5
|
Fedeli M, Kuka M, Finardi A, Albano F, Viganò V, Iannacone M, Furlan R, Dellabona P, Casorati G. miR-21 sustains CD28 signalling and low-affinity T-cell responses at the expense of self-tolerance. Clin Transl Immunology 2021; 10:e1321. [PMID: 34584693 PMCID: PMC8454917 DOI: 10.1002/cti2.1321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Objective miR-21 is highly expressed in iNKT and activated T cells, but its T-cell autonomous functions are poorly defined. We sought to investigate the role of miR-21 in the development and functions of T and iNKT cells, representing adaptive and innate-like populations, respectively. Methods We studied mice with a conditional deletion of miR-21 in all mature T lymphocytes. Results Thymic and peripheral T and iNKT compartments were normal in miR-21 KO mice. Upon activation in vitro, miR-21 depletion reduced T-cell survival, TH17 polarisation and, remarkably, T- and iNKT cell ability to respond to low-affinity antigens, without altering their response to high-affinity ones. Mechanistically, miR-21 sustained CD28-dependent costimulation pathways required to lower the T-cell activation threshold, inhibiting its repressors in a positive feedback circuit, in turn increasing T-cell sensitivity to antigenic stimulation and survival. Upon immunisation with the low-affinity self-epitope MOG35-55, miR-21 KO mice were indeed less susceptible than WT animals to the induction of experimental autoimmune encephalomyelitis, whereas they mounted normal T-cell responses against high-affinity viral epitopes generated upon lymphocytic choriomeningitis virus infection. Conclusion The induction of T-cell responses to weak antigens (signal 1) depends on CD28 costimulation (signal 2). miR-21 sustains CD28 costimulation, decreasing the T-cell activation threshold and increasing their sensitivity to antigenic stimulation and survival, broadening the immune surveillance range. This occurs at the cost of unleashing autoimmunity, resulting from the recognition of weak self-antigens by autoreactive immune responses. Thus, miR-21 fine-tunes T-cell response and self-/non-self-discrimination.
Collapse
Affiliation(s)
- Maya Fedeli
- Experimental Immunology Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy.,Vita-Salute San Raffaele University Milan Italy
| | - Mirela Kuka
- Vita-Salute San Raffaele University Milan Italy.,Dynamics of Immune Responses Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit Institute of Experimental Neurology IRCCS San Raffaele Scientific Institute Milan Italy
| | - Francesca Albano
- Experimental Immunology Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy
| | - Valentina Viganò
- Experimental Immunology Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University Milan Italy.,Dynamics of Immune Responses Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy.,Experimental Imaging Centre IRCCS San Raffaele Scientific Institute Milan Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit Institute of Experimental Neurology IRCCS San Raffaele Scientific Institute Milan Italy
| | - Paolo Dellabona
- Experimental Immunology Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy
| | - Giulia Casorati
- Experimental Immunology Unit Division of Immunology, Transplantation, and Infectious Diseases IRCCS San Raffaele Scientific Institute Milan Italy
| |
Collapse
|
6
|
Mi QS, Wang J, Liu Q, Wu X, Zhou L. microRNA dynamic expression regulates invariant NKT cells. Cell Mol Life Sci 2021; 78:6003-6015. [PMID: 34236444 PMCID: PMC11073247 DOI: 10.1007/s00018-021-03895-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Queping Liu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, 1 Ford Place, Detroit, MI, USA.
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA.
- Department of Internal Medicine, Henry Ford Health System, 1 Ford Place, Detroit, MI, 48202, USA.
| |
Collapse
|
7
|
Nguyen LNT, Nguyen LN, Zhao J, Schank M, Dang X, Cao D, Khanal S, Chand Thakuri BK, Lu Z, Zhang J, Li Z, Morrison ZD, Wu XY, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. Long Non-coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV. Front Immunol 2021; 12:601298. [PMID: 33776993 PMCID: PMC7994762 DOI: 10.3389/fimmu.2021.601298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
T cells are critical for the control of viral infections and T cell responses are regulated by a dynamic network of non-coding RNAs, including microRNAs (miR) and long non-coding RNAs (lncRNA). Here we show that an activation-induced decline of lncRNA growth arrest-specific transcript 5 (GAS5) activates DNA damage response (DDR), and regulates cellular functions and apoptosis in CD4 T cells derived from people living with HIV (PLHIV) via upregulation of miR-21. Notably, GAS5-miR21-mediated DDR and T cell dysfunction are observed in PLHIV on antiretroviral therapy (ART), who often exhibit immune activation due to low-grade inflammation despite robust virologic control. We found that GAS5 negatively regulates miR-21 expression, which in turn controls critical signaling pathways involved in DNA damage and cellular response. The sustained stimulation of T cells decreased GAS5, increased miR-21 and, as a result, caused dysfunction and apoptosis in CD4 T cells. Importantly, this inflammation-driven T cell over-activation and aberrant apoptosis in ART-controlled PLHIV and healthy subjects (HS) could be reversed by antagonizing the GAS5-miR-21 axis. Also, mutation of the miR-21 binding site on exon 4 of GAS5 gene to generate a GAS5 mutant abolished its ability to regulate miR-21 expression as well as T cell activation and apoptosis markers compared to the wild-type GAS5 transcript. Our data suggest that GAS5 regulates TCR-mediated activation and apoptosis in CD4 T cells during HIV infection through miR-21-mediated signaling. However, GAS5 effects on T cell exhaustion during HIV infection may be mediated by a mechanism beyond the GAS5-miR-21-mediated signaling. These results indicate that targeting the GAS5-miR-21 axis may improve activity and longevity of CD4 T cells in ART-treated PLHIV. This approach may also be useful for targeting other infectious or inflammatory diseases associated with T cell over-activation, exhaustion, and premature immune aging.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Bal Krishna Chand Thakuri
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhengke Li
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zheng D. Morrison
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
- Hepatitis C Virus/Hepatitis B Virus/Human Immunodeficiency Virus (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
- Hepatitis C Virus/Hepatitis B Virus/Human Immunodeficiency Virus (HCV/HBV/HIV) Program, Department of Veterans Affairs, James H. Quillen VA Medical Center, Johnson City, TN, United States
| |
Collapse
|
10
|
Cotrim-Sousa L, Freire-Assis A, Pezzi N, Tanaka PP, Oliveira EH, Passos GA. Adhesion between medullary thymic epithelial cells and thymocytes is regulated by miR-181b-5p and miR-30b. Mol Immunol 2019; 114:600-611. [PMID: 31539668 DOI: 10.1016/j.molimm.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
Abstract
In this work, we demonstrate that adhesion between medullary thymic epithelial cells (mTECs) and thymocytes is controlled by miRNAs. Adhesion between mTECs and developing thymocytes is essential for triggering negative selection (NS) of autoreactive thymocytes that occurs in the thymus. Immune recognition is mediated by the MHC / TCR receptor, whereas adhesion molecules hold cell-cell interaction stability. Indeed, these processes must be finely controlled, if it is not, it may lead to aggressive autoimmunity. Conversely, the precise molecular genetic control of mTEC-thymocyte adhesion is largely unclear. Here, we asked whether miRNAs would be controlling this process through the posttranscriptional regulation of mRNAs that encode adhesion molecules. For this, we used small interfering RNA to knockdown (KD) Dicer mRNA in vitro in a murine mTEC line. A functional assay with fresh murine thymocytes co-cultured with mTECs showed that single-positive (SP) CD4 and CD8 thymocyte adhesion was increased after Dicer KD and most adherent subtype was CD8 SP cells. Analysis of broad mTEC transcriptional expression showed that Dicer KD led to the modulation of 114 miRNAs and 422 mRNAs, including those encoding cell adhesion or extracellular matrix proteins, such as Lgals9, Lgals3pb, Tnc and Cd47. Analysis of miRNA-mRNA networks followed by miRNA mimic transfection showed that these mRNAs are under the control of miR-181b-5p and miR-30b*, which may ultimately control mTEC-thymocyte adhesion. The expression of CD80 surface marker in mTECs was increased after Dicer KD following thymocyte adhesion. This indicates the existence of new mechanisms in mTECs that involve the synergistic action of thymocyte adhesion and regulatory miRNAs.
Collapse
Affiliation(s)
- Larissa Cotrim-Sousa
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amanda Freire-Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; State University of Minas Gerais, Passos, MG, Brazil
| | - Nicole Pezzi
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro Paranhos Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|