1
|
Ford CE, Dunn CD, Leis EM, Thiel WA, Goldberg TL. Five Species of Wild Freshwater Sport Fish in Wisconsin, USA, Reveal Highly Diverse Viromes. Pathogens 2024; 13:150. [PMID: 38392888 PMCID: PMC10891596 DOI: 10.3390/pathogens13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Studies of marine fish have revealed distant relatives of viruses important to global fish and animal health, but few such studies exist for freshwater fish. To investigate whether freshwater fish also host such viruses, we characterized the viromes of five wild species of freshwater fish in Wisconsin, USA: bluegill (Lepomis macrochirus), brown trout (Salmo trutta), lake sturgeon (Acipenser fulvescens), northern pike (Esox lucius), and walleye (Sander vitreus). We analyzed 103 blood serum samples collected during a state-wide survey from 2016 to 2020 and used a metagenomic approach for virus detection to identify known and previously uncharacterized virus sequences. We then characterized viruses phylogenetically and quantified prevalence, richness, and relative abundance for each virus. Within these viromes, we identified 19 viruses from 11 viral families: Amnoonviridae, Circoviridae, Coronaviridae, Hepadnaviridae, Peribunyaviridae, Picobirnaviridae, Picornaviridae, Matonaviridae, Narnaviridae, Nudnaviridae, and Spinareoviridae, 17 of which were previously undescribed. Among these viruses was the first fish-associated coronavirus from the Gammacoronavirus genus, which was present in 11/15 (73%) of S. vitreus. These results demonstrate that, similar to marine fish, freshwater fish also harbor diverse relatives of viruses important to the health of fish and other animals, although it currently remains unknown what effect, if any, the viruses we identified may have on fish health.
Collapse
Affiliation(s)
- Charlotte E. Ford
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| | - Eric M. Leis
- U.S. Fish and Wildlife Service, La Crosse Fish Health Center—Midwest Fisheries Center, Onalaska, WI 54650, USA;
| | - Whitney A. Thiel
- Robert P. Hanson Laboratories, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (C.E.F.); (C.D.D.)
| |
Collapse
|
2
|
Sørensen J, Cuenca A, Olsen AB, Skovgaard K, Iburg TM, Olesen NJ, Vendramin N. Decreased water temperature enhance Piscine orthoreovirus genotype 3 replication and severe heart pathology in experimentally infected rainbow trout. Front Vet Sci 2023; 10:1112466. [PMID: 36846252 PMCID: PMC9950551 DOI: 10.3389/fvets.2023.1112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Piscine orthoreovirus genotype 3 (PRV-3) was first discovered in Denmark in 2017 in relation to disease outbreaks in rainbow trout (Oncorhynchus mykiss). While the virus appears to be widespread in farmed rainbow trout, disease outbreaks associated with detection of PRV-3 have only occurred in recirculating aquaculture systems, and has predominantly been observed during the winter months. To explore the possible effects of water temperature on PRV-3 infection in rainbow trout, an in vivo cohabitation trial was conducted at 5, 12, and 18°C. For each water temperature, a control tank containing mock-injected shedder fish and a tank with PRV-3 exposed fish were included. Samples were collected from all experimental groups every 2nd week post challenge (WPC) up until trial termination at 12 WPC. PRV-3 RNA load measured in heart tissue of cohabitants peaked at 6 WPC for animals maintained at 12 and 18°C, while it reached its peak at 12 WPC in fish maintained at 5°C. In addition to the time shift, significantly more virus was detected at the peak in fish maintained at 5°C compared to 12 and 18°C. In shedders, fish at 12 and 18°C cleared the infection considerably faster than the fish at 5°C: while shedders at 18 and 12°C had cleared most of the virus at 4 and 6 WPC, respectively, high virus load persisted in the shedders at 5°C until 12 WPC. Furthermore, a significant reduction in the hematocrit levels was observed in the cohabitants at 12°C in correlation with the peak in viremia at 6 WPC; no changes in hematocrit was observed at 18°C, while a non-significant reduction (due to large individual variation) trend was observed at cohabitants held at 5°C. Importantly, isg15 expression was positively correlated with PRV-3 virus load in all PRV-3 exposed groups. Immune gene expression analysis showed a distinct gene profile in PRV-3 exposed fish maintained at 5°C compared to 12 and 18°C. The immune markers mostly differentially expressed in the group at 5°C were important antiviral genes including rigi, ifit5 and rsad2 (viperin). In conclusion, these data show that low water temperature allow for significantly higher PRV-3 replication in rainbow trout, and a tendency for more severe heart pathology development in PRV-3 injected fish. Increased viral replication was mirrored by increased expression of important antiviral genes. Despite no mortality being observed in the experimental trial, the data comply with field observations of clinical disease outbreaks during winter and cold months.
Collapse
Affiliation(s)
- Juliane Sørensen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Argelia Cuenca
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Berit Olsen
- Section of Aquatic Biosecurity Research, Norwegian Veterinary Institute, Bergen, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Moesgaard Iburg
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jørgen Olesen
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niccolò Vendramin
- Section for Fish and Shellfish Diseases, National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark,*Correspondence: Niccolò Vendramin ✉
| |
Collapse
|
3
|
Rennemo J, Myrvold S, Berge K, Kileng Ø, Pedersen B, Aksberg DS, Lisik P, Crappe D, McGurk C, Rimstad E, Wessel Ø, Koppang EO, Bjørgen H. In-depth health surveillance and clinical nutrition in farmed Atlantic salmon: a strategic attempt to detect and mitigate an HSMI outbreak. Vet Res 2023; 54:3. [PMID: 36694262 PMCID: PMC9872415 DOI: 10.1186/s13567-023-01137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 01/26/2023] Open
Abstract
Fish health personnel have limited tools in combatting viral diseases such as heart and skeletal muscle inflammation (HSMI) in open net-pen farmed Atlantic salmon. In this study, we aimed to predict HSMI by intensified health monitoring and apply clinical nutrition to mitigate the condition. We followed a commercial cohort (G1) of Atlantic salmon that was PRV-1 naïve when transferred to a sea cage at a location where HSMI outbreaks commonly occur. The fish in the other cages (G2-G6) at the location had a different origin than G1 and were PRV-1 positive prior to sea transfer. By continuous analysis of production data and sequentially (approximately every fourth week) performing autopsy, RT-qPCR (for PRV-1 and selected immune genes), blood and histological analysis of 10 fish from G1 and G2, we identified the time of PRV-1 infection in G1 and predicted the onset of HSMI prior to any clinical signs of disease. Identical sequences across partial genomes of PRV-1 isolates from G1 and G2 suggest the likely transfer from infected cages to G1. The isolates were grouped into a genogroup known to be of high virulence. A commercial health diet was applied during the HSMI outbreak, and the fish had low mortality and an unaffected appetite. In conclusion, we show that fish health and welfare can benefit from in-depth health monitoring. We also discuss the potential health value of clinical nutrition as a mean to mitigate HSMI.
Collapse
Affiliation(s)
- Johan Rennemo
- grid.436785.b0000 0004 0644 9116Skretting AS, Stavanger, Norway
| | | | - Kjetil Berge
- grid.436785.b0000 0004 0644 9116Skretting AS, Stavanger, Norway
| | | | - Børge Pedersen
- grid.436785.b0000 0004 0644 9116Skretting AS, Stavanger, Norway
| | | | - Piotr Lisik
- Skretting Aquaculture Innovation (AI), Stavanger, Norway
| | | | - Charles McGurk
- Skretting Aquaculture Innovation (AI), Stavanger, Norway
| | - Espen Rimstad
- grid.19477.3c0000 0004 0607 975XUnit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Øystein Wessel
- grid.19477.3c0000 0004 0607 975XUnit of Virology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Erling Olaf Koppang
- grid.19477.3c0000 0004 0607 975XUnit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Håvard Bjørgen
- grid.19477.3c0000 0004 0607 975XUnit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
4
|
Baecher KM, Ford ML. Intersection of FcγRIIB, the microbiome, and checkpoint inhibitors in antitumor immunity. Cancer Immunol Immunother 2021; 70:3397-3404. [PMID: 34241677 PMCID: PMC10992943 DOI: 10.1007/s00262-021-03004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Fc receptors (FcRs) and the microbiome are both known to have an effect on the development and progression of cancers. Checkpoint inhibitors are a novel class of therapeutics which are used to combat cancer and are integrally linked to both FcRs and the microbiome. The use of checkpoint inhibitors has grown exponentially over the past decade, although many host factors affect both the efficacy and the safety of these therapeutics. Some of these host factors, including the microbiome and the expression of FcRs, are currently being investigated. Here we discuss the current understanding of FcRs (particularly the inhibitory FcγRIIB) and the microbiome in context of T cell immunity, inflammation, cancer, and checkpoint inhibition.
Collapse
Affiliation(s)
- Kirsten M Baecher
- Division of Transplant, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L Ford
- Division of Transplant, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Piscine Orthoreovirus (PRV)-3, but Not PRV-2, Cross-Protects against PRV-1 and Heart and Skeletal Muscle Inflammation in Atlantic Salmon. Vaccines (Basel) 2021; 9:vaccines9030230. [PMID: 33800725 PMCID: PMC8001985 DOI: 10.3390/vaccines9030230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart and skeletal muscle inflammation (HSMI), caused by infection with Piscine orthoreovirus-1 (PRV-1), is a common disease in farmed Atlantic salmon (Salmo salar). Both an inactivated whole virus vaccine and a DNA vaccine have previously been tested experimentally against HSMI and demonstrated to give partial but not full protection. To understand the mechanisms involved in protection against HSMI and evaluate the potential of live attenuated vaccine strategies, we set up a cross-protection experiment using PRV genotypes not associated with disease development in Atlantic salmon. The three known genotypes of PRV differ in their preference of salmonid host species. The main target species for PRV-1 is Atlantic salmon. Coho salmon (Oncorhynchus kisutch) is the target species for PRV-2, where the infection may induce erythrocytic inclusion body syndrome (EIBS). PRV-3 is associated with heart pathology and anemia in rainbow trout, but brown trout (S. trutta) is the likely natural main host species. Here, we tested if primary infection with PRV-2 or PRV-3 in Atlantic salmon could induce protection against secondary PRV-1 infection, in comparison with an adjuvanted, inactivated PRV-1 vaccine. Viral kinetics, production of cross-reactive antibodies, and protection against HSMI were studied. PRV-3, and to a low extent PRV-2, induced antibodies cross-reacting with the PRV-1 σ1 protein, whereas no specific antibodies were detected after vaccination with inactivated PRV-1. Ten weeks after immunization, the fish were challenged through cohabitation with PRV-1-infected shedder fish. A primary PRV-3 infection completely blocked PRV-1 infection, while PRV-2 only reduced PRV-1 infection levels and the severity of HSMI pathology in a few individuals. This study indicates that infection with non-pathogenic, replicating PRV could be a future strategy to protect farmed salmon from HSMI.
Collapse
|
6
|
Polinski MP, Vendramin N, Cuenca A, Garver KA. Piscine orthoreovirus: Biology and distribution in farmed and wild fish. JOURNAL OF FISH DISEASES 2020; 43:1331-1352. [PMID: 32935367 DOI: 10.1111/jfd.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.
Collapse
Affiliation(s)
- Mark P Polinski
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Kyle A Garver
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
7
|
Teige LH, Aksnes I, Røsæg MV, Jensen I, Jørgensen J, Sindre H, Collins C, Collet B, Rimstad E, Dahle MK, Boysen P. Detection of specific Atlantic salmon antibodies against salmonid alphavirus using a bead-based immunoassay. FISH & SHELLFISH IMMUNOLOGY 2020; 106:374-383. [PMID: 32738513 DOI: 10.1016/j.fsi.2020.07.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Salmonid alphavirus (SAV) is the etiological cause of pancreas disease (PD) in Atlantic salmon (Salmo salar). Several vaccines against SAV are in use, but PD still cause significant mortality and concern in European aquaculture, raising the need for optimal tools to monitor SAV immunity. To monitor and control the distribution of PD in Norway, all salmonid farms are regularly screened for SAV by RT-qPCR. While the direct detection of SAV is helpful in the early stages of infection, serological methods could bring additional information on acquired SAV immunity in the later stages. Traditionally, SAV antibodies are monitored in neutralization assays, but they are time-consuming and cumbersome, thus alternative assays are warranted. Enzyme-linked immunosorbent assays (ELISAs) have not yet been successfully used for anti-SAV antibody detection in aquaculture. We aimed to develop a bead-based immunoassay for SAV-specific antibodies. By using detergent-treated SAV particles as antigens, we detected SAV-specific antibodies in plasma collected from both a SAV challenge trial and a field outbreak of PD. Increased levels of SAV-specific antibodies were seen after most fish had become negative for viral RNA. The bead-based assay is time saving compared to virus neutralization assays, and suitable for non-lethal testing due to low sample size requirements. We conclude that the bead-based immunoassay for SAV antibody detection is a promising diagnostic tool to complement SAV screening in aquaculture.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Ida Aksnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Ingvill Jensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Sindre
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Catherine Collins
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Espen Rimstad
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Maria K Dahle
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway.
| |
Collapse
|
8
|
Emergence and Spread of Piscine orthoreovirus Genotype 3. Pathogens 2020; 9:pathogens9100823. [PMID: 33036449 PMCID: PMC7601675 DOI: 10.3390/pathogens9100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Piscine orthoreovirus (PRV) is a relevant pathogen for salmonid aquaculture worldwide. In 2015, a new genotype of PRV (genotype 3, PRV-3) was discovered in Norway, and in 2017 PRV-3 was detected for first time in Denmark in association with complex disease cases in rainbow trout in recirculating aquaculture systems (RAS). To explore the epidemiology of PRV-3 in Denmark, a surveillance study was conducted in 2017 to 2019. Fifty-three farms, including both flow through and RAS, were screened for PRV-3. Of the farms examined, PRV-3 was detected in thirty-eight (71.7%), with the highest prevalence in grow-out farms. Notably, in Denmark disease outbreaks were only observed in RAS. Additionally, wild Atlantic salmon and brown trout populations were included in the screening, and PRV-3 was not detected in the three years where samples were obtained (2016, 2018, and 2019). Historical samples in the form of archived material at the Danish National Reference Laboratory for Fish Diseases were also tested for the presence of PRV-3, allowing us to establish that the virus has been present in Denmark at least since 1995. Sequence analyses of segment S1 and M2, as well as full genome analyses of selected isolates, did not reveal clear association between genetic makeup in these two segments and virulence in the form of disease outbreaks in the field.
Collapse
|
9
|
Krasnov A, Sommerset I, Søfteland T, Afanasyev S, Boysen P, Lund H. Consequences of Haemorrhagic Smolt Syndrome (HSS) for the Immune Status of Atlantic salmon ( Salmo salar L.) (Case Study). BIOLOGY 2019; 9:biology9010001. [PMID: 31861586 PMCID: PMC7168143 DOI: 10.3390/biology9010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 01/23/2023]
Abstract
Haemorrhagic smolt syndrome (HSS) is a disorder of unknown aetiology causing losses in the fresh water phase of Atlantic salmon farming. Normally, the mortality is limited and symptoms disappear upon seawater exposure. In this case study, classical HSS pathology with internal organ haemorrhages and nephrocalcinosis was diagnosed, and the losses were substantial. Microarray analyses of head kidney revealed association between HSS and enhanced expression of stress genes and proteins reducing bioavailability of iron, heme, and retinol. In parallel, suppression of multiple metabolic pathways was observed. Up-regulation of genes encoding acute phase proteins, complement, and lectins indicated mild inflammation but without characteristic features of viral or bacterial infections. Microarray analyses highlighted several members of tumor necrosis factor receptor superfamily that may control development of B-cell immunity. Examination of IgM at the mRNA and protein levels showed the impact of HSS on vaccine responses. In fish without HSS symptoms (non-HSS), titres of vaccine specific antibodies to A-layer of Aeromonas salmonicida subsp. salmonicida and Moritella viscosa and antibodies binding to DNP-keyhole limpet hemocyanin (DNP-KLH), which are presumably polyreactive, were respectively four- and 14-fold higher than in HSS-diseased fish. Parallel sequencing of variable regions of immunoglobulin Mrevealed a larger size of most abundant clonotypes shared by multiple individuals in the non-HSS group. The results of the current case study indicated that, in addition to direct damage, HSS suppresses humoral immune responses including the production of specific and polyreactive antibodies.
Collapse
Affiliation(s)
- Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries & Aquaculture Research, P.O. Box 5010, 1432 Ås, Norway;
| | - Ingunn Sommerset
- Norwegian National Veterinary Institute, Thormøhlensgate 53 C, N-5006 Bergen, Norway;
| | - Tina Søfteland
- MSD Animal Health, Thormøhlensgate 55, N-5008 Bergen, Norway;
| | - Sergey Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, M. Toreza Av. 44, Saint Petersburg 194223, Russia;
| | - Preben Boysen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, P.O. Box 369 Sentrum, 0102 Oslo, Norway;
| | - Hege Lund
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, P.O. Box 369 Sentrum, 0102 Oslo, Norway;
- Correspondence:
| |
Collapse
|