1
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
2
|
Laguera B, Golden MM, Wang F, Gnewou O, Tuachi A, Egelman EH, Wuest WM, Conticello VP. Amphipathic Antimicrobial Peptides Illuminate a Reciprocal Relationship Between Self-assembly and Cytolytic Activity. Angew Chem Int Ed Engl 2025:e202500040. [PMID: 40073424 DOI: 10.1002/anie.202500040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Amphipathic character, encoded within the polar sequence patterns of antimicrobial peptides, is a critical structural feature that influences membrane disruptive behavior. Similarly, polar sequence patterns induce self-assembly of amphipathic peptides, which results in the formation of ordered supramolecular structures. The relationship between self-assembly and membrane activity remains an open question of relevance for the development of effective antimicrobial peptides. Here, we report the structural investigation of a class of lytic peptides that self-assemble into filamentous nanomaterials. CryoEM analysis was employed to determine the structure of one of the filaments, which revealed that the peptides are self-assembled into a bilayer nanotube, in which the interaction between layers of amphipathic α-helices was mediated through hydrophobic interactions. The relative stability of the filament peptide assemblies depended on the influence of sequence modifications on the helical conformation. Antimicrobial assays indicated that cytolytic activity was associated with dynamic disassociation of the filamentous assemblies under the assay conditions. Structural modifications of the peptides that stabilized the filaments abrogated lytic activity. These results illuminate a reciprocal relationship between self-assembly and antimicrobial activity in this class of amphipathic peptides and that reversible assembly was critical for the observation of biological activity.
Collapse
Affiliation(s)
- Breana Laguera
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Martina M Golden
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Fengbin Wang
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | | |
Collapse
|
3
|
Puthia M, Marzinek JK, Vesela K, Larsson A, Schmidtchen A, Bond PJ, Petrlova J. Apolipoprotein E3 and E4 isoforms exhibit differing effects in countering endotoxins. J Biol Chem 2025; 301:108236. [PMID: 39880097 PMCID: PMC11879696 DOI: 10.1016/j.jbc.2025.108236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Apolipoprotein E (APOE) is distributed across various human tissues and plays a crucial role in lipid metabolism. Recent investigations have uncovered an additional facet of APOE's functionality, revealing its role in host defense against bacterial infections. To assess the antibacterial attributes of APOE3 and APOE4, we conducted antibacterial assays using Pseudomonas aeruginosa and Escherichia coli. Exploring the interaction between APOE isoforms and lipopolysaccharides (LPSs) from E. coli, we conducted several experiments, including gel shift assays, CD, and fluorescence spectroscopy. Furthermore, the interaction between APOE isoforms and LPS was further substantiated through atomic resolution molecular dynamics simulations. The presence of LPS induced the aggregation of APOE isoforms, a phenomenon confirmed through specific amyloid staining, as well as fluorescence and electron microscopy. The scavenging effects of APOE3/4 isoforms were studied through both in vitro and in vivo experiments. In summary, our study established that APOE isoforms exhibit binding to LPS, with a more pronounced affinity and complex formation observed for APOE4 compared with APOE3. Furthermore, our data suggest that APOE isoforms neutralize LPS through aggregation, leading to a reduction of local inflammation in experimental animal models. In addition, both isoforms demonstrated inhibitory effects on the growth of P. aeruginosa and E. coli. These findings provide new insights into the multifunctionality of APOE in the human body, particularly its role in innate immunity during bacterial infections.
Collapse
Affiliation(s)
- Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Katerina Vesela
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Axel Larsson
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden; Dermatology, Skåne University Hospital, Lund, Sweden
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences National University of Singapore, Singapore, Singapore
| | - Jitka Petrlova
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden.
| |
Collapse
|
4
|
Rathod SS, Bankar NJ, Tiwade YR, Bandre GR, Mishra VH, Badge AK. Transformative potential of artificial intelligence in medical microbiology education. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 13:503. [PMID: 39850278 PMCID: PMC11756692 DOI: 10.4103/jehp.jehp_2112_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/02/2024] [Indexed: 01/25/2025]
Affiliation(s)
- Sidhhi S. Rathod
- UG Student, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| | - Nandkishor J. Bankar
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| | - Yugeshwari R. Tiwade
- Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| | - Gulshan R. Bandre
- Department of Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| | - Vaishnavi H. Mishra
- Department of Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| | - Ankit K. Badge
- Department of Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, Maharashtra, India
| |
Collapse
|
5
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
6
|
Tyagi G, Sengupta S. Unveiling the multifaceted potential of amyloid fibrils: from pathogenic myths to biotechnological marvels. Biophys Rev 2024; 16:737-751. [PMID: 39830121 PMCID: PMC11735760 DOI: 10.1007/s12551-024-01232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 01/22/2025] Open
Abstract
Amyloid fibrils, historically stigmatized due to their association with diseases like Alzheimer's and Parkinson's, are now recognized as a distinct class of functional proteins with extraordinary potential. These highly ordered, cross-β-sheet protein aggregates are found across all domains of life, playing crucial physiological roles. In bacteria, functional amyloids like curli fibers are essential for surface adhesion, biofilm formation, and viral DNA packaging. Fungal prions exploit amyloid conformations to regulate translation, metabolism, and virulence, while mammalian amyloids are integral to melanin synthesis, hormone storage, and antimicrobial defense. The stability and hydrophobic nature of amyloid scaffolds underpin these diverse biological functions. Beyond their natural roles, amyloid fibrils offer unique capabilities in biomedicine, nanotechnology, and materials science. Their exceptional mechanical strength and biocompatibility make them ideal for controlled drug delivery, tissue engineering scaffolds, and enzyme immobilization. The intrinsic fluorescence and optical properties of certain amyloids open up innovative applications in biosensors, molecular probes, and optoelectronic devices. Furthermore, amyloid fibrils can template metal nanowires, enhance conducting materials, and form nanocomposites by integrating with polymers. This newfound appreciation for the functional diversity of amyloids has ignited intense research efforts to elucidate their molecular mechanisms, stability, and tunable properties. By unraveling the structural intricacies of functional amyloids, researchers aim to harness their remarkable attributes for groundbreaking biomedical therapies, advanced nanomaterials, and sustainable biotechnological innovations. This review explores the transformative journey of amyloids from pathological entities to biotechnological marvels, highlighting their vast potential across agriculture, environmental remediation, and industrial processes.
Collapse
Affiliation(s)
- Gauri Tyagi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, 201313 Noida, India
| |
Collapse
|
7
|
Fang L, Yang T, Wang H, Cao J. Multiplex antimicrobial activities of the self-assembled amphiphilic polypeptide β nanofiber KF-5 against vaginal pathogens. Biol Direct 2024; 19:96. [PMID: 39438996 PMCID: PMC11495241 DOI: 10.1186/s13062-024-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Vaginal infections caused by multidrug-resistant pathogens such as Candida albicans and Gardnerella spp. represent a significant health challenge. Current treatments often fail because of resistance and toxicity. This study aimed to synthesize and characterize a novel amphiphilic polypeptide, KF-5, and evaluate its antibacterial and antifungal activities, biocompatibility, and potential mechanisms of action. RESULTS The KF-5 peptide was synthesized via solid-phase peptide synthesis and self-assembled into nanostructures with filamentous and hydrogel-like configurations. Characterization by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) confirmed the unique nanostructural properties of KF-5. KF-5 (125, 250, or 500 µg/ml) demonstrated potent antibacterial and antifungal activities, with significant inhibitory effects on drug-resistant Candida albicans and Gardnerella spp. (P < 0.05). In vitro assays revealed that 500 µg/ml KF-5 disrupted microbial cell membranes, increased membrane permeability, and induced lipid oxidation, leading to cell death (P < 0.05). Cytotoxicity tests revealed minimal toxicity in human vaginal epithelial cells, keratinocytes, and macrophages, with over 95% viability at high concentrations. Molecular dynamics simulations indicated that KF-5 interacts with phospholipid bilayers through electrostatic interactions, causing membrane disruption. In vivo studies using a mouse model of vaginal infection revealed that 0.5, 1, and 2 mg/ml KF-5 significantly reduced fungal burden and inflammation, and histological analysis confirmed the restoration of vaginal mucosal integrity (P < 0.01). Compared with conventional antifungal treatments such as miconazole, KF-5 exhibited superior efficacy (P < 0.01). CONCLUSIONS KF-5 demonstrates significant potential as a safe and effective antimicrobial agent for treating vaginal infections. Its ability to disrupt microbial membranes while maintaining biocompatibility with human cells highlights its potential for clinical application. These findings provide a foundation for further development of KF-5 as a therapeutic option for combating drug-resistant infections.
Collapse
Affiliation(s)
- Ling Fang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Tiancheng Yang
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China
| | - Haojue Wang
- Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast University, Wuxi, 214105, Jiangsu, China.
| | - Jun Cao
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, Jiangsu, China.
| |
Collapse
|
8
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Rangubpit W, Sungted S, Wong-Ekkabut J, Distaffen HE, Nilsson BL, Dias CL. Pore Formation by Amyloid-like Peptides: Effects of the Nonpolar-Polar Sequence Pattern. ACS Chem Neurosci 2024; 15:3354-3362. [PMID: 39172951 PMCID: PMC11443323 DOI: 10.1021/acschemneuro.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
One of the mechanisms accounting for the toxicity of amyloid peptides in diseases like Alzheimer's and Parkinson's is the formation of pores on the plasma membrane of neurons. Here, we perform unbiased all-atom simulations of the full membrane damaging pathway, which includes adsorption, aggregation, and perforation of the lipid bilayer accounting for pore-like structures. Simulations are performed using four peptides made with the same amino acids. Differences in the nonpolar-polar sequence pattern of these peptides prompt them to adsorb into the membrane with the extended conformations oriented either parallel [peptide labeled F1, Ac-(FKFE)2-NH2], perpendicular (F4, Ac-FFFFKKEE-NH2), or with an intermediate orientation (F2, Ac-FFKKFFEE-NH2, and F3, Ac-FFFKFEKE-NH2) in regard to the membrane surface. At the water-lipid interface, only F1 fully self-assembles into β-sheets, and F2 peptides partially fold into an α-helical structure. The β-sheets of F1 emerge as electrostatic interactions attract neighboring peptides to intermediate distances where nonpolar side chains can interact within the dry core of the bilayer. This complex interplay between electrostatic and nonpolar interactions is not observed for the other peptides. Although β-sheets of F1 peptides are mostly parallel to the membrane, some of their edges penetrate deep inside the bilayer, dragging water molecules with them. This precedes pore formation, which starts with the flow of two water layers through the membrane that expand into a stable cylindrical pore delimited by polar faces of β-sheets spanning both leaflets of the bilayer.
Collapse
Affiliation(s)
- Warin Rangubpit
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Siwaporn Sungted
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-Ekkabut
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Hannah E Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
10
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
11
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
12
|
Klimovich A, Bosch TCG. Novel technologies uncover novel 'anti'-microbial peptides in Hydra shaping the species-specific microbiome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230058. [PMID: 38497265 PMCID: PMC10945409 DOI: 10.1098/rstb.2023.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 03/19/2024] Open
Abstract
The freshwater polyp Hydra uses an elaborate innate immune machinery to maintain its specific microbiome. Major components of this toolkit are conserved Toll-like receptor (TLR)-mediated immune pathways and species-specific antimicrobial peptides (AMPs). Our study harnesses advanced technologies, such as high-throughput sequencing and machine learning, to uncover a high complexity of the Hydra's AMPs repertoire. Functional analysis reveals that these AMPs are specific against diverse members of the Hydra microbiome and expressed in a spatially controlled pattern. Notably, in the outer epithelial layer, AMPs are produced mainly in the neurons. The neuron-derived AMPs are secreted directly into the glycocalyx, the habitat for symbiotic bacteria, and display high selectivity and spatial restriction of expression. In the endodermal layer, in contrast, endodermal epithelial cells produce an abundance of different AMPs including members of the arminin and hydramacin families, while gland cells secrete kazal-type protease inhibitors. Since the endodermal layer lines the gastric cavity devoid of symbiotic bacteria, we assume that endodermally secreted AMPs protect the gastric cavity from intruding pathogens. In conclusion, Hydra employs a complex set of AMPs expressed in distinct tissue layers and cell types to combat pathogens and to maintain a stable spatially organized microbiome. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Alexander Klimovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| |
Collapse
|
13
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
14
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
15
|
Sarkar S, Kumari A, Tiwari M, Tiwari V. Interaction and simulation studies suggest the possible molecular targets of intrinsically disordered amyloidogenic antimicrobial peptides in Acinetobacter baumannii. J Biomol Struct Dyn 2024; 42:2747-2764. [PMID: 37144752 DOI: 10.1080/07391102.2023.2208219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Acinetobacter baumannii is one of the causing agents of nosocomial infections. A wide range of antibiotics fails to work against these pathogens. Hence, there is an urgent requirement to develop other therapeutics to solve this problem. Antimicrobial peptides (AMPs) are a diverse group of naturally occurring peptides that have the ability to kill diverse groups of microorganisms. The major challenge of using AMPs as therapeutics is their unstable nature and the fact that most of their molecular targets are still unknown. In this study, we have selected intrinsically disordered and amyloidogenic AMPs, showing activity against A. baumannii, that is, Bactenecin, Cath BF, Citropin 1.1, DP7, NA-CATH, Tachyplesin, and WAM-1. To identify the probable target of these AMPs in A. baumannii, calculation of docking score, binding energy, dissociation constant, and molecular dynamics analysis was performed with selected seventeen possible molecular targets. The result showed that the most probable molecular targets of most of the intrinsically disordered amyloidogenic AMPs were UDP-N-acetylenol-pyruvoyl-glucosamine reductase (MurB), followed by 33-36 kDa outer membrane protein (Omp 33-36), UDP-N-acetylmuramoyl-l-alanyl-d-glutamate-2,6-diaminopimelate ligase (MurE), and porin Subfamily Protein (PorinSubF). Further, molecular dynamics analysis concluded that the target of antimicrobial peptide Bactenecin is MurB of A. baumannii, and identified other molecular targets of selected AMPs. Additionally, the oligomerization capacity of the selected AMPs was also investigated, and it was shown that the selected AMPs form oligomeric states, and interact with their molecular targets in that state. Experimental validation using purified AMPs and molecular targets needs to be done to confirm the interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayani Sarkar
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Aruna Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
16
|
Zhang Y, Bharathi V, Dokoshi T, de Anda J, Ursery LT, Kulkarni NN, Nakamura Y, Chen J, Luo EWC, Wang L, Xu H, Coady A, Zurich R, Lee MW, Matsui T, Lee H, Chan LC, Schepmoes AA, Lipton MS, Zhao R, Adkins JN, Clair GC, Thurlow LR, Schisler JC, Wolfgang MC, Hagan RS, Yeaman MR, Weiss TM, Chen X, Li MMH, Nizet V, Antoniak S, Mackman N, Gallo RL, Wong GCL. Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes. Proc Natl Acad Sci U S A 2024; 121:e2300644120. [PMID: 38306481 PMCID: PMC10861912 DOI: 10.1073/pnas.2300644120] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/28/2023] [Indexed: 02/04/2024] Open
Abstract
It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
- Biomedical Engineering, School of Engineering, Westlake University, Hangzhou, Zhejiang310012, China
| | - Vanthana Bharathi
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lauryn Tumey Ursery
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nikhil N. Kulkarni
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Yoshiyuki Nakamura
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Jonathan Chen
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Elizabeth W. C. Luo
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lamei Wang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Hua Xu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Alison Coady
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Raymond Zurich
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Michelle W. Lee
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - HongKyu Lee
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
| | - Liana C. Chan
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, CA90502
| | - Athena A. Schepmoes
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Mary S. Lipton
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Rui Zhao
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Joshua N. Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Geremy C. Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Lance R. Thurlow
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jonathan C. Schisler
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Robert S. Hagan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael R. Yeaman
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, CA90502
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Melody M. H. Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nigel Mackman
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
17
|
Santos N, Segura L, Lewis A, Pham T, Cheng KH. Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer's and Diabetic Diseases. Molecules 2024; 29:740. [PMID: 38338484 PMCID: PMC10856442 DOI: 10.3390/molecules29030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer's and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer's and diabetes.
Collapse
Affiliation(s)
- Natalia Santos
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Amber Lewis
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Thuong Pham
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
18
|
Ahmad F, Deshmukh N, Webel A, Johnson S, Suleiman A, Mohan RR, Fraunfelder F, Singh PK. Viral infections and pathogenesis of glaucoma: a comprehensive review. Clin Microbiol Rev 2023; 36:e0005723. [PMID: 37966199 PMCID: PMC10870729 DOI: 10.1128/cmr.00057-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, caused by the gradual degeneration of retinal ganglion cells and their axons. While glaucoma is primarily considered a genetic and age-related disease, some inflammatory conditions, such as uveitis and viral-induced anterior segment inflammation, cause secondary or uveitic glaucoma. Viruses are predominant ocular pathogens and can impose both acute and chronic pathological insults to the human eye. Many viruses, including herpes simplex virus, varicella-zoster virus, cytomegalovirus, rubella virus, dengue virus, chikungunya virus, Ebola virus, and, more recently, Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have been associated with sequela of either primary or secondary glaucoma. Epidemiological and clinical studies suggest the association between these viruses and subsequent glaucoma development. Despite this, the ocular manifestation and sequela of viral infections are not well understood. In fact, the association of viruses with glaucoma is considered relatively uncommon in part due to underreporting and/or lack of long-term follow-up studies. In recent years, literature on the pathological spectrum of emerging viral infections, such as ZIKV and SARS-CoV-2, has strengthened this proposition and renewed research activity in this area. Clinical studies from endemic regions as well as laboratory and preclinical investigations demonstrate a strong link between an infectious trigger and development of glaucomatous pathology. In this article, we review the current understanding of the field with a particular focus on viruses and their association with the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nikhil Deshmukh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Aaron Webel
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Sandra Johnson
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ayman Suleiman
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Frederick Fraunfelder
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
19
|
Petrlova J, Hartman E, Petruk G, Lim JCH, Adav SS, Kjellström S, Puthia M, Schmidtchen A. Selective protein aggregation confines and inhibits endotoxins in wounds: Linking host defense to amyloid formation. iScience 2023; 26:107951. [PMID: 37817942 PMCID: PMC10561040 DOI: 10.1016/j.isci.2023.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacterial lipopolysaccharide (LPS) induces rapid protein aggregation in human wound fluid. We aimed to characterize these LPS-induced aggregates and their functional implications using a combination of mass spectrometry analyses, biochemical assays, biological imaging, cell experiments, and animal models. The wound-fluid aggregates encompass diverse protein classes, including sequences from coagulation factors, annexins, histones, antimicrobial proteins/peptides, and apolipoproteins. We identified proteins and peptides with a high aggregation propensity and verified selected components through Western blot analysis. Thioflavin T and Amytracker staining revealed amyloid-like aggregates formed after exposure to LPS in vitro in human wound fluid and in vivo in porcine wound models. Using NF-κB-reporter mice and IVIS bioimaging, we demonstrate that such wound-fluid LPS aggregates induce a significant reduction in local inflammation compared with LPS in plasma. The results show that protein/peptide aggregation is a mechanism for confining LPS and reducing inflammation, further emphasizing the connection between host defense and amyloidogenesis.
Collapse
Affiliation(s)
- Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Erik Hartman
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Jeremy Chun Hwee Lim
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Sunil Shankar Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22184 Lund, Sweden
- Dermatology, Skane University Hospital, 22185 Lund, Sweden
| |
Collapse
|
20
|
Fulop T, Ramassamy C, Lévesque S, Frost EH, Laurent B, Lacombe G, Khalil A, Larbi A, Hirokawa K, Desroches M, Rodrigues S, Bourgade K, Cohen AA, Witkowski JM. Viruses - a major cause of amyloid deposition in the brain. Expert Rev Neurother 2023; 23:775-790. [PMID: 37551672 DOI: 10.1080/14737175.2023.2244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Clinically, Alzheimer's disease (AD) is a syndrome with a spectrum of various cognitive disorders. There is a complete dissociation between the pathology and the clinical presentation. Therefore, we need a disruptive new approach to be able to prevent and treat AD. AREAS COVERED In this review, the authors extensively discuss the evidence why the amyloid beta is not the pathological cause of AD which makes therefore the amyloid hypothesis not sustainable anymore. They review the experimental evidence underlying the role of microbes, especially that of viruses, as a trigger/cause for the production of amyloid beta leading to the establishment of a chronic neuroinflammation as the mediator manifesting decades later by AD as a clinical spectrum. In this context, the emergence and consequences of the infection/antimicrobial protection hypothesis are described. The epidemiological and clinical data supporting this hypothesis are also analyzed. EXPERT OPINION For decades, we have known that viruses are involved in the pathogenesis of AD. This discovery was ignored and discarded for a long time. Now we should accept this fact, which is not a hypothesis anymore, and stimulate the research community to come up with new ideas, new treatments, and new concepts.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Simon Lévesque
- CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Département de Microbiologie Et Infectiologie, Faculté de Médecine Et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guy Lacombe
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Abedelouahed Khalil
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anis Larbi
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo Medical Dental University, Tokyo and Nito-Memory Nakanosogo Hospital, Tokyo, Japan
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Biot, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, BCAM, the Basque Foundation for Science and BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Karine Bourgade
- Research Center on Aging, Centre Intégré Universitaire de Santé Et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
D Magalhães J, Candeias E, Melo-Marques I, Silva DF, Esteves AR, Empadinhas N, Cardoso SM. Intestinal infection triggers mitochondria-mediated α-synuclein pathology: relevance to Parkinson's disease. Cell Mol Life Sci 2023; 80:166. [PMID: 37249642 PMCID: PMC11072242 DOI: 10.1007/s00018-023-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease characterized by the loss of dopaminergic neurons in the midbrain. In the prodromal phase several autonomic symptoms including orthostatic hypotension and constipation are correlated with increased α-synuclein pathology in peripheral tissues. It is currently accepted that some idiopathic PD cases may start in the gut (body-first PD) with accumulation of pathological α-synuclein in enteric neurons that may subsequently propagate caudo-rostrally to the central nervous system. In addition to the already-established regulation of synaptic vesicle trafficking, α-synuclein also seems to play a role in neuronal innate immunity after infection. Our goal was to understand if seeding the gut with the foodborne pathogen Listeria monocytogenes by oral gavage would impact gut immunity and eventually the central nervous system. Our results demonstrate that L. monocytogenes infection induced oligomerization of α-synuclein in the ileum, along with a pronounced pro-inflammatory local and systemic response that ultimately culminated in neuronal mitochondria dysfunction. We propose that, having evolved from ancestral endosymbiotic bacteria, mitochondria may be directly targeted by virulence factors of intracellular pathogens, and that mitochondrial dysfunction and fragmentation resulting also from the activation of the innate immune system at the gut level, trigger innate immune responses in midbrain neurons, which include α-synuclein oligomerization and neuroinflammation, all of which hallmarks of PD.
Collapse
Affiliation(s)
- João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Inês Melo-Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, Institute of Cellular and Molecular Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
22
|
Olari LR, Bauer R, Gil Miró M, Vogel V, Cortez Rayas L, Groß R, Gilg A, Klevesath R, Rodríguez Alfonso AA, Kaygisiz K, Rupp U, Pant P, Mieres-Pérez J, Steppe L, Schäffer R, Rauch-Wirth L, Conzelmann C, Müller JA, Zech F, Gerbl F, Bleher J, Preising N, Ständker L, Wiese S, Thal DR, Haupt C, Jonker HRA, Wagner M, Sanchez-Garcia E, Weil T, Stenger S, Fändrich M, von Einem J, Read C, Walther P, Kirchhoff F, Spellerberg B, Münch J. The C-terminal 32-mer fragment of hemoglobin alpha is an amyloidogenic peptide with antimicrobial properties. Cell Mol Life Sci 2023; 80:151. [PMID: 37198527 DOI: 10.1007/s00018-023-04795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.
Collapse
Affiliation(s)
- Lia-Raluca Olari
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Marta Gil Miró
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Laura Cortez Rayas
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Raphael Klevesath
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Armando A Rodríguez Alfonso
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Kübra Kaygisiz
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Ulrich Rupp
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Pradeep Pant
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Joel Mieres-Pérez
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Lena Steppe
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Ramona Schäffer
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Virology, Philipps University Marburg, 35043, Marburg, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jana Bleher
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Nico Preising
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Ulm University Medical Center, 89081, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Dietmar R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, UZ-Leuven, 3000, Leuven, Belgium
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt am Main, Germany
| | - Manfred Wagner
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research Mainz, 55128, Mainz, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Clarissa Read
- Institute of Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
23
|
Sanders OD. Virus-Like Cytosolic and Cell-Free Oxidatively Damaged Nucleic Acids Likely Drive Inflammation, Synapse Degeneration, and Neuron Death in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1-19. [PMID: 36761106 PMCID: PMC9881037 DOI: 10.3233/adr-220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, inflammation, and amyloid-β are Alzheimer's disease (AD) hallmarks that cause each other and other AD hallmarks. Most amyloid-β-lowering, antioxidant, anti-inflammatory, and antimicrobial AD clinical trials failed; none stopped or reversed AD. Although signs suggest an infectious etiology, no pathogen accumulated consistently in AD patients. Neuropathology, neuronal cell culture, rodent, genome-wide association, epidemiological, biomarker, and clinical studies, plus analysis using Hill causality criteria and revised Koch's postulates, indicate that the virus-like oxidative damage-associated molecular-pattern (DAMP) cytosolic and cell-free nucleic acids accumulated in AD patients' brains likely drive neuroinflammation, synaptotoxicity, and neurotoxicity. Cytosolic oxidatively-damaged mitochondrial DNA accumulated outside mitochondria dose-dependently in preclinical AD and AD patients' hippocampal neurons, and in AD patients' neocortical neurons but not cerebellar neurons or glia. In oxidatively-stressed neural cells and rodents' brains, cytosolic oxidatively-damaged mitochondrial DNA accumulated and increased antiviral and inflammatory proteins, including cleaved caspase-1, interleukin-1β, and interferon-β. Cytosolic double-stranded RNA and DNA are DAMPs that induce antiviral interferons and/or inflammatory proteins by oligomerizing with various innate-immune pattern-recognition receptors, e.g., cyclic GMP-AMP synthase and the nucleotide-binding-oligomerization-domain-like-receptor-pyrin-domain-containing-3 inflammasome. In oxidatively-stressed neural cells, cytosolic oxidatively-damaged mitochondrial DNA caused synaptotoxicity and neurotoxicity. Depleting mitochondrial DNA prevented these effects. Additionally, cell-free nucleic acids accumulated in AD patients' blood, extracellular vesicles, and senile plaques. Injecting cell-free nucleic acids bound to albumin oligomers into wild-type mice's hippocampi triggered antiviral interferon-β secretion; interferon-β injection caused synapse degeneration. Deoxyribonuclease-I treatment appeared to improve a severe-AD patient's Mini-Mental Status Exam by 15 points. Preclinical and clinical studies of deoxyribonuclease-I and a ribonuclease for AD should be prioritized.
Collapse
Affiliation(s)
- Owen Davis Sanders
- Nebraska Medical Center, Omaha, NE, USA,Correspondence to: Owen Davis Sanders, 210 S 16th St. Apt. 215, Omaha, NE 68102, USA. E-mails: and
| |
Collapse
|
24
|
Magalhães JD, Cardoso SM. Mitochondrial signaling on innate immunity activation in Parkinson disease. Curr Opin Neurobiol 2023; 78:102664. [PMID: 36535149 DOI: 10.1016/j.conb.2022.102664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (aSyn) in the nigrostriatal pathway that is followed by severe neuroinflammatory response. PD etiology is still puzzling; however, the mitocentric view might explain the vast majority of molecular findings not only in the brain, but also at systemic level. While neuronal degeneration is tightly associated with mitochondrial dysfunction, the causal role between aSyn accumulation and mitochondrial dysfunction still requires further investigation. Moreover, mitochondrial dysfunction can elicit an inflammatory response that may be transmitted locally but also in a long range through systemic circulation. Furthermore, mitochondrial-driven innate immune activation may involve the synthesis of antimicrobial peptides, of which aSyn poses as a good candidate. While there is still a need to clarify disease-elicited mechanisms and how aSyn has the ability to modulate mitochondrial and cellular dysfunction, recent studies provide insightful views on mitochondria-inflammation axis in PD etiology.
Collapse
Affiliation(s)
- João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
25
|
Gagat P, Duda-Madej A, Ostrówka M, Pietluch F, Seniuk A, Mackiewicz P, Burdukiewicz M. Testing Antimicrobial Properties of Selected Short Amyloids. Int J Mol Sci 2023; 24:ijms24010804. [PMID: 36614244 PMCID: PMC9821130 DOI: 10.3390/ijms24010804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.
Collapse
Affiliation(s)
- Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
- Correspondence: (P.G.); (M.B.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Michał Ostrówka
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-137 Wrocław, Poland
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: (P.G.); (M.B.)
| |
Collapse
|
26
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
27
|
Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol 2022; 75:102435. [PMID: 35863164 PMCID: PMC9847210 DOI: 10.1016/j.sbi.2022.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.
Collapse
|
28
|
de Eguileor M, Grimaldi A, Pulze L, Acquati F, Morsiani C, Capri M. Amyloid fil rouge from invertebrate up to human ageing: a focus on Alzheimer Disease. Mech Ageing Dev 2022; 206:111705. [DOI: 10.1016/j.mad.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
|
29
|
Xiao SY, Liu YJ, Lu W, Sha ZW, Xu C, Yu ZH, Lee SD. Possible Neuropathology of Sleep Disturbance Linking to Alzheimer's Disease: Astrocytic and Microglial Roles. Front Cell Neurosci 2022; 16:875138. [PMID: 35755779 PMCID: PMC9218054 DOI: 10.3389/fncel.2022.875138] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Sleep disturbances not only deteriorate Alzheimer’s disease (AD) progress by affecting cognitive states but also accelerate the neuropathological changes of AD. Astrocytes and microglia are the principal players in the regulation of both sleep and AD. We proposed that possible astrocyte-mediated and microglia-mediated neuropathological changes of sleep disturbances linked to AD, such as astrocytic adenosinergic A1, A2, and A3 regulation; astrocytic dopamine and serotonin; astrocyte-mediated proinflammatory status (TNFα); sleep disturbance-attenuated microglial CX3CR1 and P2Y12; microglial Iba-1 and astrocytic glial fibrillary acidic protein (GFAP); and microglia-mediated proinflammatory status (IL-1b, IL-6, IL-10, and TNFα). Furthermore, astrocytic and microglial amyloid beta (Aβ) and tau in AD were reviewed, such as astrocytic Aβ interaction in AD; astrocyte-mediated proinflammation in AD; astrocytic interaction with Aβ in the central nervous system (CNS); astrocytic apolipoprotein E (ApoE)-induced Aβ clearance in AD, as well as microglial Aβ clearance and aggregation in AD; proinflammation-induced microglial Aβ aggregation in AD; microglial-accumulated tau in AD; and microglial ApoE and TREM2 in AD. We reviewed astrocytic and microglial roles in AD and sleep, such as astrocyte/microglial-mediated proinflammation in AD and sleep; astrocytic ApoE in sleep and AD; and accumulated Aβ-triggered synaptic abnormalities in sleep disturbance. This review will provide a possible astrocytic and microglial mechanism of sleep disturbance linked to AD.
Collapse
Affiliation(s)
- Shu-Yun Xiao
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Jie Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lu
- Department of Traditional Treatment, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Wei Sha
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Che Xu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Hua Yu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shin-Da Lee
- Department of Mental Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
31
|
Bruno F, Malvaso A, Canterini S, Bruni AC. Antimicrobial Peptides (AMPs) in the Pathogenesis of Alzheimer's Disease: Implications for Diagnosis and Treatment. Antibiotics (Basel) 2022; 11:726. [PMID: 35740133 PMCID: PMC9220182 DOI: 10.3390/antibiotics11060726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. There are two major forms of the disease: sporadic (SAD)-whose causes are not completely understood-and familial (FAD)-with clear autosomal dominant inheritance. The two main hallmarks of AD are extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein (P-tau). An ever-growing body of research supports the infectious hypothesis of sporadic forms of AD. Indeed, it has been documented that some pathogens, such as herpesviruses and certain bacterial species, are commonly present in AD patients, prompting recent clinical research to focus on the characterization of antimicrobial peptides (AMPs) in this pathology. The literature also demonstrates that Aβ can be considered itself as an AMP; thus, representing a type of innate immune defense peptide that protects the host against a variety of pathogens. Beyond Aβ, other proteins with antimicrobial activity, such as lactoferrin, defensins, cystatins, thymosin β4, LL37, histatin 1, and statherin have been shown to be involved in AD. Here, we summarized and discussed these findings and explored the diagnostic and therapeutic potential of AMPs in AD.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, ASP Catanzaro, 88046 Lamezia Terme, Italy
- Association for Neurogenetic Research (ARN), 88046 Lamezia Terme, Italy;
| | - Antonio Malvaso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, 00158 Rome, Italy;
| | | |
Collapse
|
32
|
Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput Struct Biotechnol J 2022; 20:2247-2258. [PMID: 35615024 PMCID: PMC9117813 DOI: 10.1016/j.csbj.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
The burgeoning menace of antimicrobial resistance across the globe has necessitated investigations into other chemotherapeutic strategies to combat infections. Antimicrobial peptides, or host defense peptides, are a set of promising therapeutic candidates in this regard. Most of them cause membrane permeabilization and are a key component of the innate immune response to pathogenic invasion. It has also been reported that peptide self-assembly is a driving factor governing the microbicidal activity of these peptide candidates. While efforts have been made to develop novel synthetic peptides against various microbes, many clinical trials of such peptides have failed due to toxicity and hemolytic activity to the host. A function-guided rational peptide engineering, based on evolutionary principles, physicochemical properties and activity determinants of AMP activity, is expected to help in targeting specific microbes. Furthermore, it is important to develop a unified understanding of the evolution of AMPs in order to fully appreciate their importance in host defense. This review seeks to explore the evolution of AMPs and the physicochemical determinants of AMP activity. The specific interactions driving AMP self-assembly have also been reviewed, emphasizing implications of this self-assembly on microbicidal and immunomodulatory activity.
Collapse
|
33
|
Kreutzberger MAB, Wang S, Beltran LC, Tuachi A, Zuo X, Egelman EH, Conticello VP. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Proc Natl Acad Sci U S A 2022; 119:e2121586119. [PMID: 35533283 PMCID: PMC9171771 DOI: 10.1073/pnas.2121586119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Phenol-soluble modulins (PSMs) are peptide-based virulence factors that play significant roles in the pathogenesis of staphylococcal strains in community-associated and hospital-associated infections. In addition to cytotoxicity, PSMs display the propensity to self-assemble into fibrillar species, which may be mediated through the formation of amphipathic conformations. Here, we analyze the self-assembly behavior of two PSMs, PSMα3 and PSMβ2, which are derived from peptides expressed by methicillin-resistant Staphylococcus aureus (MRSA), a significant human pathogen. In both cases, we observed the formation of a mixture of self-assembled species including twisted filaments, helical ribbons, and nanotubes, which can reversibly interconvert in vitro. Cryo–electron microscopy structural analysis of three PSM nanotubes, two derived from PSMα3 and one from PSMβ2, revealed that the assemblies displayed remarkably similar structures based on lateral association of cross-α amyloid protofilaments. The amphipathic helical conformations of PSMα3 and PSMβ2 enforced a bilayer arrangement within the protofilaments that defined the structures of the respective PSMα3 and PSMβ2 nanotubes. We demonstrate that, similar to amyloids based on cross-β protofilaments, cross-α amyloids derived from these PSMs display polymorphism, not only in terms of the global morphology (e.g., twisted filament, helical ribbon, and nanotube) but also with respect to the number of protofilaments within a given peptide assembly. These results suggest that the folding landscape of PSM derivatives may be more complex than originally anticipated and that the assemblies are able to sample a wide range of supramolecular structural space.
Collapse
Affiliation(s)
- Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Shengyuan Wang
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Leticia C. Beltran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Abraham Tuachi
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908
| | - Vincent P. Conticello
- Department of Chemistry, Emory University, Atlanta, GA 30322
- The Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, GA 30322
| |
Collapse
|
34
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
35
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
36
|
Eldem E, Barve A, Sallin O, Foucras S, Annoni JM, Schmid AW, Alberi Auber L. Salivary Proteomics Identifies Transthyretin as a Biomarker of Early Dementia Conversion. J Alzheimers Dis Rep 2022; 6:31-41. [PMID: 35360272 PMCID: PMC8925122 DOI: 10.3233/adr-210056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 01/18/2023] Open
Abstract
Background: Alzheimer’s disease (AD) remains to date an incurable disease with a long asymptomatic phase. Early diagnosis in peripheral biofluids has emerged as key for identifying subjects at risk and developing therapeutics and preventative approaches. Objective: We apply proteomics discovery to identify salivary diagnostic biomarkers for AD, which are suitable for self-sampling and longitudinal biomonitoring during aging. Methods: 57 participants were recruited for the study and were categorized into Cognitively normal (CNh) (n = 19), mild cognitive impaired (MCI) (n = 21), and Alzheimer’s disease (AD) (n = 17). On a subset of subjects, 3 CNh and 3 mild AD, shot-gun filter aided sample preparation (FASP) proteomics and liquid chromatography mass spectroscopy (LC-MS/MS) was employed in saliva and cerebrospinal fluid (CSF) to identify neural-derived proteins. The protein level of salivary Transthyretin (TTR) was validated using western blot analysis across groups. Results: We found that 19.8% of the proteins in saliva are shared with CSF. When we compared the saliva and CSF proteome, 24 hits were decreased with only one protein expressed more. Among the differentially expressed proteins, TTR with reported function in amyloid misfolding, shows a significant drop in AD samples, confirmed by western blot showing a 0.5-fold reduction in MCI and AD compared to CNh. Conclusion: A reduction in salivary TTR appears with the onset of cognitive symptoms. More in general, the proteomic profiling of saliva shows a plethora of biomarkers worth pursuing as non-invasive hallmarks of dementia in the preclinical stage.
Collapse
Affiliation(s)
- Ece Eldem
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | - Aatmika Barve
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | - Olivier Sallin
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| | | | - Jean-Marie Annoni
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Hôpital Cantonal Fribourgeois, Fribourg, Switzerland
| | | | - Lavinia Alberi Auber
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
- Swiss Integrative Center for Human Health, Fribourg, Switzerland
| |
Collapse
|
37
|
Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022; 37:464-477. [PMID: 35040520 DOI: 10.1002/mds.28925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
α-synucleinopathies, encompassing Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are devastating neurodegenerative diseases for which available therapeutic options are scarce, mostly because of our limited understanding of their pathophysiology. Although these pathologies are attributed to an intracellular accumulation of the α-synuclein protein in the nervous system with subsequent neuronal loss, the trigger(s) of this accumulation is/are not clearly identified. Among the existing hypotheses, interest in the hypothesis advocating the involvement of infectious agents in the onset of these diseases is renewed. In this article, we aimed to review the ongoing relevant factors favoring and opposing this hypothesis, focusing on (1) the potential antimicrobial role of α-synuclein, (2) potential entry points of pathogens in regard to early symptoms of diverse α-synucleinopathies, (3) pre-existing literature reviews assessing potential associations between infectious agents and Parkinson's disease, (4) original studies assessing these associations for dementia with Lewy bodies and multiple system atrophy (identified through a systematic literature review), and finally (5) potential susceptibility factors modulating the effects of infectious agents on the nervous system. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Morgane Linard
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France
| | - Louisa Mougué
- Cognitive-Behavioral Unit and Memory Consultations, Hospital of Sens, Sens, France
| | - Iris Grgurina
- University of Strasbourg, UMR7364 CNRS, LNCA, Strasbourg, France
| | | | - Alexandra Foubert-Samier
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France.,French Reference Centre for MSA, University Hospital of Bordeaux, Bordeaux, France
| | - Frédéric Blanc
- CM2R (Memory Resource and Research Centre), Geriatrics Department, University Hospitals of Strasbourg, Strasbourg, France.,ICube Laboratory and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR U1219, Bordeaux, France
| |
Collapse
|
38
|
Tang Y, Zhang D, Gong X, Zheng J. Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors via cross-seeding. Chem Sci 2022; 13:7143-7156. [PMID: 35799805 PMCID: PMC9214849 DOI: 10.1039/d2sc01447e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases. Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases. Here, we proposed a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins as multiple-target, dual-function amyloid inhibitors.![]()
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA
| | - Xiong Gong
- School of Polymer Science and Polymer Engineering, The University of Akron, Ohio, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA
| |
Collapse
|
39
|
Kummer N, Wu T, De France KJ, Zuber F, Ren Q, Fischer P, Campioni S, Nyström G. Self-Assembly Pathways and Antimicrobial Properties of Lysozyme in Different Aggregation States. Biomacromolecules 2021; 22:4327-4336. [PMID: 34533934 DOI: 10.1021/acs.biomac.1c00870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antimicrobial resistance in microorganisms will cause millions of deaths and pose a vast burden on health systems; therefore, alternatives to existing small-molecule antibiotics have to be developed. Lysozyme is an antimicrobial enzyme and has broad-spectrum antimicrobial activity in different aggregated forms. Here, we propose a reductive pathway to obtain colloidally stable amyloid-like worm-shaped lysozyme nanoparticles (worms) from hen egg white lysozyme (HEWL) and compare them to amyloid fibrils made in an acid hydrolysis pathway. The aggregation of HEWL into worms follows strongly pH-dependent kinetics and induces a structural transition from α-helices to β-sheets. Both HEWL worms and amyloid fibrils show broad-spectrum antimicrobial activity against the bacteria Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and the fungus Candida albicans. The colloidal stability of the worms allows the determination of minimum inhibitory concentrations, which are lower than that for native HEWL in the case of S. aureus. Overall, amyloid fibrils have the strongest antimicrobial effect, likely due to the increased positive charge compared to native HEWL. The structural and functional characterizations of HEWL worms and amyloids investigated herein are critical for understanding the detailed mechanisms of antimicrobial activity and opens up new avenues for the design of broad-spectrum antimicrobial materials for use in various applications.
Collapse
Affiliation(s)
- Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Tingting Wu
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620 Shanghai, P. R. China
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Flavia Zuber
- Laboratory for Biointerfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Fischer
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.,Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| |
Collapse
|
40
|
Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021; 64:131-144. [PMID: 34329941 PMCID: PMC8585687 DOI: 10.1016/j.cbpa.2021.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 01/12/2023]
Abstract
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.
Collapse
Affiliation(s)
- Tania L Lopez-Silva
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, United States.
| |
Collapse
|
41
|
Cross ER, Coulter SM, Pentlavalli S, Laverty G. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. SOFT MATTER 2021; 17:8001-8021. [PMID: 34525154 PMCID: PMC8442837 DOI: 10.1039/d1sm00839k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 05/05/2023]
Abstract
The use of hydrogels has garnered significant interest as biomaterial and drug delivery platforms for anti-infective applications. For decades antimicrobial peptides have been heralded as a much needed new class of antimicrobial drugs. Self-assembling peptide hydrogels with inherent antimicrobial ability have recently come to the fore. However, their fundamental antimicrobial properties, selectivity and mechanism of action are relatively undefined. This review attempts to establish a link between antimicrobial efficacy; the self-assembly process; peptide-membrane interactions and mechanical properties by studying several reported peptide systems: β-hairpin/β-loop peptides; multidomain peptides; amphiphilic surfactant-like peptides and ultrashort/low molecular weight peptides. We also explore their role in the formation of amyloid plaques and the potential for an infection etiology in diseases such as Alzheimer's. We look briefly at innovative methods of gel characterization. These may provide useful tools for future studies within this increasingly important field.
Collapse
Affiliation(s)
- Emily R Cross
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sophie M Coulter
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| | - Garry Laverty
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, N. Ireland, BT9 7BL, UK.
| |
Collapse
|
42
|
Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa? Int J Mol Sci 2021; 22:ijms22189776. [PMID: 34575940 PMCID: PMC8469417 DOI: 10.3390/ijms22189776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide: "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.
Collapse
|
43
|
Galzitskaya OV. Exploring Amyloidogenicity of Peptides From Ribosomal S1 Protein to Develop Novel AMPs. Front Mol Biosci 2021; 8:705069. [PMID: 34490350 PMCID: PMC8416663 DOI: 10.3389/fmolb.2021.705069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) and similar compounds are potential candidates for combating antibiotic-resistant bacteria. The hypothesis of directed co-aggregation of the target protein and an amyloidogenic peptide acting as an antimicrobial peptide was successfully tested for peptides synthesized on the basis of ribosomal S1 protein in the bacterial culture of T. thermophilus. Co-aggregation of the target protein and amyloidogenic peptide was also tested for the pathogenic ribosomal S1 protein from P. aeruginosa. Almost all peptides that we selected as AMPs, prone to aggregation and formation of fibrils, based on the amino acid sequence of ribosomal S1 protein from E. coli, T. thermophilus, P. aeruginosa, formed amyloid fibrils. We have demonstrated that amyloidogenic peptides are not only toxic to their target cells, but also some of them have antimicrobial activity. Controlling the aggregation of vital bacterial proteins can become one of the new directions of research and form the basis for the search and development of targeted antibacterial drugs.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Laboratory of the Structure and Function of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
44
|
Gaglione R, Smaldone G, Cesaro A, Rumolo M, De Luca M, Di Girolamo R, Petraccone L, Del Vecchio P, Oliva R, Notomista E, Pedone E, Arciello A. Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals (Basel) 2021; 14:ph14070631. [PMID: 34209895 PMCID: PMC8308739 DOI: 10.3390/ph14070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | | | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Mariano Rumolo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rosario Oliva
- Physical Chemistry I—Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Naples, Italy;
- Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence: ; Tel.: +39-081-679147
| |
Collapse
|
45
|
Žerovnik E. Viroporins vs. Other Pore-Forming Proteins: What Lessons Can We Take? Front Chem 2021; 9:626059. [PMID: 33681145 PMCID: PMC7930612 DOI: 10.3389/fchem.2021.626059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Pore-forming proteins (PFPs) exist in virtually all domains of life, and by disrupting cellular membranes, depending on the pore size, they cause ion dis-balance, small substances, or even protein efflux/influx, influencing cell’s signaling routes and fate. Such pore-forming proteins exist from bacteria to viruses and also shape host defense systems, including innate immunity. There is strong evidence that amyloid toxicity is also caused by prefibrillar oligomers making “amyloid pores” into cellular membranes. For most of the PFPs, a 2-step mechanism of protein-membrane interaction takes place on the “lipid rafts,” membrane microdomains rich in gangliosides and cholesterol. In this mini-review paper, common traits of different PFPs are looked at. Possible ways for therapy of channelopathies and/or modulating immunity relevant to the new threat of SARS-CoV-2 infections could be learnt from such comparisons.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
46
|
Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021; 118:e1917623117. [PMID: 33372152 PMCID: PMC7817161 DOI: 10.1073/pnas.1917623117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Liana C Chan
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Huiyuan Wang
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Juelline Lieng
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Jennifer Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nannette Y Yount
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Michael R Yeaman
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509;
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|