1
|
Chen ST, Jheng CY, Lee YC, Huang WC, Lee SY, Chen YH. Intermittent hypoxia-reoxygenation-induced miRNAs inhibit expression of IRF and interferon genes but activate NF-κB and expression of pulmonary fibrosis markers in human small airway epithelial cells. Life Sci 2025; 370:123569. [PMID: 40120975 DOI: 10.1016/j.lfs.2025.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
AIM Intermittent hypoxia-reoxygenation (H/R) has been demonstrated to be associated with aviation and various respiratory diseases, and hence it is of interest to unravel the regulatory mechanisms underlying the H/R-induced innate immune and inflammatory responses in both healthy and COPD-diseased human small airway epithelial cells (SAECs). MAIN METHODS The normal healthy and COPD-diseased SAECs (i.e., N-SAECs and D-SAECs) were purchased from PromoCell biotechnology company and respectively cultured under normoxia (21 % O2) or 12/12-h cycles of H/R (i.e., 1 % O2 and 21 % O2 alternately) for 6 days in total for 2D cultures and 21 days in total for the air-liquid interface 3D cultures, followed by qPCR analyses, miRNA fluorescence in situ hybridization, luciferase reporter assays, and immunofluorescence staining. KEY FINDINGS Human SAECs cultured under 12/12-h cycles of H/R showed dramatically increased expression of HIF1A and the H/R-inducible miRNAs miR-129-1-3p, miR-1290 and miR-193b-5p, with miR-129-1-3p and miR-193b-5p targeting and inhibiting IRF5 and IRF7 mRNAs, hence downregulating both the type I and II interferon genes in SAECs cultured under H/R. In addition, miR-129-1-3p, miR-1290 and miR-193b-5p all targeted and inhibited SOCS3 mRNA, hence upregulating transactivation of NF-κB and in turn inducing expression of the inflammatory chemokine genes and pulmonary fibrosis-associated marker genes. SIGNIFICANCE We show for the first time that intermittent H/R upregulates the NF-κB-induced proinflammatory and fibrosis marker genes whereas downregulates the IRF5/7-induced type I/II interferon expression in human SAECs through distinct HIF1A-inducible miRNAs miR-129-1-3p, miR-193b-5p and miR-1290, which may serve as promising therapeutic targets for airway inflammation and pulmonary fibrosis.
Collapse
Affiliation(s)
- Shiuan-Ting Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Cheng-Yu Jheng
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Chun Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Wei-Chen Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan.
| |
Collapse
|
2
|
Ren H, Lu M, Zhang D, Xing Y, Chen Z. Chronic sleep deprivation promotes experimental autoimmune uveitis through STAT1 phosphorylation, ISG15 expression and enhanced pathogenicity of macrophages. Int Immunopharmacol 2025; 154:114556. [PMID: 40163942 DOI: 10.1016/j.intimp.2025.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Chronic sleep deprivation (CSD) is increasingly common in modern society and is linked to various diseases, including autoimmune conditions like experimental autoimmune uveitis (EAU), a severe ocular inflammation. The pathogenesis of EAU remains unclear, but poor sleep quality has been shown to exacerbate inflammation through immune modulation. To explore this relationship, we conducted a clinical study at the Ophthalmology Center of Renmin Hospital of Wuhan University (July 2023-July 2024), assessing sleep quality in uveitis patients using the Pittsburgh Sleep Quality Index (PSQI). Based on PSQI scores, patients were categorized into four groups, and their symptoms and characteristics were recorded. Simultaneously, a B10.RIII mouse model of CSD and EAU was developed. Western blotting assessed the phosphorylation of Signal Transducer and Activator of Transcription 1 (STAT1) and the expression of Interferon-Stimulated Gene 15 (ISG15) expression, while immunofluorescence and western blotting evaluated macrophage activity and cytokine secretion. Clinical results showed a strong correlation between poor sleep quality and worsened inflammatory symptoms. In mice, CSD increased STAT1 phosphorylation and ISG15 expression, enhancing macrophage activity and worsening ocular inflammation. Our findings suggest that CSD exacerbates EAU through STAT1 phosphorylation, ISG15 expression, and macrophage activation. The clinical data further support this mechanism, indicating that improving sleep quality could reduce the risk of autoimmune diseases and offering new insights into the connection between sleep and immune function.
Collapse
Affiliation(s)
- He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingzhi Lu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China; Aier eye hospital of Wuhan University, Wuhan, China
| | - Danlei Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China; Aier eye hospital of Wuhan University, Wuhan, China.
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Matta B, Thomas L, Sharma V, Barnes BJ. Dysregulation of T Follicular Helper and Regulatory Cells in IRF5-SLE Homozygous Risk Carriers and Systemic Lupus Erythematosus Patients. Cells 2025; 14:454. [PMID: 40136703 PMCID: PMC11941281 DOI: 10.3390/cells14060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
T follicular helper (Tfh) and T follicular regulatory cells (Tfr) are required for antibody production and are dysregulated in SLE. Genetic variants within or near interferon regulatory factor 5 (IRF5) are associated with SLE risk. We previously reported higher plasma cells and autoantibodies in healthy IRF5-SLE homozygous risk carriers. Here, we report the dysregulation of circulating Tfh and Tfr in both SLE patients and presymptomatic IRF5-SLE homozygous risk carriers.
Collapse
Affiliation(s)
- Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Lydia Thomas
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Division of Pediatric Rheumatology, Cohen Children’s Medical Center, Lake Success, NY 11042, USA
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (B.M.); (L.T.)
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
4
|
Li S, Zhou F, Lan H, Cao X, Mogenet A, Díaz-Peña R, Zhao M. IRF5 as a potential immunological biomarker in lung adenocarcinoma. Transl Cancer Res 2024; 13:6936-6946. [PMID: 39816561 PMCID: PMC11729752 DOI: 10.21037/tcr-2024-2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025]
Abstract
Background In the clinic, the primary conventional treatments of advanced non-small cell lung cancer (NSCLC) are surgery, radiation therapy, and chemotherapy. In recent years, immune checkpoint inhibitors (ICIs) have shown promise in optimizing therapeutic benefits when combined with other immunotherapies or standard therapies. However, effective biomarkers for distant metastasis or recurrence have yet to be identified, making it difficult to determine the best therapeutic approaches. The effect of tumor immunotherapy, as well as metastasis and recurrence, are thought to be significantly affected by the tumor immunosuppressive microenvironment. Transcription factor interferon regulatory factor 5 (IRF5) is a critical regulator of the immune response. It has been found to play an important role in malignant tumor transformation, immune regulation, clinical prognosis, and the treatment response. Nevertheless, its precise role in the advancement of NSCLC, including lung adenocarcinoma (LUAD) remains poorly understood. This study sought to investigate the expression of IRF5 in LUAD and its effect on patient prognosis, and examine the biological function of IRF5. Additionally, the study aimed to examine the association between IRF5 expression and immune cell infiltration, as well as its correlation with key immune checkpoint genes relevant to NSCLC. Methods LUAD RNA-sequencing data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and analyzed. A tissue microarray (TMA) analysis was conducted to detect IRF5 expression, and immunofluorescence staining was performed to determine immune infiltration. Bioinformatics and TMA analyses, including a differential expression analysis, prognosis prediction analysis, correlation analysis, immune infiltration analysis, and gene set enrichment analysis (GSEA), were conducted using the TCGA dataset. Results The results showed that the expression levels of IRF5 were lower in the LUAD tissues than the normal lung tissues. Patients with high IRF5 expression had longer survival times than those with low IRF5 expression. IRF5 was also found to be correlated with lymph node metastasis. Nine distinct types of immune cells were identified between the groups with high and low IRF5 expression levels. Eight major immune checkpoint genes were found to be upregulated in LUAD patients with high IRF5 expression levels. The enrichment analyses showed that various immune pathways were enriched in the LUAD samples with IRF5, including T cell activation, lymphocyte activation, and T cell receptor activation. Conclusions IRF5 expression is closely related to tumor immunity and immunotherapy in LUAD patients. IRF5 may be indicative of prognosis in LUAD patients.
Collapse
Affiliation(s)
- Simei Li
- Department of Oncology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Fangling Zhou
- Department of Oncology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Huahong Lan
- Outpatient Department, Guangzhou First People’s Hospital, Guangzhou, China
| | - Xiaofei Cao
- Department of Oncology, Guangzhou First People’s Hospital, Guangzhou, China
| | - Alice Mogenet
- Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille Univ, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Marseille, France
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Meiling Zhao
- Department of Oncology, Guangzhou First People’s Hospital, Guangzhou, China
| |
Collapse
|
5
|
Feng X, Lai X, Zhou M, Bie J, Li T, Wang D, Chen S, Hu X, Wang C, Xu P. Targeting HLA-E in Lung Cancer: The Therapeutic Potential of IRF5-Engineered M1-Macrophage-Derived Exosomes. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70035. [PMID: 39623605 PMCID: PMC11611755 DOI: 10.1111/crj.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Xuqin Feng
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xiangyu Lai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Mingming Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Jun Bie
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Tingting Li
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Dan Wang
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Silin Chen
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xin Hu
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Chunyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Peng Xu
- Department of Clinical LaboratoryBeibei Traditional Chinese Medical HospitalChongqingChina
| |
Collapse
|
6
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Zhang HP, Zhou Z, Chen K, Xiong LF, Wu J, Jin L. Primary biliary cholangitis has causal effects on systemic rheumatic diseases: a Mendelian randomization study. BMC Gastroenterol 2024; 24:294. [PMID: 39210292 PMCID: PMC11360496 DOI: 10.1186/s12876-024-03319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND An association has been observed between primary biliary cholangitis (PBC) and systemic rheumatic diseases (SRDs) in observational studies, however the exact causal link remains unclear. We aimed to evaluate the causal effects of PBC on SRDs through Mendelian randomization (MR) analysis. METHODS The genome-wide association study (GWAS) summary data were obtained from MRC IEU OpenGWAS and FinnGen databases. Independent genetic variants for PBC were selected as instrumental variables. Inverse variance weighted was used as the main approach to evaluate the causal effects of PBC on Sjögren syndrome (SS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), mixed connective tissue disease (MCTD) and polymyositis (PM). Horizontal pleiotropy and heterogeneity were measured by MR‒Egger intercept test and Cochran's Q value, respectively. RESULTS PBC had causal effects on SS (OR = 1.177, P = 8.02e-09), RA (OR = 1.071, P = 9.80e-04), SLE (OR = 1.447, P = 1.04e-09), SSc (OR = 1.399, P = 2.52e-04), MCTD (OR = 1.306, P = 4.92e-14), and PM (OR = 1.416, P = 1.16e-04). Based on the MR‒Egger intercept tests, horizontal pleiotropy was absent (all P values > 0.05). The robustness of our results was further enhanced by the leave-one-out method. CONCLUSIONS Our research has provided new insights into PBC and SRDs, indicating casual effects on various SRDs.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Zhe Zhou
- Department of Radiology, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Ke Chen
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Li-Fen Xiong
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Jun Wu
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Lei Jin
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China.
| |
Collapse
|
8
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Ngwa C, Al Mamun A, Qi S, Sharmeen R, Conesa MPB, Ganesh BP, Manwani B, Liu F. Central IRF4/5 Signaling Are Critical for Microglial Activation and Impact on Stroke Outcomes. Transl Stroke Res 2024; 15:831-843. [PMID: 37432594 PMCID: PMC10782817 DOI: 10.1007/s12975-023-01172-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Microglia and monocytes play a critical role in immune responses to cerebral ischemia. Previous studies have demonstrated that interferon regulatory factor 4 (IRF4) and IRF5 direct microglial polarization after stroke and impact outcomes. However, IRF4/5 are expressed by both microglia and monocytes, and it is not clear if it is the microglial (central) or monocytic (peripheral) IRF4-IRF5 regulatory axis that functions in stroke. In this work, young (8-12 weeks) male pep boy (PB), IRF4 or IRF5 flox, and IRF4 or IRF5 conditional knockout (CKO) mice were used to generate 8 types of bone marrow chimeras, to differentiate the role of central (PB-to-IRF CKO) vs. peripheral (IRF CKO-to-PB) phagocytic IRF4-IRF5 axis in stroke. Chimeras generated from PB and flox mice were used as controls. All chimeras were subjected to 60-min middle cerebral artery occlusion (MCAO) model. Three days after the stroke, outcomes and inflammatory responses were analyzed. We found that PB-to-IRF4 CKO chimeras had more robust microglial pro-inflammatory responses than IRF4 CKO-to-PB chimeras, while ameliorated microglial response was seen in PB-to-IRF5 CKO vs. IRF5 CKO-to-PB chimeras. PB-to-IRF4 or IRF5 CKO chimeras had worse or better stroke outcomes respectively than their controls, whereas IRF4 or 5 CKO-to-PB chimeras had similar outcomes compared to controls. We conclude that the central IRF4/5 signaling is responsible for microglial activation and mediates stroke outcomes.
Collapse
Affiliation(s)
- Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maria P Blasco Conesa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bhanu P Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bharti Manwani
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Khalilollah S, Kalantari Soltanieh S, Obaid Saleh R, Ali Alzahrani A, Ghaleb Maabreh H, Mazin Al-Hamdani M, Dehghani-Ghorbi M, Shafiei Khonachaei M, Akhavan-Sigari R. LncRNAs involvement in pathogenesis of immune-related disease via regulation of T regulatory cells, an updated review. Cytokine 2024; 179:156585. [PMID: 38579428 DOI: 10.1016/j.cyto.2024.156585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.
Collapse
Affiliation(s)
- Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Raed Obaid Saleh
- Department of Pathological Analysis, College of Applied Science, University of Fallujah, Al-Anbar, Iraq.
| | | | - Hatem Ghaleb Maabreh
- Department of Dermatovenerology, Foreign Languages, RUDN University (Peoples' Friendship University of Russia named after Patrice Lumumba), Moscow, Russia.
| | | | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland.
| |
Collapse
|
11
|
He Y, Li B, Zhao X, Pan L, Liu Y, Lan C, Deng F, Fu W, Zhang Y, Zuo X. Association between CACNA1D polymorphisms and hypospadias in a southern Chinese population. J Pediatr Urol 2024; 20:438.e1-438.e11. [PMID: 38378373 DOI: 10.1016/j.jpurol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Hypospadias is a congenital genitourinary malformation, with the etiology remaining complex and poorly understood. Despite several genes have been identified to be associated with the risk of hypospadias, current understanding of the susceptibility loci for hypospadias yet remained largely improved. The CACNA1D gene encodes calcium voltage-gated channel subunit alpha 1d and may be involved in androgen signaling. However, the genetic susceptibility of CACNA1D associated with hypospadias has yet been addressed. OBJECTIVE To evaluate the association between CACNA1D polymorphisms and the susceptibility to hypospadias. METHODS In this study, we accessed the association between two potential regulatory SNPs (rs3774491 and rs898415) within CACNA1D and hypospadias in a cohort of southern Chinese population which comprised of 740 cases and 948 healthy individuals. Both SNP and haplotypic associations were evaluated. Bioinformatic analysis of the regulatory abilities of the CACNA1D SNPs were carried out by utilizing public ChIP-seq and DNase-seq data. The expression of Cacna1d in mouse external genitalia and testis was evaluated by qPCR. RESULTS We found that the allele C in rs3774491 and allele G in rs898415 were significantly associated with an increased risk of hypospadias, especially for proximal hypospadias. Further model-based genotypic analyses showed that these association were prominent in additive model and recessive models. Bioinformatic analyses indicated that both SNPs were colocalized with DNase and multiple histone marker across multiple tissues, suggesting the regulatory potentials for these variants. Cacna1d is detectable in both testis and external genitalia of mouse, but the expression level was more prominent in testis than that in external genitalia, suggesting tissue-specific differences in its expression. CONCLUSION Our findings provide evidence for CACNA1D as a novel predisposing gene for hypospadias, shedding new light on the genetic basis of malformation of urinary tract. Further investigations are warranted to elucidate the functional implication of CACNA1D underlying the development of hypospadias. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Ye He
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China; Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Binyao Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Xinying Zhao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Lingling Pan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yanqing Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chaoting Lan
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Fuming Deng
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Wen Fu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Yan Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China; Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Xiaoyu Zuo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| |
Collapse
|
12
|
Zhang H, Wang N, Xu Y, Pei M, Zheng Y. Comparative analysis of peripheral blood immunoinflammatory landscapes in patients with acute cholangitis and its secondary septic shock using single-cell RNA sequencing. Biochem Biophys Res Commun 2023; 683:149121. [PMID: 37864923 DOI: 10.1016/j.bbrc.2023.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Acute cholangitis (AC) is a key pathogeny of septic shock, which has a high mortality rate. AC has significant clinical heterogeneity, but no study has analyzed the discrepancies in immunoresponsiveness between AC and its secondary septic shock. The immune inflammatory responses play a critical role in the development of septic shock. METHODS We performed single-cell RNA sequencing (scRNA-seq) to analyze the differences of immunocytes in immunoresponse and inflammation between the early stages of AC (A1, A2, and A3) and its secondary septic shock (B1, B2, and B3). RESULTS This study has identified seven cell types, including T cells, B cells, plasma cells, neutrophils, monocytes, platelets and erythrocytes. We mainly focused on neutrophils, monocytes, and T cells. Neutrophil subpopulation analysis indicated that neutrophil progenitors (proNeus) were identified in neutrophil subsets. Compared with patients suffering from AC, the gene phenotypes of proNeus (ELANE, AZU1, MPO, and PRTN3) were significantly upregulated in septic shock. The differentiation direction of neutrophil subsets in peripheral blood mononuclear cells (PBMCs) was determined; Moreover, the proNeus in septic shock presented a state of "expansion", with upregulation of neutrophil degranulation and downregulation of monocyte and T cell proliferation. Neutrophils-7 (CCL5, RPL23A, RPL13, RPS19 and RPS18) were mainly involved in the regulation of cellular functions. The neutrophils-7 subpopulation in septic shock were in a state of "exhaustion", and its biological functions showed the characteristics of weakening neutrophil migration and phagocytosis, etc., which maked infection difficult to control and aggravated the development of septic shock. Analysis of monocyte and T cell subpopulations showed that the expression genes and biological functions of subpopulations were closely related to immunoinflammatory regulation. In addition, CCL3 - CCR1, CXCL1 - CXCR2 and other ligand-receptors were highly expressed in neutrophils and monocytes, enhancing interactions between immune cells. CONCLUSION ScRNA-seq revealed significant differences in immune cells between AC and its secondary septic shock, which were primarily manifested in the cellular numbers, differentially expressed genes, functions of cellular subsets, differentiation trajectories, cell-cell interactions and so on. We identified many subsets of neutrophil, T cell and monocyte were associated with inflammation and immunosuppression induced by septic shock. These provided a reference for accurately evaluating the pathological severity of patients with AC and discovering the targets for therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Yuntian Xu
- Department of Emergency, The Third Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mingchao Pei
- Department of Emergency, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yun Zheng
- Department of Emergency ICU, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Brune Z, Li D, Song S, Li DI, Castro I, Rasquinha R, Rice MR, Guo Q, Kampta K, Moss M, Lallo M, Pimenta E, Somerville C, Lapan M, Nelson V, Dos Santos CO, Blanc L, Pruitt K, Barnes BJ. Loss of IRF5 increases ribosome biogenesis leading to alterations in mammary gland architecture and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538998. [PMID: 37292919 PMCID: PMC10246023 DOI: 10.1101/2023.05.01.538998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the progress made in identifying cellular factors and mechanisms that predict progression and metastasis, breast cancer remains the second leading cause of death for women in the US. Using The Cancer Genome Atlas and mouse models of spontaneous and invasive mammary tumorigenesis, we identified that loss of function of interferon regulatory factor 5 (IRF5) is a predictor of metastasis and survival. Histologic analysis of Irf5 -/- mammary glands revealed expansion of luminal and myoepithelial cells, loss of organized glandular structure, and altered terminal end budding and migration. RNA-seq and ChIP-seq analyses of primary mammary epithelial cells from Irf5 +/+ and Irf5 -/- littermate mice revealed IRF5-mediated transcriptional regulation of proteins involved in ribosomal biogenesis. Using an invasive model of breast cancer lacking Irf5 , we demonstrate that IRF5 re-expression inhibits tumor growth and metastasis via increased trafficking of tumor infiltrating lymphocytes and altered tumor cell protein synthesis. These findings uncover a new function for IRF5 in the regulation of mammary tumorigenesis and metastasis. Highlights Loss of IRF5 is a predictor of metastasis and survival in breast cancer.IRF5 contributes to the regulation of ribosome biogenesis in mammary epithelial cells.Loss of IRF5 function in mammary epithelial cells leads to increased protein translation.
Collapse
|
14
|
Ramos-Benitez MJ, Strich JR, Alehashemi S, Stein S, Rastegar A, de Jesus AA, Bhuyan F, Ramelli S, Babyak A, Perez-Valencia L, Vannella KM, Grubbs G, Khurana S, Gross R, Hadley K, Liang J, Mazur S, Postnikova E, Warner S, Holbrook MR, Busch LM, Warner B, Applefeld W, Warner S, Kadri SS, Davey RT, Goldbach-Mansky R, Chertow DS. Antiviral innate immunity is diminished in the upper respiratory tract of severe COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.08.22281846. [PMID: 36415460 PMCID: PMC9681051 DOI: 10.1101/2022.11.08.22281846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding early innate immune responses to coronavirus disease 2019 (COVID-19) is crucial to developing targeted therapies to mitigate disease severity. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection elicits interferon expression leading to transcription of IFN-stimulated genes (ISGs) to control viral replication and spread. SARS-CoV-2 infection also elicits NF-κB signaling which regulates inflammatory cytokine expression contributing to viral control and likely disease severity. Few studies have simultaneously characterized these two components of innate immunity to COVID-19. We designed a study to characterize the expression of interferon alpha-2 (IFNA2) and interferon beta-1 (IFNB1), both type-1 interferons (IFN-1), interferon-gamma (IFNG), a type-2 interferon (IFN-2), ISGs, and NF-κB response genes in the upper respiratory tract (URT) of patients with mild (outpatient) versus severe (hospitalized) COVID-19. Further, we characterized the weekly dynamics of these responses in the upper and lower respiratory tracts (LRTs) and blood of severe patients to evaluate for compartmental differences. We observed significantly increased ISG and NF-κB responses in the URT of mild compared with severe patients early during illness. This pattern was associated with increased IFNA2 and IFNG expression in the URT of mild patients, a trend toward increased IFNB1-expression and significantly increased STING/IRF3/cGAS expression in the URT of severe patients. Our by-week across-compartment analysis in severe patients revealed significantly higher ISG responses in the blood compared with the URT and LRT of these patients during the first week of illness, despite significantly lower expression of IFNA2, IFNB1, and IFNG in blood. NF-κB responses, however, were significantly elevated in the LRT compared with the URT and blood of severe patients during peak illness (week 2). Our data support that severe COVID-19 is associated with impaired interferon signaling in the URT during early illness and robust pro-inflammatory responses in the LRT during peak illness.
Collapse
Affiliation(s)
- Marcos J. Ramos-Benitez
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, MD 20892
- Ponce Health Science University and Ponce Research Institute, Department of Basic Sciences, School of Medicine, Ponce, Puerto Rico, USA
| | - Jeffrey R. Strich
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- The United States Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sydney Stein
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andre Rastegar
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Adriana Almeida de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Farzana Bhuyan
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sabrina Ramelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Ashley Babyak
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luis Perez-Valencia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Kevin M. Vannella
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD
| | - Robin Gross
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Kyra Hadley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Janie Liang
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Steven Mazur
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Seth Warner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD
| | - Lindsay M. Busch
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Blake Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Willard Applefeld
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Sarah Warner
- The United States Public Health Service Commissioned Corps, Rockville, MD, USA
| | - Sameer S Kadri
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Richard T Davey
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy, and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD
- The United States Public Health Service Commissioned Corps, Rockville, MD, USA
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
15
|
Zhang Y, Liao Y, Hang Q, Sun D, Liu Y. GBP2 acts as a member of the interferon signalling pathway in lupus nephritis. BMC Immunol 2022; 23:44. [PMID: 36115937 PMCID: PMC9482746 DOI: 10.1186/s12865-022-00520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Lupus nephritis (LN) is a common and serious clinical manifestation of systemic lupus erythematosus. However, the pathogenesis of LN is not fully understood. The currently available treatments do not cure the disease and appear to have a variety of side effects in the long term. The purpose of this study was to search for key molecules involved in the LN immune response through bioinformatics techniques to provide a reference for LN-specific targeted therapy. The GSE112943 dataset was downloaded from the Gene Expression Omnibus database, and 20 of the samples were selected for analysis. In total, 2330 differentially expressed genes were screened. These genes were intersected with a list of immune genes obtained from the IMMPORT immune database to obtain 128 differentially expressed immune-related genes. Enrichment analysis showed that most of these genes were enriched in the interferon signalling pathway. Gene set enrichment analysis revealed that the sample was significantly enriched for expression of the interferon signalling pathway. Further analysis of the core gene cluster showed that nine genes, GBP2, VCAM1, ADAR, IFITM1, BST2, MX2, IRF5, OAS1 and TRIM22, were involved in the interferon signalling pathway. According to our analysis, the guanylate binding protein 2 (GBP2), interferon regulatory factor 5 and 2′-5′-oligoadenylate synthetase 1 (OAS1) genes are involved in three interferon signalling pathways. At present, we do not know whether GBP2 is associated with LN. Therefore, this study focused on the relationship between GBP2 and LN pathogenesis. We speculate that GBP2 may play a role in the pathogenesis of LN as a member of the interferon signalling pathway. Further immunohistochemical results showed that the expression of GBP2 was increased in the renal tissues of LN patients compared with the control group, confirming this conjecture. In conclusion, GBP2 is a member of the interferon signalling pathway that may have implications for the pathogenesis of LN and serves as a potential biomarker for LN.
Collapse
|
16
|
Ni M, Chen Y, Sun X, Deng Y, Wang X, Zhang T, Wu Y, Yu L, Xu S, Yu H, Shuai Z, Pan F. DNA methylation and transcriptional profiles of IRF5 gene in ankylosing spondylitis: A case-control study. Int Immunopharmacol 2022; 110:109033. [PMID: 35810492 DOI: 10.1016/j.intimp.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Interferon regulatory factor 5 (IRF5) plays an important role in the inflammation and immune responses, but its association with ankylosing spondylitis (AS) is under investigated. We aimed to examine the association of IRF5 promoter methylation patterns and transcript levels with the susceptibility to AS. METHODS A total of 60 AS patients and 60 healthy controls were included in this study. We used the bisulfite conversion to detect the DNA methylation pattern of IRF5 promoter in whole blood, and the quantitative real-time PCR (qRT-PCR) to detect the relative mRNA expression level in peripheral blood mononuclear cells (PBMCs). RESULTS The overall methylation level of IRF5 promoter was lower in AS patients compared to healthy controls (P < 0.001). The methylation level of IRF5 promoter was negatively correlated with mRNA level (P = 0.005). The results of receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) was 0.810 (P < 0.001), and the sensitivity and specificity were 71.67% and 85.00%, respectively. There were significant differences between the severe dysfunction group and healthy control group, and between the mild dysfunction group and healthy control group (P = 0.006 and P < 0.001, respectively). Only CRP was significantly correlated with mRNA relative level, while the others were not significant. CONCLUSION These findings indicate that IRF5 methylation profile may be involved in the pathological process of AS, and that it may help identify AS patients.
Collapse
Affiliation(s)
- Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ye Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shenqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui 236000, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
17
|
Mohd Shukri ND, Farah Izati A, Wan Ghazali WS, Che Hussin CM, Wong KK. CD3 +CD4 +gp130 + T Cells Are Associated With Worse Disease Activity in Systemic Lupus Erythematosus Patients. Front Immunol 2021; 12:675250. [PMID: 34149710 PMCID: PMC8213373 DOI: 10.3389/fimmu.2021.675250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
The receptors for IL-35, IL-12Rβ2 and gp130, have been implicated in the inflammatory pathophysiology of autoimmune diseases. In this study, we set out to investigate the serum IL-35 levels and the surface levels of IL-12Rβ2 and gp130 in CD3+CD4+, CD3+CD4─ and CD3─CD4─ lymphocyte subpopulations in systemic lupus erythematosus (SLE) patients (n=50) versus healthy controls (n=50). The potential T cell subsets associated with gp130 transcript (i.e. IL6ST) expression in CD4+ T cells of SLE patients was also examined in publicly-available gene expression profiling (GEP) datasets. Here, we report that serum IL-35 levels were significantly higher in SLE patients than healthy controls (p=0.038) but it was not associated with SLEDAI-2K scores. The proportions of IL-12Rβ2+ and gp130+ cells in SLE patients did not differ significantly with those of healthy controls in all lymphocyte subpopulations investigated. Essentially, higher SLEDAI-2K scores were positively correlated with increased proportion of gp130+ cells, but not IL-12Rβ2+ cells, on CD3+CD4+ T cells (r=0.425, p=0.002, q=0.016). Gene Set Enrichment Analysis (GSEA) of a GEP dataset of CD4+ T cells isolated from SLE patients (n=8; GSE4588) showed that IL6ST expression was positively associated with genes upregulated in CD4+ T cells vs myeloid or B cells (q<0.001). In an independent GEP dataset of CD4+ T cells isolated from SLE patients (n=9; GSE1057), IL6ST expression was induced upon anti-CD3 stimulation, and that Treg, TCM and CCR7+ T cells gene sets were significantly enriched (q<0.05) by genes highly correlated with IL6ST expression (n=92 genes; r>0.75 with IL6ST expression) upon anti-CD3 stimulation in these SLE patients. In conclusion, gp130 signaling in CD3+CD4+ T cell subsets may contribute to increased disease activity in SLE patients, and it represents a promising therapeutic target for inhibition in the disease.
Collapse
Affiliation(s)
- Nur Diyana Mohd Shukri
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Aziz Farah Izati
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wan Syamimee Wan Ghazali
- Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Maraina Che Hussin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Hospital Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
18
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Rilo-Alvarez H, Ledo AM, Vidal A, Garcia-Fuentes M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv Transl Res 2021; 11:426-444. [PMID: 33611769 DOI: 10.1007/s13346-021-00931-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Fundamental studies performed during the last decades have shown that cell fate is much more plastic than previously considered, and technologies for its manipulation are a keystone for many new tissue regeneration therapies. Transcription factors (TFs) are DNA-binding proteins that control gene expression, and they have critical roles in the control of cell fate and other cellular behavior. TF-based therapies have much medical potential, but their use as drugs depends on the development of suitable delivery technologies that can help them reach their action site inside of the cells. TFs can be used either as proteins or encoded in polynucleotides. When used in protein form, many TFs require to be associated to a cell-penetrating peptide or another transduction domain. As polynucleotides, they can be delivered either by viral carriers or by non-viral systems such as polyplexes and lipoplexes. TF-based therapies have extensively shown their potential to solve many tissue-engineering problems, including bone, cartilage and cardiac regeneration. Yet, their use has expanded beyond regenerative medicine to other prominent disease areas such as cancer therapy and immunomodulation. This review summarizes some of the delivery options for effective TF-based therapies and their current main applications.
Collapse
Affiliation(s)
- Héctor Rilo-Alvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Adriana M Ledo
- Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Inc, 700 Main Street, Cambridge, MA, 02139, USA
| | - Anxo Vidal
- Department of Physiology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|