1
|
Longo Y, Mascaraque SM, Andreacchio G, Werner J, Katahira I, De Marchi E, Pegoraro A, Lebbink RJ, Köhrer K, Petzsch P, Tao R, Di Virgilio F, Adinolfi E, Drexler I. The purinergic receptor P2X7 as a modulator of viral vector-mediated antigen cross-presentation. Front Immunol 2024; 15:1360140. [PMID: 38711513 PMCID: PMC11070468 DOI: 10.3389/fimmu.2024.1360140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Modified Vaccinia Virus Ankara (MVA) is a safe vaccine vector inducing long- lasting and potent immune responses. MVA-mediated CD8+T cell responses are optimally induced, if both, direct- and cross-presentation of viral or recombinant antigens by dendritic cells are contributing. Methods To improve the adaptive immune responses, we investigated the role of the purinergic receptor P2X7 (P2RX7) in MVA-infected feeder cells as a modulator of cross-presentation by non-infected dendritic cells. The infected feeder cells serve as source of antigen and provide signals that help to attract dendritic cells for antigen take up and to license these cells for cross-presentation. Results We demonstrate that presence of an active P2RX7 in major histocompatibility complex (MHC) class I (MHCI) mismatched feeder cells significantly enhanced MVA-mediated antigen cross-presentation. This was partly regulated by P2RX7-specific processes, such as the increased availability of extracellular particles as well as the altered cellular energy metabolism by mitochondria in the feeder cells. Furthermore, functional P2RX7 in feeder cells resulted in a delayed but also prolonged antigen expression after infection. Discussion We conclude that a combination of the above mentioned P2RX7-depending processes leads to significantly increased T cell activation via cross- presentation of MVA-derived antigens. To this day, P2RX7 has been mostly investigated in regards to neuroinflammatory diseases and cancer progression. However, we report for the first time the crucial role of P2RX7 for antigen- specific T cell immunity in a viral infection model.
Collapse
Affiliation(s)
- Ylenia Longo
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | | | - Julia Werner
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ichiro Katahira
- Institute of Molecular Medicine II, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Robert Jan Lebbink
- Institute of Infection Immunity, University of Utrecht, Utrecht, Netherlands
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| | | | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ingo Drexler
- Institute of Virology, Universitätsklinikum Düsseldorf, Düsselorf, Germany
| |
Collapse
|
2
|
Boulton S, Poutou J, Martin NT, Azad T, Singaravelu R, Crupi MJF, Jamieson T, He X, Marius R, Petryk J, Tanese de Souza C, Austin B, Taha Z, Whelan J, Khan ST, Pelin A, Rezaei R, Surendran A, Tucker S, Fekete EEF, Dave J, Diallo JS, Auer R, Angel JB, Cameron DW, Cailhier JF, Lapointe R, Potts K, Mahoney DJ, Bell JC, Ilkow CS. Single-dose replicating poxvirus vector-based RBD vaccine drives robust humoral and T cell immune response against SARS-CoV-2 infection. Mol Ther 2022; 30:1885-1896. [PMID: 34687845 PMCID: PMC8527104 DOI: 10.1016/j.ymthe.2021.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic requires the continued development of safe, long-lasting, and efficacious vaccines for preventive responses to major outbreaks around the world, and especially in isolated and developing countries. To combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we characterize a temperature-stable vaccine candidate (TOH-Vac1) that uses a replication-competent, attenuated vaccinia virus as a vector to express a membrane-tethered spike receptor binding domain (RBD) antigen. We evaluate the effects of dose escalation and administration routes on vaccine safety, efficacy, and immunogenicity in animal models. Our vaccine induces high levels of SARS-CoV-2 neutralizing antibodies and favorable T cell responses, while maintaining an optimal safety profile in mice and cynomolgus macaques. We demonstrate robust immune responses and protective immunity against SARS-CoV-2 variants after only a single dose. Together, these findings support further development of our novel and versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas T Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Christiano Tanese de Souza
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jack Whelan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarwat T Khan
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Adrian Pelin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sarah Tucker
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Emily E F Fekete
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rebecca Auer
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jonathan B Angel
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - D William Cameron
- Division of Infectious Disease, Department of Medicine, University of Ottawa at The Ottawa Hospital/ Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Réjean Lapointe
- Institut du Cancer de Montréal, Montréal, Québec H2X 0A9, Canada
| | - Kyle Potts
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Calgary, AB T2N 4Z6, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 6A8, Canada; Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, AB T2T 1N4, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Brar G, Farhat NA, Sukhina A, Lam AK, Kim YH, Hsu T, Tong L, Lin WW, Ware CF, Blackman MA, Sun R, Wu TT. Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 2020; 5:102. [PMID: 33298958 PMCID: PMC7644650 DOI: 10.1038/s41541-020-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.
Collapse
Affiliation(s)
- Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Nisar A Farhat
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alisa Sukhina
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alex K Lam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yong Hoon Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tiffany Hsu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wai Wai Lin
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Barnowski C, Ciupka G, Tao R, Jin L, Busch DH, Tao S, Drexler I. Efficient Induction of Cytotoxic T Cells by Viral Vector Vaccination Requires STING-Dependent DC Functions. Front Immunol 2020; 11:1458. [PMID: 32765505 PMCID: PMC7381110 DOI: 10.3389/fimmu.2020.01458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus and currently under investigation as a promising vaccine vector against infectious diseases and cancer. MVA acquired mutations in host range and immunomodulatory genes, rendering the virus deficient for replication in most mammalian cells. MVA has a high safety profile and induces robust immune responses. However, the role of innate immune triggers for the induction of cytotoxic T cell responses after vaccination is incompletely understood. Stimulator of interferon genes (STING) is an adaptor protein which integrates signaling downstream of several DNA sensors and therefore mediates the induction of type I interferons and other cytokines or chemokines in response to various dsDNA viruses. Since the type I interferon response was entirely STING-dependent during MVA infection, we studied the effect of STING on primary and secondary cytotoxic T cell responses and memory T cell formation after MVA vaccination in STING KO mice. Moreover, we analyzed the impact of STING on the maturation of bone marrow-derived dendritic cells (BMDCs) and their functionality as antigen presenting cells for cytotoxic T cells during MVA infection in vitro. Our results show that STING has an impact on the antigen processing and presentation capacity of conventionel DCs and played a crucial role for DC maturation and type I interferon production. Importantly, STING was required for the induction of efficient cytotoxic T cell responses in vivo, since we observed significantly decreased short-lived effector and effector memory T cell responses after priming in STING KO mice. These findings indicate that STING probably integrates innate immune signaling downstream of different DNA sensors in DCs and shapes the cytotoxic T cell response via the DC maturation phenotype which strongly depends on type I interferons in this infection model. Understanding the detailed functions of innate immune triggers during MVA infection will contribute to the optimized design of MVA-based vaccines.
Collapse
Affiliation(s)
- Cornelia Barnowski
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gregor Ciupka
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ronny Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| | - Dirk H Busch
- Institute of Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Sha Tao
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|