1
|
Zárate-Pinzón L, Mejía-Salgado G, Cifuentes-González C, Correa-Jiménez O, Amaris S, Alfaro-Murillo A, Téllez-Zambrano J, Verbel A, Monje-Tobar P, de-la-Torre A. Prevalence of Ophthalmological Manifestations in Patients with Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2025; 45:92. [PMID: 40358744 DOI: 10.1007/s10875-025-01880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Although some reports indicate ocular involvement in Inborn Errors of Immunity (IEI) patients, the characteristics of this association remain unclear. Increased awareness can facilitate early diagnosis and prevention of visual complications. OBJECTIVE To determine the prevalence and characterize ophthalmological manifestations in patients with IEI. METHODS A systematic literature search was performed across Embase, PubMed, and Lilacs. Observational studies with at least 10 IEI patients exhibiting ophthalmological manifestations were reviewed. A meta-analysis using a random effects model, weighted proportion, and 95% confidence intervals were reported as appropriate. RESULTS Sixty-two articles out of the 6,884 studies were included. The pooled prevalence of ocular manifestations in IEI patients was 54% (95%CI = 39-69), with a mean age of 11.1 ± 7.8 years and male predominance. Regarding the type of IEI with ocular involvement, the most frequently affected group was the Combined immunodeficiencies with associated or syndromic features (82%, 95%CI = 66-91), followed by the diseases of immune dysregulation (73%, 95%CI = 27-95), auto-inflammatory disorders (48%, 95%CI = 10-88), and congenital defects of phagocytes (39%, 95%CI = 11-76). Europe had the highest prevalence of patients with ocular manifestations (68%, 95%CI = 32-90). The most common ocular manifestations observed in IEI patients were those affecting ocular mobility, followed by those that involved the anterior segment, posterior segment, eyelids, and adnexal structures. CONCLUSIONS These results highlight a significant burden of ocular involvement in IEI patients, mainly during childhood and associated with amblyogenic factors. Therefore, ophthalmologists, pediatricians, and immunologists must be involved in early detection to prevent ocular complications and overall well-being.
Collapse
Affiliation(s)
- Laura Zárate-Pinzón
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Germán Mejía-Salgado
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Cifuentes-González
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Centre of Excellence in Ocular Inflammation, Colombian Visual Science and Translational Eye Research Institute (CERI), Bogotá, Colombia
| | - Oscar Correa-Jiménez
- Pulmonology and Immunology in Pediatrics Research Group, Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Stefania Amaris
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Alfaro-Murillo
- Division of Clinical Immunology, Department of Internal Medicine, Hospital San Juan de Dios-Caja Costarricense de Seguro Social, San José, Costa Rica
| | - Juanita Téllez-Zambrano
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Angie Verbel
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Paula Monje-Tobar
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Ophthalmology Interest Group Universidad del Rosario (OIG UR), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
- Neuroscience Research Group (NEUROS), Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
- Neuroscience Research Group- NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia.
| |
Collapse
|
2
|
Campbell E, Shaker MS, Williams KW. Clinical updates in inborn errors of immunity: a focus on the noninfectious clinical manifestations. Curr Opin Pediatr 2024; 36:228-236. [PMID: 38299990 DOI: 10.1097/mop.0000000000001331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW In the last 5 years, several new inborn errors of immunity (IEI) have been described, especially in the areas of immune dysregulation and autoinflammation. As a result, the clinical presentation of IEIs has broadened. We review the heterogeneous presentation of IEIs and detail several of the recently described IEIs with a focus on the noninfectious manifestations commonly seen. RECENT FINDINGS IEIs may present with early onset and/or multiple autoimmune manifestations, increased risk for malignancy, lymphoproliferation, severe atopy, autoinflammation and/or hyperinflammation. Because of this, patients can present to a wide array of providers ranging from primary care to various pediatric subspecialists. The International Union of Immunological Societies (IUIS) expert committee has created a phenotypic classification of IEIs in order to help clinicians narrow their evaluation based on the laboratory and clinical findings. SUMMARY Both primary care pediatricians and pediatric subspecialists need to be aware of the common clinical features associated with IEI and recognize when to refer to allergy-immunology for further evaluation. Early diagnosis can lead to earlier treatment initiation and improve clinical outcomes for our patients.
Collapse
Affiliation(s)
- Emily Campbell
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Marcus S Shaker
- Section of Allergy and Clinical Immunology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Kelli W Williams
- Division of Pediatric Pulmonology, Allergy and Immunology, Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
3
|
Bhattad S, Mohite RS, Singh N, Kotecha U, Jhawar P, Ramprakash S, Commondoor R, Jayaram A, Rayabarapu P, Kumar H, Unni J, Cyril G, Kumar S, Pachat D, Jakka S, Makam A, Porta F, Ginigeri C. Profile of 208 patients with inborn errors of immunity at a tertiary care center in South India. Clin Exp Med 2023; 23:5399-5412. [PMID: 37898571 DOI: 10.1007/s10238-023-01225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Primary immune deficiencies or inborn errors of immunity (IEI) are a heterogeneous group of disorders that predispose affected individuals to infections, allergy, autoimmunity, autoinflammation and malignancies. IEIs are increasingly being recognized in the Indian subcontinent. Two hundred and eight patients diagnosed with an IEI during February 2017 to November 2021 at a tertiary care center in South India were included in the study. The clinical features, laboratory findings including microbiologic and genetic data, and treatment and outcome details were analyzed. The diagnosis of IEI was confirmed in a total of 208 patients (198 kindreds) based on relevant immunological tests and/or genetic tests. The male-to-female ratio was 1.8:1. Of the 208 patients, 72 (34.6%) were < 1 yr, 112 (53.8%) were 1-18 years, and 24 (11.5%) were above 18 years. The most common IEI in our cohort was SCID (17.7%) followed by CGD (12.9%) and CVID (9.1%). We also had a significant proportion of patients with DOCK8 deficiency (7.2%), LAD (6.2%) and six patients (2.8%) with autoinflammatory diseases. Autoimmunity was noted in forty-six (22%) patients. Molecular testing was performed in 152 patients by exome sequencing on the NGS platform, and a genetic variant was reported in 132 cases. Twenty-nine children underwent 34 HSCT, and 135 patients remain on supportive therapy such as immunoglobulin replacement and/or antimicrobial prophylaxis. Fifty-nine (28.3%) patients died during the study period, and infections were the predominant cause of mortality. Seven families underwent prenatal testing in the subsequent pregnancy. We describe the profile of 208 patients with IEI, and to the best of our knowledge, this represents the largest data on IEI from the Indian subcontinent reported so far.
Collapse
Affiliation(s)
- Sagar Bhattad
- Pediatric Immunology and Rheumatology, Aster CMI Hospital, Bengaluru, India.
| | - Rachna S Mohite
- Pediatric Immunology and Rheumatology, Aster CMI Hospital, Bengaluru, India
| | - Neha Singh
- Pediatric Immunology and Rheumatology, Aster CMI Hospital, Bengaluru, India
| | | | - Prerna Jhawar
- Department of Fetal Medicine, Rainbow Hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemato-Oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram Commondoor
- Pediatric Hemato-Oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | - Harish Kumar
- Pediatric Intensive Care Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | | | | | | | | | - Fulvio Porta
- Onco-Hematology and Bone Marrow Transplantation (BMT) Unit, Ospedale Dei Bambini, Brescia, Italy
| | - Chetan Ginigeri
- Pediatric Intensive Care Unit, Aster CMI Hospital, Bengaluru, India
| |
Collapse
|
4
|
Pan Y, Shang G, Li J, Zhang Y, Liu J, Ji Y, Ding J, Wang X. Case Report: A novel IRF2BP2 mutation in an IEI patient with recurrent infections and autoimmune disorders. Front Immunol 2023; 14:967345. [PMID: 37350971 PMCID: PMC10282741 DOI: 10.3389/fimmu.2023.967345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/20/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Inborn errors of immunity (IEI) are a heterogeneous group of disorders characterized by increased risk of infections, autoimmunity, autoinflammatory diseases, malignancy and allergy. Next-generation sequencing has revolutionized the identification of genetic background of these patients and assists in diagnosis and treatment. In this study, we identified a probable unique monogenic cause of IEI, and evaluated the immunological methods and pathogenic detections. Methods A family with a member with a clinical diagnosis of IEI was screened by whole genomic sequencing (WGS). Demographic data, clinical manifestations, medical history, physical examination, laboratory findings and imaging features of the patient were extracted from medical records. Comprehensive immune monitoring methods include a complete blood count with differential, serum levels of cytokines and autoantibodies, T-cell and B-cell subsets analysis and measurement of serum immunoglobulins. In addition, metagenomic sequencing (mNGS) of blood, cerebrospinal fluid and biopsy from small intestine were used to detect potential pathogens. Results The patient manifested with recurrent infections and autoimmune disorders, who was eventually diagnosed with IEI. Repetitive mNGS tests of blood, cerebrospinal fluid and biopsy from small intestine didn't detect pathogenic microorganism. Immunological tests showed a slightly decreased level of IgG than normal, elevated levels of tumor necrosis factor and interleukin-6. Lymphocyte flow cytometry showed elevated total B cells and natural killer cells, decreased total T cells and B-cell plasmablasts. WGS of the patient identified a novel heterozygous mutation in IRF2BP2 (c.439_450dup p. Thr147_Pro150dup), which was also confirmed in his father. The mutation was classified as variant of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics guidelines. Conclusion We identified a novel IRF2BP2 mutation in a family with a member diagnosed with IEI. Immune monitoring and WGS as auxiliary tests are helpful in identifying genetic defects and assisting diagnosis in patients with clinically highly suspected immune abnormalities and deficiencies in inflammation regulation. In addition, mNGS techniques allow a more comprehensive assessment of the pathogenic characteristics of these patients. This report further validates the association of IRF2BP2 deficiency and IEI, and expands IEI phenotypes.
Collapse
Affiliation(s)
- Yiwen Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoguo Shang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianying Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- The State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Pieniawska-Śmiech K, Lewandowicz-Uszyńska A, Zemelka-Wiacek M, Jutel M. Assessment of autoantibodies in paediatric population with primary immunodeficiencies: a pilot study. BMC Immunol 2023; 24:8. [PMID: 37270495 DOI: 10.1186/s12865-023-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The correlation between primary immunodeficiencies (PIDs) and autoimmunity shows ethnic and geographical diversity. The aim of our study was to accumulate more data in paediatric PID population. METHODS 58 children aged 1-17 and with PID (study group) and 14 age-matched immunocompetent individuals (control group) were included in the study. Serum levels of 17 different specific IgG antibodies against autoantigens were measured by means of a quantitative enzyme immunoassay. Immunoglobulin levels were analysed in relation to a detailed medical examination. RESULTS Autoantibodies against one or more antigens were detected in the sera of 24.14% (n = 14) subjects in the study group. The most frequent were anti-thyroid peroxidase (anti-TPO) antibodies (n = 8; 13.8%). Anti-TPO antibody levels were elevated more often in PID patients with a positive family history of autoimmune diseases (p = 0.04). The screening for anti-deamidated gliadin peptide (DGP) and anti-tissue transglutaminase (tTG) antibodies in our series allowed identifying two previously undiagnosed cases of coeliac disease in PID patients. There was no statistically significant difference between the study and the control group in terms of the autoantibodies prevalence. CONCLUSIONS This study provides data on the prevalence of autoantibodies in paediatric population diagnosed with PID. Selected autoantibodies (i.e. anti-tTG, anti-DGP) might be useful for the screening of PID to avoid the delay of diagnosis of an autoimmune disease.
Collapse
Affiliation(s)
- Karolina Pieniawska-Śmiech
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland.
| | - Aleksandra Lewandowicz-Uszyńska
- Department of Clinical Immunology and Paediatrics, Provincial Hospital J.Gromkowski, 51-149, Wroclaw, Poland
- 3rd Department and Clinic of Paediatrics, Immunology and Rheumatology of Developmental Age, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368, Wroclaw, Poland.
- ALL-MED Research Institute, 53-201, Wroclaw, Poland.
| |
Collapse
|
6
|
Azizi G, Hesari MF, Sharifinejad N, Fayyaz F, Chavoshzadeh Z, Mahdaviani SA, Alan MS, Jamee M, Tavakol M, Sadri H, Shahrestanaki E, Nabavi M, Ebrahimi SS, Shirkani A, Vosughi Motlagh A, Delavari S, Rasouli SE, Esmaeili M, Salami F, Yazdani R, Rezaei N, Abolhassani H. The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages. J Clin Immunol 2023; 43:819-834. [PMID: 36790564 PMCID: PMC10110688 DOI: 10.1007/s10875-023-01442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/22/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. METHODS Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. RESULTS A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. CONCLUSION Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fattah Hesari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Niusha Sharifinejad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Sadri
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ehsan Shahrestanaki
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology, School of Public Health, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sareh Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Moallem St, Bushehr, Iran
| | - Ahmad Vosughi Motlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Erfan Rasouli
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, NEO, Blickagangen 16, 14157, Huddinge, Stockholm, Sweden.
| |
Collapse
|
7
|
Mohammadi F, Yadegar A, Mardani M, Ayati A, Abolhassani H, Rezaei N. Organ-based clues for diagnosis of inborn errors of immunity: A practical guide for clinicians. Immun Inflamm Dis 2023; 11:e833. [PMID: 37102642 PMCID: PMC10091206 DOI: 10.1002/iid3.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
Inborn errors of immunity (IEI) comprise a group of about 490 genetic disorders that lead to aberrant functioning or the development of distinct immune system components. So far, a broad spectrum of IEI-related manifestations has been noted in the literature. Due to overlapping signs and symptoms of IEI, physicians face challenges in appropriately diagnosing and managing affected individuals. The last decade has witnesses improving in the molecular diagnosis of IEI patients. As a result, it can be the mainstay of diagnostic algorithms, prognosis, and possibly therapeutic interventions in patients with IEI. Furthermore, reviewing IEI clinical complications demonstrates that the manifestations and severity of the symptoms depend on the involved gene that causes the disease and its penetrance. Although several diagnostic criteria have been used for IEI, not every patient can be explored in the same way. As a result of the failure to consider IEI diagnosis and the variety of diagnostic capabilities and laboratory facilities in different regions, undiagnosed patients are increasing. On the other hand, early diagnosis is an almost essential element in improving the quality of life in IEI patients. Since there is no appropriate guideline for IEI diagnosis in different organs, focusing on the clues in the patient's chief complaint and physical exams can help physicians narrow their differential diagnosis. This article aims to provide a practical guide for IEI diagnosis based on the involved organ. We hope to assist clinicians in keeping IEI diagnosis in mind and minimizing possible related complications due to delayed diagnosis.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- School of MedicineTehran University of Medical SciencesTehranIran
- Universal Scientific Education and Research Network (USERN)Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)TehranIran
| | - Amirhossein Yadegar
- School of MedicineTehran University of Medical SciencesTehranIran
- Universal Scientific Education and Research Network (USERN)Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)TehranIran
| | - Mahta Mardani
- School of MedicineTehran University of Medical SciencesTehranIran
- Universal Scientific Education and Research Network (USERN)Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)TehranIran
| | - Aryan Ayati
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart CenterTehran University of Medical ScienceTehranIran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN)Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)TehranIran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Primary Immunodeficiency Diseases Network (PIDNet)TehranIran
- Children's Medical CenterTehranIran
| |
Collapse
|
8
|
Shahrbabaki ZS, Chavoshzadeh Z, Abdollahimajd F, sharafian S, Jamee M, Bondarenko A, Mahdavi T. Skin manifestations in children with inborn errors of immunity in a tertiary care hospital in Iran. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2023. [DOI: 10.1002/cia2.12296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Zahra Salehi Shahrbabaki
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Chavoshzadeh
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Clinical Research Development Unit of Shohada‐e Tajrish Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Samin sharafian
- Immunology and Allergy Department, Mofid Children's Hospital Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Anastasia Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medic School International European Kyiv Kyiv Ukraine
| | - Tolue Mahdavi
- Department of Allergy and Clinical Immunology, Hazrat Rasoul Hospital Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
9
|
Al Farsi T, Ahmed K, Alshekaili J, Al Kindi M, Cook M, Al-Hosni A, Ansari Z, Nasr I, Al Sukaiti N. Immune Dysregulation in Monogenic Inborn Errors of Immunity in Oman: Over A Decade of Experience From a Single Tertiary Center. Front Immunol 2022; 13:849694. [PMID: 35464432 PMCID: PMC9019296 DOI: 10.3389/fimmu.2022.849694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inborn errors of immunity (IEIs) are being recognized as an important cause of morbidity and mortality in communities with a high frequency of consanguinity, such as Oman, and thus recessively inherited conditions. Various monogenic causes of IEI have been recently discovered; however, the disease phenotype may be variable and does not always include infection at presentation, leading to a delay in diagnosis and a poor outcome. It is now well recognized that immune dysregulation manifestations are observed in a significant proportion of patients with IEI and occasionally precede infection. Methods Here, we retrospectively report the epidemiological, clinical, immunological, and molecular findings and outcomes from 239 patients with IEI who were diagnosed and managed at the Royal Hospital, Oman, from January 2010 to October 2021. Results The estimated annual cumulative mean incidence of IEI was 25.5 per 100,000 Omani live births with a total prevalence of 15.5 per 100,000 Omani population. Both the high incidence and prevalence are attributed to the high rate of consanguinity (78.2%). Defects affecting cellular and humoral immunity including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), and CID with syndromic features were the predominant defects in IEI (36%). Immune dysregulation was a prominent manifestation and occurred in approximately a third of all patients with IEI (32%), with a mean age of onset of 81 months and a mean diagnostic delay of 50.8 months. The largest percentage of patients who showed such clinical signs were in the category of diseases of immune dysregulation (41%), followed by predominantly antibody deficiency (18%). The overall mortality rate in our cohort was 25.1%, with higher death rates seen in CID including SCID and diseases of immune dysregulation. Conclusion Immune dysregulation is a frequent manifestation of Omani patients with IEI. Early detection through raising awareness of signs of IEI including those of immune dysregulation and implementation of newborn screening programs will result in early intervention and improved overall outcome.
Collapse
Affiliation(s)
- Tariq Al Farsi
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Khwater Ahmed
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mahmood Al Kindi
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Matthew Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia.,Translational Research Unit, Department of Immunology, The Canberra Hospital, Canberra, NSW, Australia.,Centre for Personalized Immunology (National Health and Medical Research Council (NHMRC) Centre of Research Excellence), John Curtin School of Medical Research, Australian National University, Canberra, NSW, Australia
| | - Aliya Al-Hosni
- Molecular Genetics, National Genetics Center, Muscat, Oman
| | - Zainab Ansari
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Iman Nasr
- Department of Adult Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| | - Nashat Al Sukaiti
- Department of Pediatric Allergy and Clinical Immunology, The Royal Hospital, Muscat, Oman
| |
Collapse
|
10
|
Mansour R, Bsat YE, Fadel A, El-Orfali Y, Noun D, Tarek N, Kabbara N, Abboud M, Massaad MJ. Diagnosis and Treatment of a Patient With Severe Combined Immunodeficiency Due to a Novel Homozygous Mutation in the IL-7Rα Chain. Front Immunol 2022; 13:867837. [PMID: 35418989 PMCID: PMC8996178 DOI: 10.3389/fimmu.2022.867837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The interleukin-7 receptor (IL-7R) is expressed on lymphoid cells and plays an important role in the development, homeostasis, survival, and proliferation of T cells. Bi-allelic mutations in the IL-7Rα chain abolish T cell development and function resulting in severe combined immunodeficiency disease. In this manuscript, we investigate a 1 year-old patient born to consanguineous parents, who suffered from autoimmune hemolytic anemia since birth associated with recurrent severe infections. Flow cytometric analysis of the patient’s peripheral blood demonstrated elevated numbers of B and NK cells, decreased numbers of T cells, defective thymic output, a predominance of memory T cells, and absent T cell proliferation. Next Generation Sequencing identified a novel homozygous pathogenic mutation in IL7RA (c.379G>A) that resulted in aberrant IL7RA RNA splicing and absent IL-7Rα expression. The patient was successfully transplanted using her HLA-matched relative as donor. One year after transplant, the patient is clinically stable with normal reconstitution of donor T cells that express IL-7Rα, a significant increase in the percentages of recent thymic emigrant and peripheral T cells, normalization of naïve and memory T cells, and restoration of her T cell’s proliferative response. Therefore, using genetic and functional approaches, we identified a novel deleterious mutation in IL-7Rα that results in T-B+NK+ phenotype, and report successful hematopoietic stem cell transplantation of the patient. This represents the first bedside-to-bench-and-back case entirely performed on a patient with severe combined immunodeficiency at the American University of Beirut Medical Center.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yasmin El Bsat
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Anthony Fadel
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dolly Noun
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nidale Tarek
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nabil Kabbara
- Division of Pediatric Hematology Oncology, Rafic Hariri University Hospital, Beirut, Lebanon.,Division of Pediatric Hematology Oncology, Centre Hospitalier du Nord, Zgharta, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Mitsui-Sekinaka K, Sekinaka Y, Endo A, Imai K, Nonoyama S. The Primary Immunodeficiency Database in Japan. Front Immunol 2022; 12:805766. [PMID: 35082792 PMCID: PMC8786595 DOI: 10.3389/fimmu.2021.805766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
The Primary Immunodeficiency Database in Japan (PIDJ) is a registry of primary immunodeficiency diseases (PIDs) that was established in 2007. The database is a joint research project with research groups associated with the Ministry of Health, Labor and Welfare; the RIKEN Research Center for Allergy and Immunology (RCAI); and the Kazusa DNA Research Institute (KDRI). The PIDJ contains patient details, including the age, sex, clinical and laboratory findings, types of infections, genetic analysis results, and treatments administered. In addition, web-based case consultation is also provided. The PIDJ serves as a database for patients with PIDs and as a patient consultation service connecting general physicians with PID specialists and specialized hospitals. Thus, the database contributes to investigations related to disease pathogenesis and the early diagnosis and treatment of patients with PIDs. In the 9 years since the launch of PIDJ, 4,481 patients have been enrolled, of whom 64% have been subjected to genetic analysis. In 2017, the Japanese Society for Immunodeficiency and Autoinflammatory Diseases (JSIAD) was established to advance the diagnosis, treatment, and research in the field of PIDs and autoinflammatory diseases (AIDs). JSIAD promotes the analysis of the pathogenesis of PIDs and AIDs, enabling improved patient care and networking via the expansion of the database and construction of a biobank obtained from the PIDJ. The PIDJ was upgraded to “PIDJ ver.2” in 2019 by JSIAD. Currently, PIDJ ver.2 is used as a platform for epidemiological studies, genetic analysis, and pathogenesis evaluation for PIDs and AIDs.
Collapse
Affiliation(s)
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Akifumi Endo
- Department of Pediatrics and Clinical Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
12
|
Al-Herz W, Zainal M, Nanda A. A Prospective Survey of Skin Manifestations in Children With Inborn Errors of Immunity From a National Registry Over 17 Years. Front Immunol 2021; 12:751469. [PMID: 34659256 PMCID: PMC8514786 DOI: 10.3389/fimmu.2021.751469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives Reports on skin manifestations in inborn errors of immunity (IEI) are based on retrospective analysis, small series, or isolated case reports. The present prospective study aimed to determine the spectrum of skin manifestations in children with IEI and their relevance to specific molecular defects. Materials and Methods The data were obtained from the Kuwait National Primary Immunodeficiency Disorders Registry during the period of 2004–2020. Results A total of 313 pediatric cases of IEI, 71% diagnosed at molecular level, were registered with a cumulative follow-up period of 29,734 months. Skin manifestations were seen in 40.3% of the patients, and they were among the presenting manifestations in 33%. Patients with skin manifestations were older at both onset and diagnosis ages of IEI symptoms, but this was statistically significant for the latter only. The diagnosis delay was significantly longer in patients with skin manifestations. There was a statistically significant association between having skin manifestations and IEI category, being more common in patients with complement deficiencies, combined immunodeficiencies, and diseases of immune dysregulation. There was no statistically significant association between having skin manifestations and both gender and survival. Skin infections were the most frequent manifestations followed by eczema and autoimmune associations. Among IEI with more than 10 cases, skin lesions were a consistent finding in dedicator of cytokinesis 8 (DOCK8) deficiency, hyper IgE syndrome, ataxia-telangiectasia, and recombination activation gene (RAG)1 deficiency. Conclusions Skin manifestations are common in IEI patients, and they had significant diagnosis delay and referral to specialists. Improvement of awareness about IEI is needed among pediatricians and dermatologists.
Collapse
Affiliation(s)
- Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.,Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Mohammad Zainal
- Department of Quantitative Methods and Information Systems, College of Business Administration, Kuwait University, Kuwait City, Kuwait
| | - Arti Nanda
- As'ad Al-Hamad Dermatology Center, Kuwait City, Kuwait
| |
Collapse
|
13
|
Abolhassani H, Azizi G, Sharifi L, Yazdani R, Mohsenzadegan M, Delavari S, Sohani M, Shirmast P, Chavoshzadeh Z, Mahdaviani SA, Kalantari A, Tavakol M, Jabbari-Azad F, Ahanchian H, Momen T, Sherkat R, Sadeghi-Shabestari M, Aleyasin S, Esmaeilzadeh H, Al-Herz W, Bousfiha AA, Condino-Neto A, Seppänen M, Sullivan KE, Hammarström L, Modell V, Modell F, Quinn J, Orange JS, Aghamohammadi A. Global systematic review of primary immunodeficiency registries. Expert Rev Clin Immunol 2021; 16:717-732. [PMID: 32720819 DOI: 10.1080/1744666x.2020.1801422] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION During the last 4 decades, registration of patients with primary immunodeficiencies (PID) has played an essential role in different aspects of these diseases worldwide including epidemiological indexes, policymaking, quality controls of care/life, facilitation of genetic studies and clinical trials as well as improving our understanding about the natural history of the disease and the immune system function. However, due to the limitation of sustainable resources supporting these registries, inconsistency in diagnostic criteria and lack of molecular diagnosis as well as difficulties in the documentation and designing any universal platform, the global perspective of these diseases remains unclear. AREAS COVERED Published and unpublished studies from January 1981 to June 2020 were systematically reviewed on PubMed, Web of Science and Scopus. Additionally, the reference list of all studies was hand-searched for additional studies. This effort identified a total of 104614 registered patients and suggests identification of at least 10590 additional PID patients, mainly from countries located in Asia and Africa. Molecular defects in genes known to cause PID were identified and reported in 13852 (13.2% of all registered) patients. EXPERT OPINION Although these data suggest some progress in the identification and documentation of PID patients worldwide, achieving the basic requirement for the global PID burden estimation and registration of undiagnosed patients will require more reinforcement of the progress, involving both improved diagnostic facilities and neonatal screening.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences , Karaj, Iran
| | - Laleh Sharifi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Monireh Mohsenzadegan
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Paniz Shirmast
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases(NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences , Karaj, Iran
| | | | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Lsfahan University of Medical Sciences , Isfahan, Lran
| | - Mahnaz Sadeghi-Shabestari
- Immunology research center of Tabriz, TB and lung research center of Tabriz, Children Hospital, Tabriz University of Medical Science , Tabriz, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | | | - Waleed Al-Herz
- Department of Pediatrics, Kuwait University , Kuwait City, Kuwait.,Allergy and Clinical Immunology Unit, Department of Pediatrics, Al-Sabah Hospital , Kuwait City, Kuwait
| | - Ahmed Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation Et d'Allergie LICIA, Faculty of Medicine and Pharmacy, Hassan II University , Casablanca, Morocco.,Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, Hassan II University , Casablanca, Morocco.,The African Society for Immunodeficiencies (ASID) Registry
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil.,The Latin American Society for Immunodeficiencies (LASID) Registry
| | - Mikko Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,Rare Disease Center and Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital , Helsinki, Finland.,European Society for Immunodeficiencies (ESID) Registry
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia , Philadelphia, PA, USA.,The United States Immunodeficiency Network (USIDNET) Registry
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Vicki Modell
- Jeffrey Modell Foundation (JMF) , New York City, NY, USA
| | - Fred Modell
- Jeffrey Modell Foundation (JMF) , New York City, NY, USA
| | - Jessica Quinn
- Jeffrey Modell Foundation (JMF) , New York City, NY, USA
| | - Jordan S Orange
- Jeffrey Modell Foundation (JMF) , New York City, NY, USA.,Department of Pediatrics, Columbia University College of Physicians and Surgeons , New York, NY, USA
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences , Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Science , Tehran, Iran.,Asia Pacific Society for Immunodeficiencies (APSID) Registry
| |
Collapse
|
14
|
Azizi G, Tavakol M, Yazdani R, Delavari S, Moeini Shad T, Rasouli SE, Jamee M, Pashangzadeh S, Kalantari A, Shariat M, Shafiei A, Mohammadi J, Hassanpour G, Chavoshzadeh Z, Mahdaviani SA, Momen T, Behniafard N, Nabavi M, Bemanian MH, Arshi S, Molatefi R, Sherkat R, Shirkani A, Alyasin S, Jabbari-Azad F, Ghaffari J, Mesdaghi M, Ahanchian H, Khoshkhui M, Eslamian MH, Cheraghi T, Dabbaghzadeh A, Nasiri Kalmarzi R, Esmaeilzadeh H, Tafaroji J, Khalili A, Sadeghi-Shabestari M, Darougar S, Moghtaderi M, Ahmadiafshar A, Shakerian B, Heidarzadeh M, Ghalebaghi B, Fathi SM, Darabi B, Fallahpour M, Mohsenzadeh A, Ebrahimi S, Sharafian S, Vosughimotlagh A, Tafakoridelbari M, Rahimi Haji-Abadi M, Ashournia P, Razaghian A, Rezaei A, Salami F, Shirmast P, Bazargan N, Mamishi S, Khazaei HA, Negahdari B, Shokri S, Nabavizadeh SH, Bazregari S, Ghasemi R, Bayat S, Eshaghi H, Rezaei N, Abolhassani H, Aghamohammadi A. Autoimmune manifestations among 461 patients with monogenic inborn errors of immunity. Pediatr Allergy Immunol 2021; 32:1335-1348. [PMID: 33774840 DOI: 10.1111/pai.13510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND The inborn errors of immunity (IEIs) are a group of heterogeneous disorders mainly characterized by severe and recurrent infections besides other complications including autoimmune and inflammatory diseases. In this study, we aim to evaluate clinical, immunologic, and molecular data of monogenic IEI patients with and without autoimmune manifestations. METHODS We have retrospectively screened cases of monogenic IEI in the Iranian PID registry for the occurrence of autoimmunity and immune dysregulation. A questionnaire was filled for all qualified patients with monogenic defects to evaluate demographic, laboratory, clinical, and molecular data. RESULTS A total of 461 monogenic IEI patients (290 male and 171 female) with a median (IQR) age of 11.0 (6.0-20.0) years were enrolled in this study. Overall, 331 patients (72.1%) were born to consanguineous parents. At the time of the study, 330 individuals (75.7%) were alive and 106 (24.3%) were deceased. Autoimmunity was reported in 92 (20.0%) patients with a median (IQR) age at autoimmune diagnosis of 4.0 (2.0-7.0) years. Sixteen patients (3.5%) showed autoimmune complications (mostly autoimmune cytopenia) as the first presentation of the disease. Most of the patients with autoimmunity were diagnosed clinically with common variable immunodeficiency (42.4%). The frequency of sinusitis and splenomegaly was significantly higher in patients with autoimmunity than patients without autoimmunity. In patients with autoimmunity, the most common pathogenic variants were identified in LRBA (in 21 patients, 23.0%), ATM (in 13 patients, 14.0%), and BTK (in 9 patients, 10.0%) genes. In the evaluation of autoimmunity by different genes, 4 of 4 IL10RB (100%), 3 of 3 AIRE (100%), and 21 of 30 LRBA (70.0%) mutated genes had the highest prevalence of autoimmunity. CONCLUSIONS Autoimmune phenomena are common features among patients with monogenic IEI and are associated with a more complicated course of the disease. Therefore, when encountering autoimmune disorders, especially in the setting of dysgammaglobulinemia, it would be appropriate to conduct next-generation sequencing to discover responsible genes for the immune dysregulation at an early stage of the disease.
Collapse
Affiliation(s)
- Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Erfan Rasouli
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Behniafard
- Department of Allergy and Clinical Immunology, Shahid Sadoughi University of Medical Sciences, and Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Javad Ghaffari
- Molecular and Cell Biology Research Center, Pediatric Infectious Diseases Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehrnaz Mesdaghi
- Immunology and Allergy Department, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhui
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Taher Cheraghi
- Department of Pediatrics, 17 Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Dabbaghzadeh
- Pediatric Infectious Diseases Research Center, Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rasoul Nasiri Kalmarzi
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Javad Tafaroji
- Department of Pediatrics, Qom University of Medical Sciences, Qom, Iran
| | - Abbas Khalili
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahnaz Sadeghi-Shabestari
- Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Children Hospital, Tabriz University of Medical science, Tabriz, Iran
| | - Sepideh Darougar
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Moghtaderi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Behzad Shakerian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Heidarzadeh
- Department of Immunology and Allergy, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Ghalebaghi
- Department of Pediatrics, 17 Shahrivar Children's Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mohammad Fathi
- Department of Immunology and Allergy, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Behzad Darabi
- Department of Immunology and Allergy, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Mohsenzadeh
- Department of Pediatrics, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sarehsadat Ebrahimi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Sharafian
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Vosughimotlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mitra Tafakoridelbari
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziyar Rahimi Haji-Abadi
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ashournia
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Razaghian
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Pediatrics Center of Excellences, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Paniz Shirmast
- Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Bazargan
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Mamishi
- Pediatric Infectious Diseases Research Center, Tehran University of Medical, Sciences, Tehran, Iran
| | - Hossein Ali Khazaei
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Bazregari
- Department of Allergy and Immunology, Bandar Abbas Children's Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ramin Ghasemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Bayat
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Eshaghi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Iranian Primary Immunodeficiencies Network (IPIN), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Alzyoud R, Alansari S, Maaitah H, AlDossari H, Monies D, Al-Mayouf SM. Familial Clustering of Juvenile Psoriatic Arthritis Associated with a Hemizygous FOXP3 Mutation. Curr Rheumatol Rep 2021; 23:64. [PMID: 34216291 DOI: 10.1007/s11926-021-01026-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW We describe the clinical and genetic findings in four patients from a single family who presented with refractory psoriatic arthritis and were hemizygous in the forkhead box protein 3 (FOXP3) gene (c.1222G>A). RECENT FINDINGS We report four siblings with hemizygous mutation in the FOXP3 gene (c.1222G>A) who presented with type 1 diabetes mellitus and psoriatic arthritis poorly responsive to treatment. Our findings expand the phenotype spectrum of FOXP3 mutations. Immune dysregulation, polyendocrinopathy, and enteropathy, X-linked (IPEX) syndrome is a rare disorder caused by mutations in FOXP3 gene, which lead to early onset of constellation of autoimmune manifestations. This report highlights the influence of immune dysregulation in juvenile arthritis.
Collapse
Affiliation(s)
- Raed Alzyoud
- Department of Pediatric Rheumatology, Immunology & Allergy, Queen Rania Children Hospital, Amman, Jordan
| | - Shahad Alansari
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heba Maaitah
- Department of Pediatric Rheumatology, Immunology & Allergy, Queen Rania Children Hospital, Amman, Jordan
| | - Haya AlDossari
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sulaiman M Al-Mayouf
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Tahiat A, Yagoubi A, Ladj MS, Belbouab R, Aggoune S, Atek L, Bouziane D, Melzi S, Boubidi C, Drali W, Bendahmane C, Iguerguesdaoune H, Taguemount S, Soufane A, Oukil A, Ketfi A, Messaoudi H, Boukhenfouf N, Ifri MA, Bencharif Madani T, Belhadj H, Benhala KN, Khiari M, Cherif N, Smati L, Arada Z, Zeroual Z, Bouzerar Z, Ibsaine O, Maouche H, Boukari R, Djenouhat K. Diagnostic and Predictive Contribution of Autoantibodies Screening in a Large Series of Patients With Primary Immunodeficiencies. Front Immunol 2021; 12:665322. [PMID: 33868317 PMCID: PMC8047634 DOI: 10.3389/fimmu.2021.665322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives To evaluate the diagnostic and predictive contribution of autoantibodies screening in patients with primary immunodeficiencies (PIDs). Methods In the present study, PID patients and healthy controls have been screened for 54 different autoantibodies. The results of autoantibodies screening in PID patients were correlated to the presence of autoimmune diseases. Results A total of 299 PID patients were included in this study with a predominance of antibody deficiencies (27.8%) followed by immunodeficiencies affecting cellular and humoral immunity (26.1%) and complement deficiencies (22.7%). Autoimmune manifestations were present in 82 (27.4%) patients. Autoimmune cytopenia (10.4%) was the most common autoimmune disease followed by gastrointestinal disorders (10.0%), rheumatologic diseases (3.7%), and endocrine disorders (3.3%). Autoantibodies were found in 32.4% of PID patients and 15.8% of healthy controls (P < 0.0005). Anti-nuclear antibodies (ANA) (10.0%), transglutaminase antibody (TGA) (8.4%), RBC antibodies (6.7%), anti-smooth muscle antibody (ASMA) (5.4%), and ASCA (5.0%) were the most common autoantibodies in our series. Sixty-seven out of the 82 patients with autoimmune manifestations (81.7%) were positive for one or more autoantibodies. Eleven out of the 14 patients (78.6%) with immune thrombocytopenia had positive platelet-bound IgM. The frequencies of ASCA and ANCA among patients with IBD were 47.4% and 21.0% respectively. All patients with celiac disease had TGA-IgA, while six out of the 11 patients with rheumatologic diseases had ANA (54.5%). Almost one third of patients (30/97) with positive autoantibodies had no autoimmune manifestations. ANA, rheumatoid factor, ASMA, anti-phospholipid antibodies and ANCA were often detected while specific AID was absent. Despite the low positive predictive value of TGA-IgA and ASCA for celiac disease and inflammatory bowel disease respectively, screening for these antibodies identified undiagnosed disease in four patients with positive TGA-IgA and two others with positive ASCA. Conclusion The present study provides valuable information about the frequency and the diagnostic/predictive value of a large panel of autoantibodies in PIDs. Given the frequent association of some AIDs with certain PIDs, screening for corresponding autoantibodies would be recommended. However, positivity for autoantibodies should be interpreted with caution in patients with PIDs due to their low positive predictive value.
Collapse
Affiliation(s)
- Azzeddine Tahiat
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Abdelghani Yagoubi
- Pediatric Gastroenterology, Centre Algérois de Pédiatrie, Algiers, Algeria
| | - Mohamed Samir Ladj
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Reda Belbouab
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Samira Aggoune
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Laziz Atek
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Djamila Bouziane
- Department of Pediatrics, Ain Taya Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Souhila Melzi
- Department of Pediatrics, Bab El-Oued University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Chahinez Boubidi
- Department of Pediatrics A, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Warda Drali
- Department of Pediatrics B, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | | | - Hamza Iguerguesdaoune
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Sihem Taguemount
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Asma Soufane
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Asma Oukil
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Abdalbasset Ketfi
- Department of Pneumology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Hassen Messaoudi
- Department of Internal Medicine, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | | | | | | | - Hayet Belhadj
- Department of Pediatrics, Central Hospital of the Army, Algiers, Algeria
| | - Keltoum Nafissa Benhala
- Department of Pediatrics A, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Mokhtar Khiari
- Department of Pediatrics A, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Nacera Cherif
- Department of Pediatrics B, Beni Messous University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Leila Smati
- Department of Pediatrics, Bologhine Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zakia Arada
- Department of Pediatrics B, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zoulikha Zeroual
- Department of Pediatrics A, Hussein Dey University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Zair Bouzerar
- Department of Pediatrics, Bab El-Oued University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Ouardia Ibsaine
- Department of Pediatrics, Ain Taya Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Hachemi Maouche
- Department of Pediatrics, El-Harrach Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Rachida Boukari
- Department of Pediatrics, Mustapha University Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| | - Kamel Djenouhat
- Department of Medical Biology, Rouiba Hospital, Algiers Faculty of Medicine, University of Algiers 1, Algiers, Algeria
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Healthcare has already been impacted by the fourth industrial revolution exemplified by tip of spear technology, such as artificial intelligence and quantum computing. Yet, there is much to be accomplished as systems remain suboptimal, and full interoperability of digital records is not realized. Given the footprint of technology in healthcare, the field of clinical immunology will certainly see improvements related to these tools. RECENT FINDINGS Biomedical informatics spans the gamut of technology in biomedicine. Within this distinct field, advances are being made, which allow for engineering of systems to automate disease detection, create computable phenotypes and improve record portability. Within clinical immunology, technologies are emerging along these lines and are expected to continue. SUMMARY This review highlights advancements in digital health including learning health systems, electronic phenotyping, artificial intelligence and use of registries. Technological advancements for improving diagnosis and care of patients with primary immunodeficiency diseases is also highlighted.
Collapse
|
18
|
Mansour R, El-Orfali Y, Saber A, Noun D, Youssef N, Youssef Y, Hanna-Wakim R, Dbaibo G, Abboud M, Massaad MJ. Wiskott-Aldrich Syndrome in four male siblings from a consanguineous family from Lebanon. Clin Immunol 2020; 219:108573. [PMID: 32814211 DOI: 10.1016/j.clim.2020.108573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency disorder (PID) characterized by microthrombocytopenia, bloody diarrhea, eczema, recurrent infections, and a high incidence of autoimmunity and malignancy. OBJECTIVE To investigate the mechanism of thrombocytopenia and infections in four boys of consanguineous parents from Lebanon. METHODS Patient gDNA was studied using Next Generation Sequencing and Sanger Sequencing. Protein expression was determined by immunoblotting, and mRNA expression by semi-quantitative RT-PCR. F-actin polymerization and cellular proliferation were assayed by flow cytometry. RESULTS We identified a threonine to a methionine change at position 45 (T45M) of the WAS protein (WASp) that abolished protein expression and disturbed F-actin polymerization and T cell proliferation, but not B cell proliferation. In addition, the levels of the WAS-interacting protein (WIP) were significantly decreased in the patients. CONCLUSION The mutation identified severely destabilizes WASp and affects the downstream signaling events important for T cell function, but not B cell function. It was previously known that the stability of WASp depends on WIP. In this manuscript, we report that the stability of WIP also depends on WASp. Finally, it is important to suspect X-linked PIDs even in consanguineous families. CLINICAL IMPLICATIONS The patients are above the optimal age for transplant in WAS, and it is difficult to identify one or more donors for four patients, therefore, they represent ideal candidates for gene therapy or interleukin-2 therapy.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Antoine Saber
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Dolly Noun
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, Beirut, Lebanon; Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nour Youssef
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Youssef
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ghassan Dbaibo
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Miguel Abboud
- Division of Pediatric Hematology Oncology, Department of Pediatrics and Adolescent Medicine, Beirut, Lebanon; Children's Cancer Center of Lebanon, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|