1
|
Kong D, He Y, Wang J, Chi L, Ao X, Ye H, Qiu W, Zhu X, Liao M, Fan H. A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerg Microbes Infect 2024; 13:2287682. [PMID: 37994795 PMCID: PMC10763850 DOI: 10.1080/22221751.2023.2287682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like particle (VLP) vaccine based on the insect cell-baculovirus expression system. Single immunization of the H5N1 VLP vaccines induced high levels of HI antibody titres and provided effective protection against homologous virus challenge comparable to the commercial inactivated vaccine. Meanwhile, we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the adjuvants ISA 201 and ISA 71 and evaluated whether the two adjuvants could induce broadly protective immunity. The ISA 71 adjuvanted vaccine induced significantly higher levels of Th1 and Th2 immune responses and provided superior cross-protection against antigenically divergent H5N1 virus challenge than the ISA 201 adjuvanted vaccine. Importantly, increasing the vaccine dose could further enhance the cross-protective efficacy of H5N1 VLP vaccine and confer completely sterilizing protection against antigenically divergent H5N1 virus challenge, which was mediated by neutralizing antibodies. Our results suggest that the H5N1 VLP vaccine can provide broad-spectrum protection against divergent H5N1 influenza viruses as determined by adjuvant and vaccine dose.
Collapse
Affiliation(s)
- Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Yanjuan He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Jiaxin Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Lanyan Chi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Xiang Ao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Hejia Ye
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Weihong Qiu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Xiutong Zhu
- Guangzhou South China Biological Medicine Co., Ltd, Guangzhou, People’s Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People’s Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Gu S, Huang Q, Sun C, Wen C, Yang N. Transcriptomic and epigenomic insights into pectoral muscle fiber formation at the late embryonic development in pure chicken lines. Poult Sci 2024; 103:103882. [PMID: 38833745 PMCID: PMC11190745 DOI: 10.1016/j.psj.2024.103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Long-term intensive genetic selection has led to significant differences between broiler and layer chickens, which are evident during the embryonic period. Despite this, there is a paucity of research on the genetic regulation of the initial formation of muscle fiber morphology in chick embryos. Embryonic d 17 (E17) is the key time point for myoblast fusion completion and muscle fiber morphology formation in chickens. This study aimed to explore the genetic regulatory mechanisms underlying the early muscle fiber morphology establishment in broiler chickens of Cornish (CC) and White Plymouth Rock (RR) and layer chickens of White Leghorn (WW) at E17 using the transcriptomic and chromatin accessibility sequencing of pectoral major muscles. The results showed that broiler chickens exhibited significant higher embryo weight and pectoral major muscle weight at E17 compared to layer chickens (P = 0.000). A total of 1,278, 1,248, and 892 differentially expressed genes (DEGs) of RNA-seq data were identified between CC vs. WW, RR vs. WW, and CC vs. RR, separately. All DEGs were combined for cluster analysis and they were divided into 6 clusters, including cluster 1 with higher expression in broilers and cluster 6 with higher expression in layers. DEGs in cluster 1 were enriched in terms related to macrophage activation (P = 0.002) and defense response to bacteria (P = 0.002), while DEGs in cluster 6 showed enrichment in protein-DNA complex (P = 0.003) and monooxygenase activity (P = 0.000). ATAC-seq data analysis identified a total of 38,603 peaks, with 13,051 peaks for CC, 18,780 peaks for RR, and 6,772 peaks for WW. Integrative analysis of transcriptomic and chromatin accessibility data revealed GOLM1, ISLR2, and TOPAZ1 were commonly upregulated genes in CC and RR. Furthermore, screening of all upregulated DEGs in cluster 1 from CC and RR identified GOLM1, ISLR2, and HNMT genes associated with neuroimmune functions and MYOM3 linked to muscle morphology development, showing significantly elevated expression in broiler chickens compared to layer chickens. These findings suggest active neural system connectivity during the initial formation of muscle fiber morphology in embryonic period, highlighting the early interaction between muscle fiber formation morphology and the nervous system. This study provides novel insights into late chick embryo development and lays a deeper foundation for further research.
Collapse
Affiliation(s)
- Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
3
|
Tofan VC, Ermeneanu AL, Caraș I, Lenghel A, Ionescu IE, Țucureanu C, Gal C, Stăvaru CG, Onu A. Generation of a DSF-Guided Refolded Bacterially Expressed Hemagglutinin Ectodomain of Influenza Virus A/Puerto Rico/8/1934 H1N1 as a Model for Influenza Vaccine Antigens. Vaccines (Basel) 2023; 11:1520. [PMID: 37896924 PMCID: PMC10610769 DOI: 10.3390/vaccines11101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza virus infections represent an ongoing public health threat as well as an economic burden. Although seasonal influenza vaccines have been available for some decades, efforts are being made to generate new efficient, flexible, and cost-effective technologies to be transferred into production. Our work describes the development of a model influenza hemagglutinin antigen that is capable of inducing protection against viral challenge in mice. High amounts of the H1 hemagglutinin ectodomain, HA18-528, were expressed in a bacterial system as insoluble inclusion bodies. Solubilization was followed by a thorough differential scanning fluorimetry (DSF)-guided optimization of refolding, which allows for fast and reliable screening of several refolding conditions, yielding tens of milligrams/L of folded protein. Structural and functional analysis revealed native-like folding as well as the presence of a mix of monomers and oligomers in solution. Mice immunized with HA18-528 were protected when exposed to influenza A virus as opposed to mice that received full-length denatured protein. Sera of mice immunized with HA18-528 showed both high titers of antigen-specific IgG1 and IgG2a isotypes as well as viral neutralization activity. These results prove the feasibility of the recombinant bacterial expression system coupled with DSF-guided refolding in providing influenza hemagglutinin for vaccine development.
Collapse
Affiliation(s)
- Vlad-Constantin Tofan
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Andreea-Laura Ermeneanu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Iuliana Caraș
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Alina Lenghel
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Irina-Elena Ionescu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Cătălin Țucureanu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Claudiu Gal
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Crina-Georgeta Stăvaru
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
| | - Adrian Onu
- “Cantacuzino” Institute, 050096 Bucharest, Romania (I.C.); (I.-E.I.); (C.Ț.); (C.-G.S.); (A.O.)
- Faculty of Pharmacy, Titu Maiorescu University, 040317 Bucharest, Romania
| |
Collapse
|
4
|
Boruah JLH, Venkatesh G, Nagarajan S, Senthilkumar D, Bhatia S, Tosh C, Kumar M, Rai R, Tripathi S, Shukla S, Dubey CK, Singh VP. Immunogenicity and cross-protective efficacy of recombinant H5HA1 protein of clade 2.3.2.1a highly pathogenic H5N1 avian influenza virus expressed in E.coli. Microb Pathog 2022; 168:105605. [PMID: 35636692 DOI: 10.1016/j.micpath.2022.105605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
The global spread of H5N1 highly pathogenic avian influenza virus (HPAIV) in poultry has caused great economic loss to the poultry farmers and industry with significant pandemic threat. The current study involved production of recombinant HA1 protein of clade 2.3.2.1a H5N1 HPAIV (rH5HA1) in E.coli and evaluation of its protective efficacy in chickens. Purification under denaturing conditions and refolding by dialysis against buffers containing decreasing concentrations of urea was found to preserve the biological activity of the expressed recombinant protein as assessed by hemagglutination assay, Western blot and ELISA. The Montanide ISA 71 VGA adjuvanted rH5HA1 protein was used for immunization of chickens. Humoral response was maintained at a minimum of 4log2 hemagglutination inhibition (HI) titre till 154 days post 2nd booster. We evaluated the protective efficacy of rH5HA1 protein in immunized chickens by challenging them with homologous (2.3.2.1a) and heterologous (2.3.2.1c) clades of H5N1 HPAIV. In both the groups, the HI titre significantly increased (P < 0.05) after challenge and the virus shedding significantly (P < 0.05) reduced between 3rd and 14th day post challenge. The virus shedding ratio in oro-pharyngeal swabs did not differ significantly between both the groups except on 7 days post challenge and during the entire experimental period in cloacal swabs. These results indicate that rH5HA1 was able to induce homologous and cross protective immune response in chickens and could be a potential vaccine candidate used for combating the global spread of H5N1 HPAIV threat. To our knowledge, this is the first study to report immunogenicity and protective efficacy of prokaryotic recombinant H5HA1 protein in chicken.
Collapse
Affiliation(s)
| | - Govindarajulu Venkatesh
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India.
| | - Shanmugasundaram Nagarajan
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Dhanapal Senthilkumar
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Sandeep Bhatia
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Chakradhar Tosh
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Manoj Kumar
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Rupal Rai
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Sushil Tripathi
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Shweta Shukla
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Chandan Kumar Dubey
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| | - Vijendra Pal Singh
- ICAR-National Institute of High Security Animal Diseases (NIHSAD), Anand Nagar, Bhopal, MP, 462021, India
| |
Collapse
|
5
|
Sączyńska V, Romanik-Chruścielewska A, Florys-Jankowska K, Cecuda-Adamczewska V, Kęsik-Brodacka M. Chitosan-based formulation of hemagglutinin antigens for oculo-nasal booster vaccination of chickens against influenza viruses. Vet Immunol Immunopathol 2022; 247:110406. [DOI: 10.1016/j.vetimm.2022.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
|
6
|
Sączyńska V, Florys-Jankowska K, Porębska A, Cecuda-Adamczewska V. A novel epitope-blocking ELISA for specific and sensitive detection of antibodies against H5-subtype influenza virus hemagglutinin. Virol J 2021; 18:91. [PMID: 33931074 PMCID: PMC8085643 DOI: 10.1186/s12985-021-01564-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry. In this study, we selected one of these mAbs to develop an epitope-blocking (EB) ELISA for detecting H5 subtype-specific antibodies in chicken sera (H5 EB-ELISA). Methods In the H5 EB-ELISA, H5 HA protein produced in a baculovirus-expression vector system was employed as a coating antigen, and the G-7-27-18 mAb was employed as a blocking antibody. The performance characteristics of the assay were evaluated by testing 358 sera from nonimmunized chickens and chickens immunized with AIVs of the H1–H16 subtypes or recombinant H5 HA antigen to obtain the reference and experimental antisera, respectively. The samples were classified as anti-H5 HA positive or negative based on the results of the hemagglutination inhibition (HI) assay, the gold standard in subtype-specific serodiagnosis. Results The H5 EB-ELISA correctly discriminated between the anti-H5 HA negative sera, including those against the non-H5 subtype AIVs, and sera positive for antibodies against the various-origin H5 HAs. Preliminary validation showed 100% analytical and 97.6% diagnostic specificities of the assay and 98.0% and 99.1% diagnostic sensitivities when applied to detect the anti-H5 HA antibodies in the reference and experimental antisera, respectively. Conclusions The H5 EB-ELISA performed well in terms of diagnostic estimates. Thus, further optimization and validation work using a larger set of chicken sera and receiver operating characteristic (ROC) analysis are warranted. Moreover, the present assay provides a valuable basis for developing multispecies screening tests for birds or diagnostic tests for humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01564-6.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland.
| | - Katarzyna Florys-Jankowska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland
| | - Anna Porębska
- ŁUKASIEWICZ Research Network - Industrial Chemistry Institute, Rydygiera 8 Street, 01-793, Warsaw, Poland
| | | |
Collapse
|