1
|
Xu J, Li M, Hu Y, Yang Q, Long Q, Zhou H. Esketamine reduces postoperative depression in breast cancer through TREK-1 channel inhibition and neurotransmitter modulation. Cancer Cell Int 2025; 25:51. [PMID: 39966835 PMCID: PMC11834652 DOI: 10.1186/s12935-025-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
Postoperative depression significantly affects the quality of life of breast cancer patients. This study explores the potential therapeutic effects of esketamine on postoperative depression through modulation of the TREK-1 two-pore domain potassium channel. We analyzed data from 54 female breast cancer patients who underwent surgery at our hospital between 2019 and 2023, dividing them into experimental and control groups based on esketamine treatment. Transcriptomic sequencing of hippocampal neurons from rats identified potassium ion-related pathways and key regulatory genes, including TREK-1, influenced by esketamine. In vitro studies showed that esketamine primarily alleviates depressive symptoms by inhibiting TREK-1 protein expression, enhancing GABA neurotransmitter release, and improving neuronal activity, while overexpression of TREK-1 reversed these effects. Esketamine's inhibition of TREK-1 channels and promotion of hippocampal neuron activity effectively alleviate postoperative depression in breast cancer patients, suggesting a novel therapeutic strategy.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, Hunan, China
| | - Mingcan Li
- The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yu Hu
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qin Yang
- University of South China, Hengyang, Hunan, China
| | - Qiang Long
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Furong District, Changsha, Hunan, China.
| |
Collapse
|
2
|
Clarke KSP, Kingdon CC, Hughes MP, Lacerda EM, Lewis R, Kruchek EJ, Dorey RA, Labeed FH. The search for a blood-based biomarker for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS): from biochemistry to electrophysiology. J Transl Med 2025; 23:149. [PMID: 39905423 PMCID: PMC11792299 DOI: 10.1186/s12967-025-06146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown aetiology characterised by symptoms of post-exertional malaise (PEM) and fatigue leading to substantial impairment in functioning. Other key symptoms include cognitive impairment and unrefreshing sleep, with many experiencing pain. To date there is no complete understanding of the triggering pathomechanisms of disease, and no quantitative biomarker available with sufficient sensitivity, specificity, and adoptability to provide conclusive diagnosis. Clinicians thus eliminate differential diagnoses, and rely on subjective, unspecific, and disputed clinical diagnostic criteria-a process that often takes years with patients being misdiagnosed and receiving inappropriate and sometimes detrimental care. Without a quantitative biomarker, trivialisation, scepticism, marginalisation, and misunderstanding of ME/CFS continues despite the significant disability for many. One in four individuals are bed-bound for long periods of time, others have difficulties maintaining a job/attending school, incurring individual income losses of thousands, while few participate in social activities. MAIN BODY Recent studies have reported promising quantifiable differences in the biochemical and electrophysiological properties of blood cells, which separate ME/CFS and non-ME/CFS participants with high sensitivities and specificities-demonstrating potential development of an accessible and relatively non-invasive diagnostic biomarker. This includes profiling immune cells using Raman spectroscopy, measuring the electrical impedance of blood samples during hyperosmotic challenge using a nano-electronic assay, use of metabolomic assays, and certain techniques which assess mitochondrial dysfunction. However, for clinical application, the specificity of these biomarkers to ME/CFS needs to be explored in more disease controls, and their practicality/logistics considered. Differences in cytokine profiles in ME/CFS are also well documented, but finding a consistent, stable, and replicable cytokine profile may not be possible. Increasing evidence demonstrates acetylcholine receptor and transient receptor potential ion channel dysfunction in ME/CFS, though how these findings could translate to a diagnostic biomarker are yet to be explored. CONCLUSION Different biochemical and electrophysiological properties which differentiate ME/CFS have been identified across studies, holding promise as potential blood-based quantitative diagnostic biomarkers for ME/CFS. However, further research is required to determine their specificity to ME/CFS and adoptability for clinical use.
Collapse
Affiliation(s)
- Krista S P Clarke
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Caroline C Kingdon
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering and Biotechnology/Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Eliana Mattos Lacerda
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Rebecca Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily J Kruchek
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Robert A Dorey
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK
| | - Fatima H Labeed
- Department of Biology, United Arab Emirates University, Al Ain, UAE.
- Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, UK.
| |
Collapse
|
3
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
4
|
Baraniuk JN, Eaton-Fitch N, Marshall-Gradisnik S. Meta-analysis of natural killer cell cytotoxicity in myalgic encephalomyelitis/chronic fatigue syndrome. Front Immunol 2024; 15:1440643. [PMID: 39483457 PMCID: PMC11524851 DOI: 10.3389/fimmu.2024.1440643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024] Open
Abstract
Reduced natural killer (NK) cell cytotoxicity is the most consistent immune finding in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Meta-analysis of the published literature determined the effect size of the decrement in ME/CFS. Databases were screened for papers comparing NK cell cytotoxicity in ME/CFS and healthy controls. A total of 28 papers and 55 effector:target cell ratio (E:T) data points were collected. Cytotoxicity in ME/CFS was significantly reduced to about half of healthy control levels, with an overall Hedges' g of 0.96 (0.75-1.18). Heterogeneity was high but was explained by the range of E:T ratios, different methods, and potential outliers. The outcomes confirm reproducible NK cell dysfunction in ME/CFS and will guide studies using the NK cell model system for pathomechanistic investigations. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024542140.
Collapse
Affiliation(s)
- James N. Baraniuk
- Department of Medicine, Georgetown University, Washington, DC, United States
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
5
|
Ganesh R, Munipalli B. Long COVID and hypermobility spectrum disorders have shared pathophysiology. Front Neurol 2024; 15:1455498. [PMID: 39301475 PMCID: PMC11410636 DOI: 10.3389/fneur.2024.1455498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024] Open
Abstract
Hypermobility spectrum disorders (HSD) and hypermobile Ehlers-Danlos syndrome (hEDS) are the most common joint hypermobility conditions encountered by physicians, with hypermobile and classical EDS accounting for >90% of all cases. Hypermobility has been detected in up to 30-57% of patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), fibromyalgia, postural orthostatic tachycardia syndrome (POTS), and long COVID (LC) compared to the general population. Extrapulmonary symptoms, including musculoskeletal pain, dysautonomia disorders, cognitive disorders, and fatigue, are seen in both LC and HSD. Additionally, ME/CFS has overlapping symptoms with those seen in HSD. Mast cell activation and degranulation occurring in both LC and ME/CFS may result in hyperinflammation and damage to connective tissue in these patients, thereby inducing hypermobility. Persistent inflammation may result in the development or worsening of HSD. Hence, screening for hypermobility and other related conditions including fibromyalgia, POTS, ME/CFS, chronic pain conditions, joint pain, and myalgia is essential for individuals experiencing LC. Pharmacological treatments should be symptom-focused and geared to a patient's presentation. Paced exercise, massage, yoga, and meditation may also provide benefits.
Collapse
Affiliation(s)
- Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Bala Munipalli
- Division of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med 2024; 22:630. [PMID: 38970055 PMCID: PMC11227206 DOI: 10.1186/s12967-024-05412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified. The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development. TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3's expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Matthias Löhn
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Klaus Josef Wirth
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Mitodicure GmbH, D-65830, Kriftel, Germany.
| |
Collapse
|
7
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Jeremijenko A, Griffin P, Marshall-Gradisnik S. Investigation into the restoration of TRPM3 ion channel activity in post-COVID-19 condition: a potential pharmacotherapeutic target. Front Immunol 2024; 15:1264702. [PMID: 38765011 PMCID: PMC11099221 DOI: 10.3389/fimmu.2024.1264702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Andrew Jeremijenko
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Paul Griffin
- Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
8
|
Mantle D, Hargreaves IP, Domingo JC, Castro-Marrero J. Mitochondrial Dysfunction and Coenzyme Q10 Supplementation in Post-Viral Fatigue Syndrome: An Overview. Int J Mol Sci 2024; 25:574. [PMID: 38203745 PMCID: PMC10779395 DOI: 10.3390/ijms25010574] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Post-viral fatigue syndrome (PVFS) encompasses a wide range of complex neuroimmune disorders of unknown causes characterised by disabling post-exertional fatigue, myalgia and joint pain, cognitive impairments, unrefreshing sleep, autonomic dysfunction, and neuropsychiatric symptoms. It includes myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS); fibromyalgia (FM); and more recently post-COVID-19 condition (long COVID). To date, there are no definitive clinical case criteria and no FDA-approved pharmacological therapies for PVFS. Given the current lack of effective treatments, there is a need to develop novel therapeutic strategies for these disorders. Mitochondria, the cellular organelles responsible for tissue energy production, have recently garnered attention in research into PVFS due to their crucial role in cellular bioenergetic metabolism in these conditions. The accumulating literature has identified a link between mitochondrial dysfunction and low-grade systemic inflammation in ME/CFS, FM, and long COVID. To address this issue, this article aims to critically review the evidence relating to mitochondrial dysfunction in the pathogenesis of these disorders; in particular, it aims to evaluate the effectiveness of coenzyme Q10 supplementation on chronic fatigue and pain symptoms as a novel therapeutic strategy for the treatment of PVFS.
Collapse
Affiliation(s)
- David Mantle
- Pharma Nord (UK) Ltd., Morpeth, Northumberland NE61 2DB, UK
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain;
| | - Jesus Castro-Marrero
- Research Unit in ME/CFS and Long COVID, Rheumatology Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Bonilla H, Tian L, Marconi VC, Shafer R, McComsey GA, Miglis M, Yang P, Bonilla A, Eggert L, Geng LN. Low-dose naltrexone use for the management of post-acute sequelae of COVID-19. Int Immunopharmacol 2023; 124:110966. [PMID: 37804660 PMCID: PMC11028858 DOI: 10.1016/j.intimp.2023.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/09/2023]
Abstract
The global prevalence of Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) stands at approximately 43 % among individuals who have previously had acute COVID-19. In contrast, in the United States, the National Center for Health Statistics (NCHS) estimates that around 11 % of individuals who have been infected with SARS-CoV-2 go on to experience long COVID. The underlying causes of PASC remains under investigation, and there are no currently established FDA-approved therapies. One of the leading hypotheses for the cause of PASC is the persistent activation of innate immune cells with increase systemic inflammation. Naltrexone is a medication with anti-inflammatory and immunomodulatory properties that has been used in other conditions that overlap with PASC. We performed a retrospective review of a clinical cohort of 59 patients at a single academic center who received low-dose naltrexone (LDN) off-label as a potential therapeutic intervention for PASC. The use of LDN was associated with a fewer number of symptoms, improved clinical symptoms (fatigue, post-exertional malaise, unrefreshing sleep, and abnormal sleep pattern), and a better functional status. This observation warrants testing in rigorous, randomized, placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Hector Bonilla
- Division of Infectious Diseases & Geographic Medicine, L-134 Stanford University, 300 Pasteur Dr., Palo Alto, CA 94305, United States.
| | - Lu Tian
- Department: Biomedical Data Science, Stanford University, Professor X347 MSOB, Palo Alto, CA 94305, United States
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States; Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States; Health Sciences Research Building, 1760 Haygood Dr NE, Room W325, Atlanta, GA 30322, United States
| | - Robert Shafer
- Division of Infectious Diseases & Geographic Medicine, Stanford University, 3652 Biomedical Innovations Building, 3rd Floor, Palo Alto, CA 94305, United States
| | - Grace A McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Ave., Cleveland, OH 44106, United States
| | - Mitchel Miglis
- Department of Neurology and Neurological Sciences, Stanford University, Stanford University, 213 Quarry Road, Palo Alto, CA 94304, United States
| | - Philip Yang
- Department: Medicine - Med/Cardiovascular Medicine, Stanford University, 300 Pasteur Dr # H2157, Palo Alto, CA 94305-2200, United States
| | - Andres Bonilla
- Department of Molecular, Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Lauren Eggert
- Division of Pulmonary and Critical Care Medicine, 300 Pasteur Dr Rm H3143 MC 5236, Palo Alto, CA 94305-2200, United States
| | - Linda N Geng
- Department of Medicine - Primary Care and Population Health, Stanford University, 211 Quarry Rd Ste 205 MC 5987, Palo Alto, CA 94304, United States
| |
Collapse
|
10
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
11
|
Du Preez S, Eaton-Fitch N, Smith PK, Marshall-Gradisnik S. Altered TRPM7-Dependent Calcium Influx in Natural Killer Cells of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Biomolecules 2023; 13:1039. [PMID: 37509075 PMCID: PMC10377690 DOI: 10.3390/biom13071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling multisystemic condition. The pathomechanism of ME/CFS remains unestablished; however, impaired natural killer (NK) cell cytotoxicity is a consistent feature of this condition. Calcium (Ca2+) is crucial for NK cell effector functions. Growing research recognises Ca2+ signalling dysregulation in ME/CFS patients and implicates transient receptor potential ion channel dysfunction. TRPM7 (melastatin) was recently considered in the pathoaetiology of ME/CFS as it participates in several Ca2+-dependent processes that are central to NK cell cytotoxicity which may be compromised in ME/CFS. TRPM7-dependent Ca2+ influx was assessed in NK cells isolated from n = 9 ME/CFS patients and n = 9 age- and sex-matched healthy controls (HCs) using live cell fluorescent imaging techniques. Slope (p < 0.05) was significantly reduced in ME/CFS patients compared with HCs following TRPM7 activation. Half-time of maximal response (p < 0.05) and amplitude (p < 0.001) were significantly reduced in the HCs compared with the ME/CFS patients following TRPM7 desensitisation. Findings from this investigation suggest that TRPM7-dependent Ca2+ influx is reduced with agonism and increased with antagonism in ME/CFS patients relative to the age- and sex-matched HCs. The outcomes reported here potentially reflect TRPM3 dysfunction identified in this condition suggesting that ME/CFS is a TRP ion channelopathy.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| | - Peter K Smith
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
- Queensland Allergy Services, Gold Coast 4215, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia
| |
Collapse
|
12
|
Petracek LS, Broussard CA, Swope RL, Rowe PC. A Case Study of Successful Application of the Principles of ME/CFS Care to an Individual with Long COVID. Healthcare (Basel) 2023; 11:healthcare11060865. [PMID: 36981522 PMCID: PMC10048325 DOI: 10.3390/healthcare11060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Persistent fatigue is one of the most common symptoms of post-COVID conditions, also termed long COVID. At the extreme end of the severity spectrum, some individuals with long COVID also meet the criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), raising the possibility that symptom management approaches for ME/CFS may benefit some long COVID patients. We describe the long-term outcomes of a 19-year-old male who developed profound impairment consistent with ME/CFS after a SARS-CoV-2 infection early in the pandemic. We evaluated and treated him using our clinic’s approach to ME/CFS. This included a history and physical examination that ascertained joint hypermobility, pathological reflexes, physical therapy maneuvers to look for a range of motion restrictions in the limbs and spine, orthostatic testing, and screening laboratory studies. He was found to have profound postural tachycardia syndrome, several ranges of motion restrictions, and mast cell activation syndrome. He was treated according to our clinic’s guidelines for managing ME/CFS, which included manual physical therapy maneuvers and both non-pharmacologic measures and medications directed at postural tachycardia syndrome and mast cell activation. He experienced significant improvement in his symptoms over 30 months. His case emphasizes how the application of the principles of treating ME/CFS has the potential to provide a direction for treating long COVID.
Collapse
Affiliation(s)
| | | | | | - Peter C. Rowe
- Correspondence: ; Tel.: +1-410-955-9229; Fax: +1-410-614-1178
| |
Collapse
|
13
|
Bonilla H, Peluso MJ, Rodgers K, Aberg JA, Patterson TF, Tamburro R, Baizer L, Goldman JD, Rouphael N, Deitchman A, Fine J, Fontelo P, Kim AY, Shaw G, Stratford J, Ceger P, Costantine MM, Fisher L, O’Brien L, Maughan C, Quigley JG, Gabbay V, Mohandas S, Williams D, McComsey GA. Therapeutic trials for long COVID-19: A call to action from the interventions taskforce of the RECOVER initiative. Front Immunol 2023; 14:1129459. [PMID: 36969241 PMCID: PMC10034329 DOI: 10.3389/fimmu.2023.1129459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Although most individuals recover from acute SARS-CoV-2 infection, a significant number continue to suffer from Post-Acute Sequelae of SARS-CoV-2 (PASC), including the unexplained symptoms that are frequently referred to as long COVID, which could last for weeks, months, or even years after the acute phase of illness. The National Institutes of Health is currently funding large multi-center research programs as part of its Researching COVID to Enhance Recover (RECOVER) initiative to understand why some individuals do not recover fully from COVID-19. Several ongoing pathobiology studies have provided clues to potential mechanisms contributing to this condition. These include persistence of SARS-CoV-2 antigen and/or genetic material, immune dysregulation, reactivation of other latent viral infections, microvascular dysfunction, and gut dysbiosis, among others. Although our understanding of the causes of long COVID remains incomplete, these early pathophysiologic studies suggest biological pathways that could be targeted in therapeutic trials that aim to ameliorate symptoms. Repurposed medicines and novel therapeutics deserve formal testing in clinical trial settings prior to adoption. While we endorse clinical trials, especially those that prioritize inclusion of the diverse populations most affected by COVID-19 and long COVID, we discourage off-label experimentation in uncontrolled and/or unsupervised settings. Here, we review ongoing, planned, and potential future therapeutic interventions for long COVID based on the current understanding of the pathobiological processes underlying this condition. We focus on clinical, pharmacological, and feasibility data, with the goal of informing future interventional research studies.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine and Infectious Diseases, Stanford University, Palo Alto, CA, United States
| | - Michael J. Peluso
- Department of Medicine and Infectious Diseases, University of California, San Francisco, San Francisco, CA, United States
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Judith A. Aberg
- Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount Sinai, Chief, Division of Infectious Disease, New York, NY, United States
| | - Thomas F. Patterson
- Department of Medicine, Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Robert Tamburro
- Division of Intramural Research, National Institute of Health, Bethesda, MD, United States
| | - Lawrence Baizer
- National Heart Lung and Blood Institute, Division of Lung Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason D. Goldman
- Department of Medicine, Organ Transplant and Liver Center, Swedish Medical Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, United States
| | - Nadine Rouphael
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - Amelia Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey Fine
- Department of Rehabilitation Medicine at New York University (NYU) Grossman School of Medicine, Physical Medicine and Rehabilitation Service, New York University (NYU), New York University Medical Center, New York, NY, United States
| | - Paul Fontelo
- Applied Clinical Informatics Branch, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Arthur Y. Kim
- Department of Medicine at Harvard Medical School, Division of Infectious Disease, Boston, MA, United States
| | - Gwendolyn Shaw
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Jeran Stratford
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Patricia Ceger
- Research Triangle Institute (RTI), International, Durham, NC, United States
| | - Maged M. Costantine
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States
| | - Liza Fisher
- Long COVID Families, Houston, TX, United States
| | - Lisa O’Brien
- Utah Covid-19 Long Haulers, Salt Lake City, UT, United States
| | | | - John G. Quigley
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Vilma Gabbay
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Sindhu Mohandas
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - David Williams
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Grace A. McComsey
- Department of Pediatrics and Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
14
|
Muacevic A, Adler JR, Marques Pinto G, Duarte B. Combination of Naltrexone and Isotretinoin for the Treatment of Darier Disease. Cureus 2023; 15:e33321. [PMID: 36741607 PMCID: PMC9894633 DOI: 10.7759/cureus.33321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Darier disease (DD) is an autosomal-dominant genodermatosis in which mutations in the ATP2A2 gene result in impaired intercellular adhesion and epidermal blistering. Treatment options usually rely on systemic retinoids, but a refractory disease is still a therapeutical challenge. Given the similarity of DD pathogenesis with Hailey-Hailey disease, concomitant treatment with low-dose-naltrexone (LDN) has been proposed. We present the case of a 34-year-old woman with a 20-year history of severe, biopsy-proven DD, previously treated with several unsuccessful topical and systemic treatments, including oral isotretinoin, cyclosporine, doxycycline, methotrexate, acitretin, and subcutaneous adalimumab. At presentation, she had widespread keratotic, crusted, brown papules on her trunk and proximal extremities. Treatment with oral LDN (4.5 mg/day in manipulated tablets) was then initiated while maintaining the current isotretinoin therapy. After three months, there was a nearly complete clearance of the lesions, and no adverse effects were reported.
Collapse
|
15
|
Magawa CT, Eaton-Fitch N, Balinas C, Sasso EM, Thapaliya K, Barnden L, Maksoud R, Weigel B, Rudd PA, Herrero LJ, Marshall-Gradisnik S. Identification of transient receptor potential melastatin 3 proteotypic peptides employing an efficient membrane protein extraction method for natural killer cells. Front Physiol 2022; 13:947723. [PMID: 36213251 PMCID: PMC9540229 DOI: 10.3389/fphys.2022.947723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mutations and misfolding of membrane proteins are associated with various disorders, hence they make suitable targets in proteomic studies. However, extraction of membrane proteins is challenging due to their low abundance, stability, and susceptibility to protease degradation. Given the limitations in existing protocols for membrane protein extraction, the aim of this investigation was to develop a protocol for a high yield of membrane proteins for isolated Natural Killer (NK) cells. This will facilitate genetic analysis of membrane proteins known as transient receptor potential melastatin 3 (TRPM3) ion channels in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) research.Methods: Two protocols, internally identified as Protocol 1 and 2, were adapted and optimized for high yield protein extraction. Protocol 1 utilized ultrasonic and salt precipitation, while Protocol 2 implemented a detergent and chloroform/methanol approach. Protein concentrations were determined by the Pierce Bicinchoninic Acid (BCA) and the Bio-Rad DC (detergent compatible) protein assays according to manufacturer’s recommendation. Using Protocol 2, protein samples were extracted from NK cells of n = 6 healthy controls (HC) and n = 4 ME/CFS patients. In silico tryptic digest and enhanced signature peptide (ESP) predictor were used to predict high-responding TRPM3 tryptic peptides. Trypsin in-gel digestion was performed on protein samples loaded on SDS-PAGE gels (excised at 150–200 kDa). A liquid chromatography-multiple reaction monitoring (LC-MRM) method was optimized and used to evaluate the detectability of TRPM3 n = 5 proteotypic peptides in extracted protein samples.Results: The detergent-based protocol protein yield was significantly higher (p < 0.05) compared with the ultrasonic-based protocol. The Pierce BCA protein assay showed more reproducibility and compatibility compared to the Bio-Rad DC protein assay. Two high-responding tryptic peptides (GANASAPDQLSLALAWNR and QAILFPNEEPSWK) for TRPM3 were detectable in n = 10 extracted protein samples from NK cells isolated from HC and ME/CFS patients.Conclusion: A method was optimized for high yield protein extraction from human NK cells and for the first time TRPM3 proteotypic peptides were detected using LC-MRM. This new method provides for future research to assess membrane protein structural and functional relationships, particularly to facilitate proteomic investigation of TRPM3 ion channel isoforms in NK cells in both health and disease states, such as ME/CFS.
Collapse
Affiliation(s)
- Chandi T Magawa
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Cassandra Balinas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Etianne Martini Sasso
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Breanna Weigel
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| |
Collapse
|
16
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
17
|
Sasso EM, Muraki K, Eaton-Fitch N, Smith P, Lesslar OL, Deed G, Marshall-Gradisnik S. Transient receptor potential melastatin 3 dysfunction in post COVID-19 condition and myalgic encephalomyelitis/chronic fatigue syndrome patients. Mol Med 2022; 28:98. [PMID: 35986236 PMCID: PMC9388968 DOI: 10.1186/s10020-022-00528-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/24/2022] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe multisystemic condition associated with post-infectious onset, impaired natural killer (NK) cell cytotoxicity and impaired ion channel function, namely Transient Receptor Potential Melastatin 3 (TRPM3). Long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has resulted in neurocognitive, immunological, gastrointestinal, and cardiovascular manifestations recently recognised as post coronavirus disease 2019 (COVID-19) condition. The symptomatology of ME/CFS overlaps significantly with post COVID-19; therefore, this research aimed to investigate TRPM3 ion channel function in post COVID-19 condition patients. METHODS Whole-cell patch-clamp technique was used to measure TRPM3 ion channel activity in isolated NK cells of N = 5 ME/CFS patients, N = 5 post COVID-19 patients, and N = 5 healthy controls (HC). The TRPM3 agonist, pregnenolone sulfate (PregS) was used to activate TRPM3 function, while ononetin was used as a TRPM3 antagonist. RESULTS As reported in previous research, PregS-induced TRPM3 currents were significantly reduced in ME/CFS patients compared with HC (p = 0.0048). PregS-induced TRPM3 amplitude was significantly reduced in post COVID-19 condition compared with HC (p = 0.0039). Importantly, no significant difference was reported in ME/CFS patients compared with post COVID-19 condition as PregS-induced TRPM3 currents of post COVID-19 condition patients were similar of ME/CFS patients currents (p > 0.9999). Isolated NK cells from post COVID-19 condition and ME/CFS patients were resistant to ononetin and differed significantly with HC (p < 0.0001). CONCLUSION The results of this investigation suggest that post COVID-19 condition patients may have impaired TRPM3 ion channel function and provide further evidence regarding the similarities between post COVID-19 condition and ME/CFS. Impaired TRPM3 channel activity in post COVID-19 condition patients suggest impaired ion mobilisation which may consequently impede cell function resulting in chronic post-infectious symptoms. Further investigation into TRPM3 function may elucidate the pathomechanism, provide a diagnostic and therapeutic target for post COVID-19 condition patients and commonalities with ME/CFS patients.
Collapse
Affiliation(s)
- Etianne Martini Sasso
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD, Australia.
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Peter Smith
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Clinical Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Olivia Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, USA
- Cingulum Health, Rosebery, NSW, Australia
| | - Gary Deed
- Mediwell Medical Clinic, Coorparoo, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
18
|
Eaton-Fitch N, Du Preez S, Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Impaired TRPM3-dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2022; 20:94. [PMID: 35172836 PMCID: PMC8848670 DOI: 10.1186/s12967-022-03297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious disorder of unknown aetiology. While the pathomechanism of ME/CFS remains elusive, reduced natural killer (NK) cell cytotoxic function is a consistent immunological feature. NK cell effector functions rely on long-term sustained calcium (Ca2+) influx. In recent years evidence of transient receptor potential melastatin 3 (TRPM3) dysfunction supports the hypothesis that ME/CFS is potentially an ion channel disorder. Specifically, reports of single nucleotide polymorphisms, low surface expression and impaired function of TRPM3 have been reported in NK cells of ME/CFS patients. It has been reported that mu (µ)-opioid receptor (µOR) agonists, known collectively as opioids, inhibit TRPM3. Naltrexone hydrochloride (NTX), a µOR antagonist, negates the inhibitory action of µOR on TRPM3 function. Importantly, it has recently been reported that NTX restores impaired TRPM3 function in NK cells of ME/CFS patients. Methods Live cell immunofluorescent imaging was used to measure TRPM3-dependent Ca2+ influx in NK cells isolated from n = 10 ME/CFS patients and n = 10 age- and sex-matched healthy controls (HC) following modulation with TRPM3-agonist, pregnenolone sulfate (PregS) and TRPM3-antaognist, ononetin. The effect of overnight (24 h) NTX in vitro treatment on TRPM3-dependent Ca2+ influx was determined. Results The amplitude (p < 0.0001) and half-time of Ca2+ response (p < 0.0001) was significantly reduced at baseline in NK cells of ME/CFS patients compared with HC. Overnight treatment of NK cells with NTX significantly improved TRPM3-dependent Ca2+ influx in ME/CFS patients. Specifically, there was no significance between HC and ME/CFS patients for half-time response, and the amplitude of Ca2+ influx was significantly increased in ME/CFS patients (p < 0.0001). Conclusion TRPM3-dependent Ca2+ influx was restored in ME/CFS patients following overnight treatment of isolated NK cells with NTX in vitro. Collectively, these findings validate that TRPM3 loss of function results in altered Ca2+ influx supporting the growing evidence that ME/CFS is a TRP ion channel disorder and that NTX provides a potential therapeutic intervention for ME/CFS. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03297-8.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Stanley Du Preez
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Hélène Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
19
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
20
|
Rahman MS, Winsvold BS, Chavez Chavez SO, Børte S, Tsepilov YA, Sharapov SZ, Aulchenko YS, Hagen K, Fors EA, Hveem K, Zwart JA, van Meurs JB, Freidin MB, Williams FM. Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain. Ann Rheum Dis 2021; 80:1227-1235. [PMID: 33926923 PMCID: PMC8372387 DOI: 10.1136/annrheumdis-2020-219624] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Chronic widespread musculoskeletal pain (CWP) is a symptom of fibromyalgia and a complex trait with poorly understood pathogenesis. CWP is heritable (48%-54%), but its genetic architecture is unknown and candidate gene studies have produced inconsistent results. We conducted a genome-wide association study to get insight into the genetic background of CWP. METHODS Northern Europeans from UK Biobank comprising 6914 cases reporting pain all over the body lasting >3 months and 242 929 controls were studied. Replication of three independent genome-wide significant single nucleotide polymorphisms was attempted in six independent European cohorts (n=43 080; cases=14 177). Genetic correlations with risk factors, tissue specificity and colocalisation were examined. RESULTS Three genome-wide significant loci were identified (rs1491985, rs10490825, rs165599) residing within the genes Ring Finger Protein 123 (RNF123), ATPase secretory pathway Ca2+transporting 1 (ATP2C1) and catechol-O-methyltransferase (COMT). The RNF123 locus was replicated (meta-analysis p=0.0002), the ATP2C1 locus showed suggestive association (p=0.0227) and the COMT locus was not replicated. Partial genetic correlation between CWP and depressive symptoms, body mass index, age of first birth and years of schooling were identified. Tissue specificity and colocalisation analysis highlight the relevance of skeletal muscle in CWP. CONCLUSIONS We report a novel association of RNF123 locus and a suggestive association of ATP2C1 locus with CWP. Both loci are consistent with a role of calcium regulation in CWP. The association with COMT, one of the most studied genes in chronic pain field, was not confirmed in the replication analysis.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Bendik S Winsvold
- Department of Research, Innovation and Education,Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo universitetssykehus Ullevål, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sergio O Chavez Chavez
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sigrid Børte
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- PolyOmica, 's-Hertogenbosch, PA, The Netherlands
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Sodbo Zh Sharapov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Yurii S Aulchenko
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- PolyOmica, 's-Hertogenbosch, PA, The Netherlands
| | - Knut Hagen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinical Research Unit Central Norway, St Olavs University Hospital, Trondheim, Norway
| | - Egil A Fors
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John Anker Zwart
- Department of Research, Innovation and Education,Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Frances Mk Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Eaton-Fitch N, Cabanas H, du Preez S, Staines D, Marshall-Gradisnik S. The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP 2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2021; 19:306. [PMID: 34266470 PMCID: PMC8281618 DOI: 10.1186/s12967-021-02974-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. METHODS NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. RESULTS Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. CONCLUSION Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Hélène Cabanas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Stanley du Preez
- School of Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
22
|
Cabanas H, Muraki K, Eaton-Fitch N, Staines DR, Marshall-Gradisnik S. Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Front Immunol 2021; 12:687806. [PMID: 34326841 PMCID: PMC8313851 DOI: 10.3389/fimmu.2021.687806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multi-systemic chronic condition of unknown aetiology classified as an immune dysfunction syndrome and neurological disorder. The discovery of the widely expressed Transient Receptor Potential Melastatin 3 (TRPM3) as a nociceptor channel substantially targeted by certain opioid receptors, and its implication in calcium (Ca2+)-dependent Natural Killer (NK) cell immune functions has raised the possibility that TRPM3 may be pharmacologically targeted to treat characteristic symptoms of ME/CFS. Naltrexone hydrochloride (NTX) acts as an antagonist to the mu (μ)-opioid receptor thus negating its inhibitory function on TRPM3. Based on the benefits reported by patients on their symptoms, low dose NTX (LDN, 3.0-5.0 mg/day) treatment seems to offer some potential benefit suggesting that its effect may be targeted towards the pathomechanism of ME/CFS. As there is no literature confirming the efficacy of LDN for ME/CFS patients in vitro, this study investigates the potential therapeutic effect of LDN in ME/CFS patients. TRPM3 ion channel activity was measured after modulation with Pregnenolone sulfate (PregS) and ononetin in NK cells on 9 ME/CFS patients taking LDN and 9 age- and sex-matched healthy controls using whole-cell patch-clamp technique. We report that ME/CFS patients taking LDN have restored TRPM3-like ionic currents in NK cells. Small ionic currents with a typical TRPM3-like outward rectification were measured after application of PregS, a TRPM3-agonist, in NK cells from patients taking LDN. Additionally, PregS-evoked ionic currents through TRPM3 were significantly modulated by ononetin, a TRPM3-antagonist, in NK cells from ME/CFS patients taking LDN. These data support the hypothesis that LDN may have potential as a treatment for ME/CFS by characterising the underlying regulatory mechanisms of LDN treatment involving TRPM3 and opioid receptors in NK cells. Finally, this study may serve for the repurpose of marketed drugs, as well as support the approval of prospective randomized clinical studies on the role and dose of NTX in treating ME/CFS patients.
Collapse
Affiliation(s)
- Helene Cabanas
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Natalie Eaton-Fitch
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Donald Ross Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.,Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
23
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
24
|
Toogood PL, Clauw DJ, Phadke S, Hoffman D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol Res 2021; 165:105465. [PMID: 33529750 DOI: 10.1016/j.phrs.2021.105465] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic debilitating disease characterized by severe and disabling fatigue that fails to improve with rest; it is commonly accompanied by multifocal pain, as well as sleep disruption, and cognitive dysfunction. Even mild exertion can exacerbate symptoms. The prevalence of ME/CFS in the U.S. is estimated to be 0.5-1.5 % and is higher among females. Viral infection is an established trigger for the onset of ME/CFS symptoms, raising the possibility of an increase in ME/CFS prevalence resulting from the ongoing COVID-19 pandemic. Current treatments are largely palliative and limited to alleviating symptoms and addressing the psychological sequelae associated with long-term disability. While ME/CFS is characterized by broad heterogeneity, common features include immune dysregulation and mitochondrial dysfunction. However, the underlying mechanistic basis of the disease remains poorly understood. Herein, we review the current understanding, diagnosis and treatment of ME/CFS and summarize past clinical studies aimed at identifying effective therapies. We describe the current status of mechanistic studies, including the identification of multiple targets for potential pharmacological intervention, and ongoing efforts towards the discovery of new medicines for ME/CFS treatment.
Collapse
Affiliation(s)
- Peter L Toogood
- Michigan Drug Discovery, University of Michigan, Life Science Institute, 210 Washtenaw Avenue, Ann Arbor, MI, 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States.
| | - Daniel J Clauw
- Departments of Anesthesiology, Internal Medicine (Rheumatology) and Psychiatry, University of Michigan/Michigan Medicine, Chronic Pain and Fatigue Center, 24 Frank Lloyd Wright Drive, P.O. Box 3885, Ann Arbor, MI, 48109, United States
| | - Sameer Phadke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North University Building, 428 Church Street, Ann Arbor, MI, 48109, United States
| | - David Hoffman
- Cayman Chemical Company, 1180 E. Ellsworth Road, Ann Arbor, MI, 48108, United States
| |
Collapse
|
25
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
26
|
Choubey A, Girdhar K, Kar AK, Kushwaha S, Yadav MK, Ghosh D, Mondal P. Low-dose naltrexone rescues inflammation and insulin resistance associated with hyperinsulinemia. J Biol Chem 2020; 295:16359-16369. [PMID: 32943552 DOI: 10.1074/jbc.ra120.013484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/14/2020] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance.
Collapse
Affiliation(s)
- Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India
| | - Khyati Girdhar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India
| | - Aditya K Kar
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Shaivya Kushwaha
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- Department of Bioinformatics, SRM University, Delhi-NCR, Sonipat, Haryana, India
| | - Debabrata Ghosh
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|