAs) can lead to antibody-mediated rejection (ABMR) in organ transplantation. Yet, the cellular states underlying alloreactive B cell responses and the molecular components controlling them remain unclear. Using high-dimensional profiling of B cells in a cohort of 96 kidney transplant recipients, we identified expanded numbers of CD27+CD21– activated memory (AM) B cells that expressed the transcription factor T-bet in patients who developed DSAs and progressed to ABMR. Notably, AM cells were less frequent in DSA+ABMR– patients and at baseline levels in DSA– patients. RNA-Seq analysis of AM cells in patients undergoing ABMR revealed these cells to be poised for plasma cell differentiation and to express restricted IGHV sequences reflective of clonal expansion. In addition to T-bet, AM cells manifested elevated expression of interferon regulatory factor 4 and Blimp1, and upon coculture with autologous T follicular helper cells, differentiated into DSA-producing plasma cells in an IL-21–dependent manner. The frequency of AM cells was correlated with the timing and severity of ABMR manifestations. Importantly, T-bet+ AM cells were detected within kidney allografts along with their restricted IGHV sequences. This study delineates a pivotal role for AM cells in promoting humoral responses and ABMR in organ transplantation and highlights them as important therapeutic targets.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Human Immunology and Immunopathology, INSERM UMR 976, Université de Paris, Paris, France
| | - Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Human Immunology and Immunopathology, INSERM UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Louis Lau
- Center for Systems Immunology.,Department of Immunology
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Xinyan Gu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Geetha Chalasani
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology.,Department of Medicine, and
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Carmen Lefaucheur
- Human Immunology and Immunopathology, INSERM UMR 976, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology
| |
Collapse
|
6
|
Calabrese LH, Caporali R, Blank CU, Kirk AD. Modulating the wayward T cell: New horizons with immune checkpoint inhibitor treatments in autoimmunity, transplant, and cancer. J Autoimmun 2020; 115:102546. [PMID: 32980229 DOI: 10.1016/j.jaut.2020.102546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The T-cell response is regulated by the balance between costimulatory and coinhibitory signals. Immune checkpoints are essential for efficient T-cell activation, but also for maintaining self-tolerance and protecting tissues from damage caused by the immune system, and for providing protective immunity. Modulating immune checkpoints can serve diametric goals, such that blocking a coinhibitory molecule can unleash anti-cancer immunity whereas stimulating the same molecule can reduce an over-reaction in autoimmune disease. The purpose of this review is to examine the regulation of T-cell costimulation and coinhibition, which is central to the processes underpinning autoimmunity, transplant rejection and immune evasion in cancer. We will focus on the immunomodulation agents that regulate these unwanted over- and under-reactions. The use of such agents has led to control of symptoms and slowing of progression in patients with rheumatoid arthritis, reduced rejection rates in transplant patients, and prolonged survival in patients with cancer. The management of immune checkpoint inhibitor treatment in certain challenging patient populations, including patients with pre-existing autoimmune conditions or transplant patients who develop cancer, as well as the management of immune-related adverse events in patients receiving antitumor therapy, is examined. Finally, the future of immune checkpoint inhibitors, including examples of emerging targets that are currently in development, as well as recent insights gained using new molecular techniques, is discussed. T-cell costimulation and coinhibition play vital roles in these diverse therapeutic areas. Targeting immune checkpoints continues to be a powerful avenue for the development of agents suitable for treating autoimmune diseases and cancers and for improving transplant outcomes. Enhanced collaboration between therapy area specialists to share learnings across disciplines will improve our understanding of the opposing effects of treatments for autoimmune disease/transplant rejection versus cancer on immune checkpoints, which has the potential to lead to improved patient outcomes.
Collapse
Affiliation(s)
| | - Roberto Caporali
- University of Milan, Department of Clinical Sciences and Community Health and Rheumatology Division, ASST Pini-CTO Hospital, Milan, Italy
| | | | - Allan D Kirk
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Khattar M, Baum CE, Schroder P, Breidenbach JD, Haller ST, Chen W, Stepkowski S. Interleukin 21 (IL-21) regulates chronic allograft vasculopathy (CAV) in murine heart allograft rejection. PLoS One 2019; 14:e0225624. [PMID: 31756235 PMCID: PMC6874341 DOI: 10.1371/journal.pone.0225624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/09/2019] [Indexed: 12/30/2022] Open
Abstract
IL-21 is the most recently discovered common gamma-chain cytokine that promotes persistent T-cell responses in chronic infections, autoimmunity and cancer. However, the therapeutic potential of inhibiting the IL-21-BATF signaling axis, particularly in transplant rejection, remains unclear. We used heart transplant models to examine the effects of IL-21 blockade in prevention of chronic cardiac allograft vasculopathy (CAV) using genetic knock-out and therapeutic approaches. Both wild-type C57BL/6 and IL-21-/- strains acutely rejected Balb/c skin grafts and once immunized with this skin graft, rejected Balb/c heart allografts in an accelerated fashion. However, when transplanted with heart grafts from the class-II major histocompatibility complex mutant, B6bm12 mice; wild-type recipients developed CAV, while IL-21-/- recipients were protected, even at day 100 post-transplant. Similarly, BATF-/- recipients, lacking the transcription factor BATF responsible for IL-21 production, did not develop CAV in B6-bm12 heart allografts. Strikingly, in a transient treatment protocol, the development of CAV in wild-type recipients of B6-bm12 hearts allografts was blocked by the administration of IL-21 receptor fusion protein (R-Fc). Thus, we demonstrate that CAV is regulated at least in part by IL-21 signaling and its blockade by genetic approaches or therapy with IL-21R-Fc prevents CAV in mice.
Collapse
Affiliation(s)
- Mithun Khattar
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Caitlin E. Baum
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Paul Schroder
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Joshua D. Breidenbach
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Wenhao Chen
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
8
|
Laguna-Goya R, Suàrez-Fernández P, Paz-Artal E. Follicular helper T cells and humoral response in organ transplantation. Transplant Rev (Orlando) 2019; 33:183-190. [PMID: 31327572 DOI: 10.1016/j.trre.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Antibody mediated rejection has been recognized as an important contributor to long-term graft loss in most solid organ transplants. Current immunosuppressive regimes are not capable of preventing anti-HLA antibody formation and eventual damage to the graft, and there is a need to develop drugs directed against novel targets to avoid graft allorecognition. In this review we introduce follicular helper T cells (Tfh), a subtype of lymphocyte specialized in helping B cells to differentiate into plasmablasts and produce class-switched antibodies. We focus on the role of Tfh in solid organ transplantation, what is known about Tfh and the production of alloantibodies, how current immunosuppressive therapies affect Tfh and what new molecules could be used to target Tfh in transplantation, with the goal of improving graft survival.
Collapse
Affiliation(s)
- R Laguna-Goya
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain.
| | - P Suàrez-Fernández
- Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - E Paz-Artal
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|