1
|
Zhang M, Ma J, Li M. Original Antigenic Sin in CD4+ T Cells. Immunology 2025; 175:165-179. [PMID: 40056013 DOI: 10.1111/imm.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 05/07/2025] Open
Abstract
Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.
Collapse
Affiliation(s)
- Mingran Zhang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
| | - Meili Li
- School of Mathematics and Statistics, Donghua University, Shanghai, China
| |
Collapse
|
2
|
Anft M, Wiemers L, Rosiewicz KS, Doevelaar A, Skrzypczyk S, Kurek J, Kaliszczyk S, Seidel M, Stervbo U, Seibert FS, Westhoff TH, Babel N. Effect of immunoadsorption on clinical presentation and immune alterations in COVID-19-induced and/or aggravated ME/CFS. Mol Ther 2025:S1525-0016(25)00011-5. [PMID: 39797400 DOI: 10.1016/j.ymthe.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Autoantibodies (AABs) are currently being investigated as causative or aggravating factors during post-COVID. In this study, we analyze the effect of immunoadsorption therapy on symptom improvement and the relationship with immunological parameters in post-COVID patients exhibiting symptoms of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) induced or aggravated by an SARS-CoV-2 infection. This observational study includes 12 post-COVID patients exhibiting a predominance of ME/CFS symptoms alongside increased concentrations of autonomic nervous system receptor (ANSR) autoantibodies and neurological impairments. We found that following immunoadsorption therapy, the ANSR AABs were nearly eliminated from the patients' blood. The removal of immunoglobulin G antibodies was accompanied by a decrease of pro-inflammatory cytokines including interleukin (IL)-4, IL-2, IL-1β, tumor necrosis factor, and IL-17A serum levels, and a significant reduction of soluble spike protein. Notably, a strong positive correlation between pro-inflammatory cytokines and ASNR-AABs β1, β2, M3, and M4 was observed in spike protein-positive patients, whereas no such correlation was evident in spike protein-negative patients. Thirty days post-immunoadsorption therapy, patients exhibited notable improvement in neuropsychological function and a modest but statistically significant amelioration of hand grip strength was observed. However, neither self-reported symptoms nor scores on ME/CFS questionnaires showed a significant improvement and a rebound of the removed proteins occurring within a month.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Lea Wiemers
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Kamil S Rosiewicz
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adrian Doevelaar
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Julia Kurek
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sviatlana Kaliszczyk
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Maximilian Seidel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix S Seibert
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
3
|
Anft M, Meyer F, Czygan S, Seibert FS, Rohn BJ, Tsimas F, Viebahn R, Westhoff TH, Stervbo U, Babel N, Zgoura P. Propionic acid supplementation promotes the expansion of regulatory T cells in patients with end-stage renal disease but not in renal transplant patients. FRONTIERS IN TRANSPLANTATION 2024; 3:1404740. [PMID: 39328339 PMCID: PMC11425579 DOI: 10.3389/frtra.2024.1404740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
In a previous study, we showed an anti-inflammatory effect of propionic acid supplementation in dialysis patients. The present study intends to analyze the effect of propionic acid on the chronic inflammatory state and T-cell composition in kidney transplant patients compared to dialysis patients. A total of 10 dialysis patients and 16 kidney transplant patients under immunosuppressive standard triple immunosuppressive therapy received 2 × 500 mg propionic acid per day for 30 days. The cellular immune system was analyzed before and after the propionic acid supplementation and 30-90 days thereafter as a follow-up. We measured the main immune cell types and performed an in-depth characterization of T cells including regulatory T cells (Tregs), B cells, and dendritic cells. In addition, we assessed the functional activity and antigenic responsiveness by analysis of third-party antigen-specific T cells after their stimulation by recall (tetanus diphtheria vaccine) antigen. In dialysis patients, we observed an expansion of CD25highCD127- Tregs after propionic acid intake. In contrast, the same supplementation did not result in any expansion of Tregs in transplant patients under immunosuppressive therapy. We also did not observe any changes in the frequencies of the main immune cell subsets except for CD4+/CD8+ distribution with an increase of CD4+ T cells and decrease of CD8+ T cells in the transplant population. Our data suggest that dietary supplements containing propionate might have a beneficial effect decreasing systemic inflammation in dialysis patients through Treg expansion. However, this effect was not observed in transplant patients, which could be explained by counteracting effect of immunosuppressive drugs preventing Treg expansion.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Fabian Meyer
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Department of Anesthesiology, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Sirin Czygan
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Felix S. Seibert
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Benjamin J. Rohn
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Fotios Tsimas
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Clinic for Internal Medicine, St. Anna Hospital Herne, Herne, Germany
| |
Collapse
|
4
|
Riccomi A, Trombetta CM, Dorrucci M, Di Placido D, Sanarico N, Farchi F, Giuseppetti R, Villano U, Marcantonio C, Marchi S, Ciaramella A, Pezzotti P, Montomoli E, Valdarchi C, Ciccaglione AR, Vendetti S. Effects of Influenza Vaccine on the Immune Responses to SARS-CoV-2 Vaccination. Vaccines (Basel) 2024; 12:425. [PMID: 38675807 PMCID: PMC11054385 DOI: 10.3390/vaccines12040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
A number of studies have suggested that influenza vaccination can provide protection against COVID-19, but the underlying mechanisms that could explain this association are still unclear. In this study, the effect of the 2021/2022 seasonal influenza vaccination on the immune response to the booster dose of anti-SARS-CoV-2 vaccination was evaluated in a cohort of healthy individuals. A total of 113 participants were enrolled, 74 of whom had no prior COVID-19 diagnosis or significant comorbidities were considered for the analysis. Participants received the anti-influenza tetravalent vaccine and the booster dose of the anti-SARS-CoV-2 vaccine or the anti-SARS-CoV-2 vaccine alone. Blood was collected before and 4 weeks after each vaccination and 12 weeks after SARS-CoV-2 vaccination and analyzed for anti-flu and anti-spike-specific antibody titers and for in vitro influenza and SARS-CoV-2 neutralization capacity. Results indicated an increased reactivity in subjects who received both influenza and SARS-CoV-2 vaccinations compared to those who received only the SARS-CoV-2 vaccine, with sustained anti-spike antibody titers up to 12 weeks post-vaccination. Immune response to the influenza vaccine was evaluated, and individuals were stratified as high or low responders. High responders showed increased antibody titers against the SARS-CoV-2 vaccine both after 4 and 12 weeks post-vaccination. Conversely, individuals classified as low responders were less responsive to the SARS-CoV-2 vaccine. These data indicate that both external stimuli, such as influenza vaccination, and the host's intrinsic ability to respond to stimuli play a role in the response to the vaccine.
Collapse
Affiliation(s)
- A. Riccomi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - C. M. Trombetta
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
- VisMederi Research Srl, 53100 Siena, Italy
| | - M. Dorrucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - D. Di Placido
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - N. Sanarico
- Center for Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - F. Farchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - R. Giuseppetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - U. Villano
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - C. Marcantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - S. Marchi
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
| | - A. Ciaramella
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - P. Pezzotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - E. Montomoli
- Department of Molecular and Development Medicine, University of Siena, 53100 Siena, Italy (S.M.)
- VisMederi Research Srl, 53100 Siena, Italy
- VisMederi Srl, 53100 Siena, Italy
| | - C. Valdarchi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - A. R. Ciccaglione
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| | - S. Vendetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy (M.D.); (D.D.P.); (F.F.); (U.V.)
| |
Collapse
|
5
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
6
|
Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, Tisserand P, McLean C, Luhn K, Thiebaut R, Levy Y. Identification of early gene expression profiles associated with long-lasting antibody responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep 2023; 42:113101. [PMID: 37691146 DOI: 10.1016/j.celrep.2023.113101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélany Durand
- University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Boris Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France.
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
7
|
Obermayer B, Keilholz L, Conrad T, Frentsch M, Blau IW, Vuong L, Lesch S, Movasshagi K, Tietze-Stolley C, Loyal L, Henze L, Penack O, Stervbo U, Babel N, Haas S, Beule D, Bullinger L, Wittenbecher F, Na IK. Single-cell clonal tracking of persistent T-cells in allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1114368. [PMID: 36860867 PMCID: PMC9969884 DOI: 10.3389/fimmu.2023.1114368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
The critical balance between intended and adverse effects in allogeneic hematopoietic stem cell transplantation (alloHSCT) depends on the fate of individual donor T-cells. To this end, we tracked αβT-cell clonotypes during stem cell mobilization treatment with granulocyte-colony stimulating factor (G-CSF) in healthy donors and for six months during immune reconstitution after transfer to transplant recipients. More than 250 αβT-cell clonotypes were tracked from donor to recipient. These clonotypes consisted almost exclusively of CD8+ effector memory T cells (CD8TEM), which exhibited a different transcriptional signature with enhanced effector and cytotoxic functions compared to other CD8TEM. Importantly, these distinct and persisting clonotypes could already be delineated in the donor. We confirmed these phenotypes on the protein level and their potential for selection from the graft. Thus, we identified a transcriptional signature associated with persistence and expansion of donor T-cell clonotypes after alloHSCT that may be exploited for personalized graft manipulation strategies in future studies.
Collapse
Affiliation(s)
- Benedikt Obermayer
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Luisa Keilholz
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Conrad
- Core Unit Genomics, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Igor-Wolfgang Blau
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lam Vuong
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stella Lesch
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Kamran Movasshagi
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carola Tietze-Stolley
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,Stem Cell Facility, Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucie Loyal
- BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,Immunomics - Regenerative Immunology and Aging, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,Immunomics - Regenerative Immunology and Aging, Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrik Stervbo
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Simon Haas
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Exploratory Diagnostic Sciences (EDS), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics (CUBI), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,ECRC Experimental and Clinical Research Center, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Friedrich Wittenbecher
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany
| | - Il-Kang Na
- Department of Hematology, Oncology, and Tumor Immunology, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charite – Universitätsmedizin Berlin, Berlin, Germany,Si-M/”Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charite - Universitätsmedizin Berlin, Berlin, Germany,German Cancer Consortium (DKTK), Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,ECRC Experimental and Clinical Research Center, Charite – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany,*Correspondence: Il-Kang Na,
| |
Collapse
|
8
|
Aguilar-Bretones M, Fouchier RA, Koopmans MP, van Nierop GP. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest 2023; 133:e162192. [PMID: 36594464 PMCID: PMC9797340 DOI: 10.1172/jci162192] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
Collapse
|
9
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
10
|
Saggau C, Martini GR, Rosati E, Meise S, Messner B, Kamps AK, Bekel N, Gigla J, Rose R, Voß M, Geisen UM, Reid HM, Sümbül M, Tran F, Berner DK, Khodamoradi Y, Vehreschild MJGT, Cornely O, Koehler P, Krumbholz A, Fickenscher H, Kreuzer O, Schreiber C, Franke A, Schreiber S, Hoyer B, Scheffold A, Bacher P. The pre-exposure SARS-CoV-2-specific T cell repertoire determines the quality of the immune response to vaccination. Immunity 2022; 55:1924-1939.e5. [PMID: 35985324 PMCID: PMC9372089 DOI: 10.1016/j.immuni.2022.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infection and vaccination generates enormous host-response heterogeneity and an age-dependent loss of immune-response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune-response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin-21 production, and specific immunoglobulin G, depended on an intact naive repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune-response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Elisa Rosati
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Berith Messner
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ann-Kristin Kamps
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Nicole Bekel
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Johannes Gigla
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mathias Voß
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulf M Geisen
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hayley M Reid
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Melike Sümbül
- Department of Dermatology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Dennis K Berner
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany; Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Helmut Fickenscher
- Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Claudia Schreiber
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Bimba Hoyer
- Medical Department I, Department for Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht-University of Kiel, Arnold-Heller-Str. 3, Kiel, Schleswig-Holstein 24105, Germany; Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Rosalind-Franklin-Str. 12, Kiel, Schleswig-Holstein 24105, Germany.
| |
Collapse
|
11
|
Vakili ME, Faghih Z, Sarvari J, Doroudchi M, Hosseini SN, Kabelitz D, Kalantar K. Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunol Res 2022; 70:469-480. [PMID: 35445310 PMCID: PMC9273562 DOI: 10.1007/s12026-022-09278-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Despite the availability of an effective vaccine and antiviral treatments, hepatitis B is still a global public health problem. Hepatitis B vaccination can prevent the disease. Vaccination induces long-lasting protective immune memory, and the identification of memory cell subsets can indicate the effectiveness of vaccines. Here, we compared the frequency of CD4+ memory T cell subsets between responders and nonresponders to HB vaccination. Besides, the frequency of IFN-γ+ memory T cells was compared between studied groups. Study participants were grouped according to their anti-HBsAb titer. For restimulation of CD4+ memory T cells, peripheral blood mononuclear cells (PBMCs) were cultured in the presence of HBsAg and PHA for 48 h. Besides, PMA, ionomycin, and brefeldin were added during the last 5 h of incubation to induce IFN-γ production. Flow cytometry was used for analysis. There was a statistically significant difference in the frequency of CD4+CD95+, CD4+CD95Hi, and CD4+CD95low/med T stem cell memory (TSCM) cells between responder and nonresponder groups. However, the comparison of the frequency of memory T cells producing IFN-γ showed no differences. Our results identified a possible defect of immunological CD4+ memory T cell formation in nonresponders due to their lower frequency of CD4+ TSCM cells.
Collapse
Affiliation(s)
- Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nezamedin Hosseini
- Department of Recombinant Hepatitis B Vaccine, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Vaccine strain affects seroconversion after influenza vaccination in COPD patients and healthy older people. NPJ Vaccines 2022; 7:8. [PMID: 35075113 PMCID: PMC8786852 DOI: 10.1038/s41541-021-00422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
Though clinical guidelines recommend influenza vaccination for chronic obstructive pulmonary disease (COPD) patients and other high-risk populations, it is unclear whether current vaccination strategies induce optimal antibody responses. This study aimed to identify key variables associated with strain-specific antibody responses in COPD patients and healthy older people. 76 COPD and 72 healthy participants were recruited from two Australian centres and inoculated with influenza vaccine. Serum strain-specific antibody titres were measured pre- and post-inoculation. Seroconversion rate was the primary endpoint. Antibody responses varied between vaccine strains. The highest rates of seroconversion were seen with novel strains (36-55%), with lesser responses to strains included in the vaccine in more than one consecutive year (27-33%). Vaccine responses were similar in COPD patients and healthy participants. Vaccine strain, hypertension and latitude were independent predictors of seroconversion. Our findings reassure that influenza vaccination is equally immunogenic in COPD patients and healthy older people; however, there is room for improvement. There may be a need to personalise the yearly influenza vaccine, including consideration of pre-existing antibody titres, in order to target gaps in individual antibody repertoires and improve protection.
Collapse
|
13
|
Marquez S, Babrak L, Greiff V, Hoehn KB, Lees WD, Luning Prak ET, Miho E, Rosenfeld AM, Schramm CA, Stervbo U. Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis. Methods Mol Biol 2022; 2453:297-316. [PMID: 35622333 PMCID: PMC9761518 DOI: 10.1007/978-1-0716-2115-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.
Collapse
Affiliation(s)
- Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lmar Babrak
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enkelejda Miho
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Ulrik Stervbo
- Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
- Immundiagnostik, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
14
|
Pérez-Rubio A, Castrodeza JJ, Eiros JM. [Choice of influenza vaccine in people over 65 years old. Analysis of reports from international vaccination advisory committees]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2021; 34:631-638. [PMID: 34545737 PMCID: PMC8638763 DOI: 10.37201/req/076.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Annual recommendations on influenza vaccine use in different countries are developed by influenza-specific working groups within their Immunization Advisory Committees. Adults aged 65 years and over are included in the groups for which vaccination against influenza is particularly recommended due to the morbidity associated. A variety of influenza vaccines are available, some of which boosted immunity, are licensed for use only in this specific age group, where the immune response to traditional influenza vaccines may be suboptimal. We analyze the main annual recommendations on the use of the influenza vaccine issued by advisory committees on immunization for the population over 65 years of age. METHODS The latest influenza vaccination guidelines have been selected and the recommendations for people over 65 years of age published by the main vaccination advisory committees have been reviewed. RESULTS The UK Advisory Committee (JCVI) recommends the use of Quadruvalent Inactivated Influenza Vaccine with Adjuvant (aQIV) or High Dose Quadrivalent Inactivated Influenza Vaccine (QIV-HD). The US committee (ACIP) does not express a preference for any type of vaccine. The Australian committee (ATAGI) preferably recommends adjuvanted influenza vaccine. The advisory committees of Canada and Germany (NACI, STIKO) and the European Center for Disease Control (Ecdc) recommend using any of the age-appropriate flu vaccines available, although they bet on the The UK Advisory Committee (JCVI) recommends the use of Quadruvalent Inactivated Influenza Vaccine with Adjuvant (aQIV) or High Dose Quadrivalent Inactivated Influenza Vaccine (QIV-HD). The US committee (ACIP) does not express a preference for any type of vaccine. The Australian committee (ATAGI) preferably recommends adjuvanted influenza vaccine. The advisory committees of Canada and Germany (NACI, STIKO) and the European Center for Disease Control (Ecdc) recommend using any of the age-appropriate flu vaccines available, although they bet on the use of inactivated quadrivalent flu vaccine high dose at the individual level for those over 65 years.use of inactivated quadrivalent flu vaccine high dose at the individual level for those over 65 years. CONCLUSIONS It is necessary further studies and improvement in their quality that analyze the different vaccines available and their comparability, although the use of reinforced immunity vaccines is generally recommended in the population over 65 years of age.
Collapse
Affiliation(s)
- A Pérez-Rubio
- Alberto Pérez-Rubio, Complejo Asistencial de Ávila. Paseo Juan Carlos I. 05003. Avila. Spain.
| | | | | |
Collapse
|
15
|
Anft M, Blazquez-Navarro A, Stervbo U, Skrzypczyk S, Witzke O, Wirth R, Choi M, Hugo C, Reinke P, Meister TL, Steinmann E, Pfaender S, Schenker P, Viebahn R, Westhoff TH, Babel N. Detection of pre-existing SARS-CoV-2-reactive T cells in unexposed renal transplant patients. J Nephrol 2021; 34:1025-1037. [PMID: 34228322 PMCID: PMC8259083 DOI: 10.1007/s40620-021-01092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent data demonstrate potentially protective pre-existing T cells reactive against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples of healthy blood donors, collected before the SARS-CoV-2 pandemic. Whether pre-existing immunity is also detectable in immunosuppressed patients is currently not known. METHODS Fifty-seven patients were included in this case-control study. We compared the frequency of SARS-CoV-2-reactive T cells in the samples of 20 renal transplant (RTx) patients to 20 age/gender matched non-immunosuppressed/immune competent healthy individuals collected before the onset of the SARS-CoV-2 pandemic. Seventeen coronavirus disease 2019 (COVID-19) patients were used as positive controls. T cell reactivity against Spike-, Nucleocapsid-, and Membrane- SARS-CoV-2 proteins were analyzed by multi-parameter flow cytometry. Antibodies were analyzed by neutralization assay. RESULTS Pre-existing SARS-CoV-2-reactive T cells were detected in the majority of unexposed patients and healthy individuals. In RTx patients, 13/20 showed CD4+ T cells reactive against at least one SARS-CoV-2 protein. CD8+ T cells reactive against at least one SARS-CoV-2 protein were demonstrated in 12/20 of RTx patients. The frequency and Th1 cytokine expression pattern of pre-formed SARS-CoV-2 reactive T cells did not differ between RTx and non-immunosuppressed healthy individuals. CONCLUSIONS This study shows that the magnitude and functionality of pre-existing SARS-CoV-2 reactive T cell in transplant patients is non-inferior compared to the immune competent cohort. Although several pro-inflammatory cytokines were produced by the detected T cells, further studies are required to prove their antiviral protection.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Arturo Blazquez-Navarro
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Mira Choi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Hugo
- Department of Nephrology, Medical Department III, Universitätsklinikum Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Toni Luise Meister
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801, Bochum, Germany
| | - Peter Schenker
- Department Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr-University Bochum, In der Schornau 23, 44892, Bochum, Germany
| | - Richard Viebahn
- Department Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr-University Bochum, In der Schornau 23, 44892, Bochum, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625, Herne, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
16
|
Vollmer T, Schlickeiser S, Amini L, Schulenberg S, Wendering DJ, Banday V, Jurisch A, Noster R, Kunkel D, Brindle NR, Savidis I, Akyüz L, Hecht J, Stervbo U, Roch T, Babel N, Reinke P, Winqvist O, Sherif A, Volk HD, Schmueck-Henneresse M. The intratumoral CXCR3 chemokine system is predictive of chemotherapy response in human bladder cancer. Sci Transl Med 2021; 13:13/576/eabb3735. [PMID: 33441425 DOI: 10.1126/scitranslmed.abb3735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Chemotherapy has direct toxic effects on cancer cells; however, long-term cancer control and complete remission are likely to involve CD8+ T cell immune responses. To study the role of CD8+ T cell infiltration in the success of chemotherapy, we examined patients with muscle invasive bladder cancer (MIBC) who were categorized on the basis of the response to neoadjuvant chemotherapy (NAC). We identified the intratumoral CXCR3 chemokine system (ligands and receptor splice variants) as a critical component for tumor eradication upon NAC in MIBC. Through characterization of CD8+ T cells, we found that stem-like T cell subpopulations with abundant CXCR3alt, a variant form of the CXCL11 receptor, responded to CXCL11 in culture as demonstrated by migration and enhanced effector function. In tumor biopsies of patients with MIBC accessed before treatment, CXCL11 abundance correlated with high numbers of tumor-infiltrating T cells and response to NAC. The presence of CXCR3alt and CXCL11 was associated with improved overall survival in MIBC. Evaluation of both CXCR3alt and CXCL11 enabled discrimination between responder and nonresponder patients with MIBC before treatment. We validated the prognostic role of the CXCR3-CXCL11 chemokine system in an independent cohort of chemotherapy-treated and chemotherapy-naïve patients with MIBC from data in TCGA. In summary, our data revealed stimulatory activity of the CXCR3alt-CXCL11 chemokine system on CD8+ T cells that is predictive of chemotherapy responsiveness in MIBC. This may offer immunotherapeutic options for targeted activation of intratumoral stem-like T cells in solid tumors.
Collapse
Affiliation(s)
- Tino Vollmer
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Leila Amini
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Sarah Schulenberg
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Desiree J Wendering
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Viqar Banday
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden.,Department of Clinical Microbiology, Immunology, Umea University, 901 85 Umea, Sweden
| | - Anke Jurisch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Rebecca Noster
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Desiree Kunkel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Nicola R Brindle
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Ioannis Savidis
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Levent Akyüz
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Ulrik Stervbo
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, D-44623 Herne, Germany
| | - Toralf Roch
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, D-44623 Herne, Germany
| | - Nina Babel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, D-44623 Herne, Germany
| | - Petra Reinke
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Ola Winqvist
- Department of Clinical Immunology, Karolinska University Hospital, 17 176 Stockholm, Sweden
| | - Amir Sherif
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, 901 85 Umea, Sweden
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany. .,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, D-13353 Berlin, Germany
| |
Collapse
|
17
|
Dykema AG, Zhang B, Woldemeskel BA, Garliss CC, Cheung LS, Choudhury D, Zhang J, Aparicio L, Bom S, Rashid R, Caushi JX, Hsiue EHC, Cascino K, Thompson EA, Kwaa AK, Singh D, Thapa S, Ordonez AA, Pekosz A, D'Alessio FR, Powell JD, Yegnasubramanian S, Zhou S, Pardoll DM, Ji H, Cox AL, Blankson JN, Smith KN. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J Clin Invest 2021; 131:146922. [PMID: 33830946 DOI: 10.1172/jci146922] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDRecent studies have reported T cell immunity to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in unexposed donors, possibly due to crossrecognition by T cells specific for common cold coronaviruses (CCCs). True T cell crossreactivity, defined as the recognition by a single TCR of more than one distinct peptide-MHC ligand, has never been shown in the context of SARS-CoV-2.METHODSWe used the viral functional expansion of specific T cells (ViraFEST) platform to identify T cell responses crossreactive for the spike (S) glycoproteins of SARS-CoV-2 and CCCs at the T cell receptor (TCR) clonotype level in convalescent COVID-19 patients (CCPs) and SARS-CoV-2-unexposed donors. Confirmation of SARS-CoV-2/CCC crossreactivity and assessments of functional avidity were performed using a TCR cloning and transfection system.RESULTSMemory CD4+ T cell clonotypes that crossrecognized the S proteins of SARS-CoV-2 and at least one other CCC were detected in 65% of CCPs and unexposed donors. Several of these TCRs were shared among multiple donors. Crossreactive T cells demonstrated significantly impaired SARS-CoV-2-specific proliferation in vitro relative to monospecific CD4+ T cells, which was consistent with lower functional avidity of their TCRs for SARS-CoV-2 relative to CCC.CONCLUSIONSOur data confirm, for what we believe is the first time, the existence of unique memory CD4+ T cell clonotypes crossrecognizing SARS-CoV-2 and CCCs. The lower avidity of crossreactive TCRs for SARS-CoV-2 may be the result of antigenic imprinting, such that preexisting CCC-specific memory T cells have reduced expansive capacity upon SARS-CoV-2 infection. Further studies are needed to determine how these crossreactive T cell responses affect clinical outcomes in COVID-19 patients.FUNDINGNIH funding (U54CA260492, P30CA006973, P41EB028239, R01AI153349, R01AI145435-A1, R21AI149760, and U19A1088791) was provided by the National Institute of Allergy and Infectious Diseases, the National Cancer Institute, and the National Institute of Biomedical Imaging and Bioengineering. The Bloomberg~Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University Provost, and The Bill and Melinda Gates Foundation provided funding for this study.
Collapse
Affiliation(s)
- Arbor G Dykema
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Boyang Zhang
- Department of Biostatistics, School of Public Health
| | | | | | - Laurene S Cheung
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Dilshad Choudhury
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Jiajia Zhang
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Luis Aparicio
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sadhana Bom
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Rufiaat Rashid
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Justina X Caushi
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Emily Han-Chung Hsiue
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | | | - Elizabeth A Thompson
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Dipika Singh
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Sampriti Thapa
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | | | - Shibin Zhou
- Sidney Kimmel Comprehensive Cancer Center.,Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.,Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| | - Hongkai Ji
- Department of Biostatistics, School of Public Health
| | - Andrea L Cox
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Department of Medicine, School of Medicine, and
| | | | - Kellie N Smith
- Bloomberg~Kimmel Institute for Cancer Immunotherapy.,Sidney Kimmel Comprehensive Cancer Center
| |
Collapse
|
18
|
Awad G, Roch T, Stervbo U, Kaliszczyk S, Stittrich A, Hörstrup J, Cinkilic O, Appel H, Natrus L, Gayova L, Seibert F, Bauer F, Westhoff T, Nienen M, Babel N. Robust hepatitis B vaccine-reactive T cell responses in failed humoral immunity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:288-298. [PMID: 33898628 PMCID: PMC8050104 DOI: 10.1016/j.omtm.2021.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/17/2021] [Indexed: 12/03/2022]
Abstract
While virus-specific antibodies are broadly recognized as correlates of protection, virus-specific T cells are important for direct clearance of infected cells. Failure to generate hepatitis B virus (HBV)-specific antibodies is well-known in patients with end-stage renal disease. However, whether and to what extent HBV-specific cellular immunity is altered in this population and how it influences humoral immunity is not clear. To address it, we analyzed HBV-reactive T cells and antibodies in hemodialysis patients post vaccination. 29 hemodialysis patients and 10 healthy controls were enrolled in a cross-sectional study. Using multiparameter flow cytometry, HBV-reactive T cells were analyzed and functionally dissected based on granzyme B, interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), and IL-4 expression. Importantly, HBV-reactive CD4+ T cells were detected not only in all patients with sufficient titers but also in 70% of non-responders. Furthermore, a correlation between the magnitude of HBV-reactive CD4+ T cells and post-vaccination titers was observed. In summary, our data showed that HBV-reactive polyfunctional T cells were present in the majority of hemodialysis patients even if humoral immunity failed. Further studies are required to confirm their in vivo antiviral capacity. The ability to induce vaccine-reactive T cells paves new ways for improved vaccination and therapy protocols.
Collapse
Affiliation(s)
- Gounwa Awad
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Toralf Roch
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,BIH Center for Regenerative Therapies, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrik Stervbo
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Sviatlana Kaliszczyk
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,BIH Center for Regenerative Therapies, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Stittrich
- BIH Center for Regenerative Therapies, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany.,Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Jan Hörstrup
- KfH Kuratorium für Dialyse und Nierentransplantation e.V., Berlin, Germany
| | | | | | - Larysa Natrus
- Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Felix Seibert
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Frederic Bauer
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Timm Westhoff
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Mikalai Nienen
- BIH Center for Regenerative Therapies, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany.,Labor Berlin - Charité Vivantes GmbH, Berlin, Germany.,Institute for Medical Immunology, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Babel
- University Hospital Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany.,BIH Center for Regenerative Therapies, Charité - University Medicine Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
19
|
Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. mSphere 2021; 6:6/2/e00052-21. [PMID: 33692193 PMCID: PMC8546680 DOI: 10.1128/msphere.00052-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Influenza vaccines have traditionally been tested in naive mice and ferrets. However, humans are first exposed to influenza viruses within the first few years of their lives. Therefore, there is a pressing need to test influenza virus vaccines in animal models that have been previously exposed to influenza viruses before being vaccinated. In this study, previously described H2 computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) vaccines (Z1 and Z5) were tested in influenza virus “preimmune” ferret models. Ferrets were infected with historical, seasonal influenza viruses to establish preimmunity. These preimmune ferrets were then vaccinated with either COBRA H2 HA recombinant proteins or wild-type H2 HA recombinant proteins in a prime-boost regimen. A set of naive preimmune or nonpreimmune ferrets were also vaccinated to control for the effects of the multiple different preimmunities. All of the ferrets were then challenged with a swine H2N3 influenza virus. Ferrets with preexisting immune responses influenced recombinant H2 HA-elicited antibodies following vaccination, as measured by hemagglutination inhibition (HAI) and classical neutralization assays. Having both H3N2 and H1N1 immunological memory regardless of the order of exposure significantly decreased viral nasal wash titers and completely protected all ferrets from both morbidity and mortality, including the mock-vaccinated ferrets in the group. While the vast majority of the preimmune ferrets were protected from both morbidity and mortality across all of the different preimmunities, the Z1 COBRA HA-vaccinated ferrets had significantly higher antibody titers and recognized the highest number of H2 influenza viruses in a classical neutralization assay compared to the other H2 HA vaccines. IMPORTANCE H1N1 and H3N2 influenza viruses have cocirculated in the human population since 1977. Nearly every human alive today has antibodies and memory B and T cells against these two subtypes of influenza viruses. H2N2 influenza viruses caused the 1957 global pandemic and people born after 1968 have never been exposed to H2 influenza viruses. It is quite likely that a future H2 influenza virus could transmit within the human population and start a new global pandemic, since the majority of people alive today are immunologically naive to viruses of this subtype. Therefore, an effective vaccine for H2 influenza viruses should be tested in an animal model with previous exposure to influenza viruses that have circulated in humans. Ferrets were infected with historical influenza A viruses to more accurately mimic the immune responses in people who have preexisting immune responses to seasonal influenza viruses. In this study, preimmune ferrets were vaccinated with wild-type (WT) and COBRA H2 recombinant HA proteins in order to examine the effects that preexisting immunity to seasonal human influenza viruses have on the elicitation of broadly cross-reactive antibodies from heterologous vaccination.
Collapse
|
20
|
Lee P, Kim CU, Seo SH, Kim DJ. Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages. Immune Netw 2021; 21:e4. [PMID: 33728097 PMCID: PMC7937514 DOI: 10.4110/in.2021.21.e4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.
Collapse
Affiliation(s)
- Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | | | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
21
|
Anft M, Paniskaki K, Blazquez-Navarro A, Doevelaar A, Seibert FS, Hölzer B, Skrzypczyk S, Kohut E, Kurek J, Zapka J, Wehler P, Kaliszczyk S, Bajda S, Thieme CJ, Roch T, Konik MJ, Berger MM, Brenner T, Kölsch U, Meister TL, Pfaender S, Steinmann E, Tempfer C, Watzl C, Dolff S, Dittmer U, Abou-El-Enein M, Westhoff TH, Witzke O, Stervbo U, Babel N. COVID-19-Induced ARDS Is Associated with Decreased Frequency of Activated Memory/Effector T Cells Expressing CD11a +. Mol Ther 2020; 28:2691-2702. [PMID: 33186542 PMCID: PMC7543694 DOI: 10.1016/j.ymthe.2020.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/20/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Preventing the progression to acute respiratory distress syndrome (ARDS) in COVID-19 is an unsolved challenge. The involvement of T cell immunity in this exacerbation remains unclear. To identify predictive markers of COVID-19 progress and outcome, we analyzed peripheral blood of 10 COVID-19-associated ARDS patients and 35 mild/moderate COVID-19 patients, not requiring intensive care. Using multi-parametric flow cytometry, we compared quantitative, phenotypic, and functional characteristics of circulating bulk immune cells, as well as SARS-CoV-2 S-protein-reactive T cells between the two groups. ARDS patients demonstrated significantly higher S-protein-reactive CD4+ and CD8+ T cells compared to non-ARDS patients. Of interest, comparison of circulating bulk T cells in ARDS patients to non-ARDS patients demonstrated decreased frequencies of CD4+ and CD8+ T cell subsets, with activated memory/effector T cells expressing tissue migration molecule CD11a++. Importantly, survival from ARDS (4/10) was accompanied by a recovery of the CD11a++ T cell subsets in peripheral blood. Conclusively, data on S-protein-reactive polyfunctional T cells indicate the ability of ARDS patients to generate antiviral protection. Furthermore, decreased frequencies of activated memory/effector T cells expressing tissue migratory molecule CD11a++ observed in circulation of ARDS patients might suggest their involvement in ARDS development and propose the CD11a-based immune signature as a possible prognostic marker.
Collapse
Affiliation(s)
- Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Arturo Blazquez-Navarro
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adrian Doevelaar
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Felix S Seibert
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Bodo Hölzer
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sarah Skrzypczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Eva Kohut
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Julia Kurek
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Jan Zapka
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Patrizia Wehler
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sviatlana Kaliszczyk
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sharon Bajda
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Constantin J Thieme
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Margarethe Justine Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Uwe Kölsch
- Department of Immunology, Labor Berlin GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Toni L Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Clemens Tempfer
- Department of Gynecology and Obstetrics, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Carsten Watzl
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund (IfADo), Ardeystrasse 67, 44139, Dortmund, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Mohamed Abou-El-Enein
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany; Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
22
|
Stervbo U, Rahmann S, Roch T, Westhoff TH, Babel N. Epitope similarity cannot explain the pre-formed T cell immunity towards structural SARS-CoV-2 proteins. Sci Rep 2020; 10:18995. [PMID: 33149224 PMCID: PMC7642385 DOI: 10.1038/s41598-020-75972-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023] Open
Abstract
The current pandemic is caused by the SARS-CoV-2 virus and large progress in understanding the pathology of the virus has been made since its emergence in late 2019. Several reports indicate short lasting immunity against endemic coronaviruses, which contrasts studies showing that biobanked venous blood contains T cells reactive to SARS-CoV-2 S-protein even before the outbreak in Wuhan. This suggests a preformed T cell memory towards structural proteins in individuals not exposed to SARS-CoV-2. Given the similarity of SARS-CoV-2 to other members of the Coronaviridae family, the endemic coronaviruses appear likely candidates to generate this T cell memory. However, given the apparent poor immunological memory created by the endemic coronaviruses, immunity against other common pathogens might offer an alternative explanation. Here, we utilize a combination of epitope prediction and similarity to common human pathogens to identify potential sources of the SARS-CoV-2 T cell memory. Although beta-coronaviruses are the most likely candidates to explain the pre-existing SARS-CoV-2 reactive T cells in uninfected individuals, the SARS-CoV-2 epitopes with the highest similarity to those from beta-coronaviruses are confined to replication associated proteins-not the host interacting S-protein. Thus, our study suggests that the observed SARS-CoV-2 pre-formed immunity to structural proteins is not driven by near-identical epitopes.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Center for Translational Medicine, University Hospital Marien Hospital Herne, Ruhr-University, Bochum, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Duisburg, Germany.
| | - Toralf Roch
- Center for Translational Medicine, University Hospital Marien Hospital Herne, Ruhr-University, Bochum, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine, University Hospital Marien Hospital Herne, Ruhr-University, Bochum, Germany
| | - Nina Babel
- Center for Translational Medicine, University Hospital Marien Hospital Herne, Ruhr-University, Bochum, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Recombinant HA-based vaccine outperforms split and subunit vaccines in elicitation of influenza-specific CD4 T cells and CD4 T cell-dependent antibody responses in humans. NPJ Vaccines 2020; 5:77. [PMID: 32884842 PMCID: PMC7450042 DOI: 10.1038/s41541-020-00227-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Although traditional egg-based inactivated influenza vaccines can protect against infection, there have been significant efforts to develop improved formats to overcome disadvantages of this platform. Here, we have assessed human CD4 T cell responses to a traditional egg-based influenza vaccine with recently available cell-derived vaccines and recombinant baculovirus-derived vaccines. Adults were administered either egg-derived Fluzone®, mammalian cell-derived Flucelvax® or recombinant HA (Flublok®). CD4 T cell responses to each HA protein were assessed by cytokine EliSpot and intracellular staining assays. The specificity and magnitude of antibody responses were quantified by ELISA and HAI assays. By all criteria, Flublok vaccine exhibited superior performance in eliciting both CD4 T cell responses and HA-specific antibody responses, whether measured by mean response magnitude or percent of responders. Although the mechanism(s) underlying this advantage is not yet clear, it is likely that both qualitative and quantitative features of the vaccines impact the response.
Collapse
|
24
|
Influenza sequelae: from immune modulation to persistent alveolitis. Clin Sci (Lond) 2020; 134:1697-1714. [PMID: 32648583 DOI: 10.1042/cs20200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Acute influenza virus infections are a global public health concern accounting for millions of illnesses worldwide ranging from mild to severe with, at time, severe complications. Once an individual is infected, the immune system is triggered in response to the pathogen. This immune response can be beneficial ultimately leading to the clearance of the viral infection and establishment of immune memory mechanisms. However, it can be detrimental by increasing susceptibility to secondary bacterial infections and resulting in permanent changes to the lung architecture, in the form of fibrotic sequelae. Here, we review influenza associated bacterial super-infection, the formation of T-cell memory, and persistent lung injury resulting from influenza infection.
Collapse
|
25
|
Meyer F, Seibert FS, Nienen M, Welzel M, Beisser D, Bauer F, Rohn B, Westhoff TH, Stervbo U, Babel N. Propionate supplementation promotes the expansion of peripheral regulatory T-Cells in patients with end-stage renal disease. J Nephrol 2020; 33:817-827. [PMID: 32144645 PMCID: PMC7381474 DOI: 10.1007/s40620-019-00694-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Patients with end-stage renal disease (ESRD) suffer from a progressively increasing low-grade systemic inflammation, which is associated with higher morbidity and mortality. Regulatory T cells (Tregs) play an important role in regulation of the inflammatory process. Previously, it has been demonstrated that short-chain fatty acids reduce inflammation in the central nervous system in a murine model of multiple sclerosis through an increase in tissue infiltrating Tregs. Here, we evaluated the effect of the short-chain fatty acid propionate on the chronic inflammatory state and T-cell composition in ESRD patients. Analyzing ESRD patients and healthy blood donors before, during, and 60 days after the propionate supplementation by multiparametric flow cytometry we observed a gradual and significant expansion in the frequencies of CD25highCD127- Tregs in both groups. Phenotypic characterization suggests that polarization of naïve T cells towards Tregs is responsible for the observed expansion. In line with this, we observed a significant reduction of inflammatory marker CRP under propionate supplementation. Of interest, the observed anti-inflammatory surroundings did not affect the protective pathogen-specific immunity as demonstrated by the stable frequencies of effector/memory T cells specific for tetanus/diphtheria recall antigens. Collectively, our data suggest that dietary supplements with propionate have a beneficial effect on the elevated systemic inflammation of ESRD patients. The effect can be achieved through an expansion of circulating Tregs without affecting the protective pathogen-reactive immunity.
Collapse
Affiliation(s)
- Fabian Meyer
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Felix S Seibert
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Mikalai Nienen
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Marius Welzel
- Biodiversity, University of Duisburg-Essen, Essen, Germany
| | | | - Frederic Bauer
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Benjamin Rohn
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Timm H Westhoff
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany
| | - Ulrik Stervbo
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany.
| | - Nina Babel
- Medical Department I , Centre for Translational Medicine, Marienhospital Herne, Universitätsklinikum Der Ruhr-Universität Bochum, Ruhr-Universität Bochum, Hölkeskampring 40, 44623, Herne, Germany.
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|