1
|
Cao S, Wang S, Luo H, Guo J, Xuan L, Sun L. The effect of macrophage-cardiomyocyte interactions on cardiovascular diseases and development of potential drugs. Mol Biol Rep 2024; 51:1056. [PMID: 39417949 DOI: 10.1007/s11033-024-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
The interaction between macrophages and cardiomyocytes plays an important role not only in maintaining cardiac homeostasis, but also in the development of many cardiovascular diseases (CVDs), such as myocardial infarction (MI) and heart failure (HF). In addition to supporting cardiomyocytes, macrophages and cardiomyocytes have a close and complex relationship. By studying their cross-talk, we can better understand novel mechanisms and target pathogenic mechanisms, and improve the treatment of CVDs. We review macrophage-cardiomyocyte communication through connexin 43 (Cx43)-containing gap junctions (GJs) directly, secreted protein factors indirectly, and discuss the implications of these interactions in cardiac homeostasis and the development of various CVDs, including MI, HF, arrhythmia, cardiac fibrosis and myocarditis. In this section, we review various drugs that work by modulating cytokines or other proteins to reduce inflammation in CVDs. The clinical findings from targeting inflammation in CVDs are also discussed. Additionally, we examine the challenges and opportunities for improving our understanding of macrophage-cardiomyocyte coupling as it relates to pathophysiological disease processes, extending our research scope, and helping identify new molecular targets and improve the effectiveness of existing therapies.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| | - Lihua Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| |
Collapse
|
2
|
de Alba-Alvarado MC, Cabrera-Bravo M, Zenteno E, Salazar-Schetino PM, Bucio-Torres MI. The Functions of Cytokines in the Cardiac Immunopathogenesis of Chagas Disease. Pathogens 2024; 13:870. [PMID: 39452741 PMCID: PMC11510034 DOI: 10.3390/pathogens13100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Chagas disease is a complex zoonosis. Clinically, it presents in two distinct phases, acute and chronic. The ability of patients to respond to Trypanosoma cruzi infection depends on the balance between inflammatory and anti-inflammatory responses, in which cytokines play a key regulatory role. In this review, we discuss the role of cytokines in regulating the host response and as mediators of cardiac injury by inducing profibrotic alterations. The importance of characterizing cytokine profiles as biomarkers of the evolution of cardiac damage in T.-cruzi-infected individuals is also emphasized.
Collapse
Affiliation(s)
- Mariana Citlalli de Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Paz María Salazar-Schetino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad México 04510, Mexico; (M.C.-B.); (P.M.S.-S.)
| |
Collapse
|
3
|
Caetano-da-Silva JE, Gonçalves-Santos E, Domingues ELBC, Caldas IS, Lima GDA, Diniz LF, Gonçalves RV, Novaes RD. The mitochondrial uncoupler 2,4-dinitrophenol modulates inflammatory and oxidative responses in Trypanosoma cruzi-induced acute myocarditis in mice. Cardiovasc Pathol 2024; 72:107653. [PMID: 38740356 DOI: 10.1016/j.carpath.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
By uncoupling oxidative phosphorylation, 2,4-dinitrophenol (DNP) attenuates reactive oxygen species (ROS) biosynthesis, which are known to aggravate infectious myocarditis in Chagas disease. Thus, the impact of DNP-based chemotherapy on Trypanosoma cruzi-induced acute myocarditis was investigated. C56BL/6 mice uninfected and infected untreated and treated daily with 100 mg/kg benznidazole (Bz, reference drug), 5 and 10 mg/kg DNP by gavage for 11 days after confirmation of T. cruzi infection were investigated. Twenty-four hours after the last treatment, the animals were euthanized and the heart was collected for microstructural, immunological and biochemical analyses. T. cruzi inoculation induced systemic inflammation (e.g., cytokines and anti-T. cruzi IgG upregulation), cardiac infection (T. cruzi DNA), oxidative stress, inflammatory infiltrate and microstructural myocardial damage in untreated mice. DNP treatment aggravated heart infection and microstructural damage, which were markedly attenuated by Bz. DNP (10 mg/kg) was also effective in attenuating ROS (total ROS, H2O2, and O2-), nitric oxide (NO), lipid (malondialdehyde - MDA) and protein (protein carbonyl - PCn) oxidation, TNF, IFN-γ, IL-10, and MCP-1/CCL2, anti-T. cruzi IgG, cardiac troponin I levels, as well as inflammatory infiltrate and cardiac damage in T. cruzi-infected mice. Our findings indicate that DNP aggravated heart infection and microstructural cardiomyocytes damage in infected mice. These responses were related to the antioxidant and anti-inflammatory properties of DNP, which favors infection by weakening the pro-oxidant and pro-inflammatory protective mechanisms of the infected host. Conversely, Bz-induced cardioprotective effects combined effective anti-inflammatory and antiparasitic responses, which protect against heart infection, oxidative stress, and microstructural damage in Chagas disease.
Collapse
Affiliation(s)
- José Edson Caetano-da-Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Elisa L B C Domingues
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Graziela D A Lima
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Lívia F Diniz
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Ruiz Luque J, Cevey ÁC, Pieralisi AV, Poncini C, Erra Díaz F, Azevedo Reis MV, Donato M, Mirkin GA, Goren NB, Penas FN. Fenofibrate Induces a Resolving Profile in Heart Macrophage Subsets and Attenuates Acute Chagas Myocarditis. ACS Infect Dis 2024; 10:1793-1807. [PMID: 38648355 DOI: 10.1021/acsinfecdis.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chagas disease, caused by Trypanosoma cruzi, stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection. PPARα are ligand-dependent transcription factors involved in lipid metabolism and inflammation regulation. However, the role of fenofibrate, a PPARα ligand, in the activation profile of cardiac macrophages as well as its effect on the early inflammatory and fibrotic response in the heart remains unexplored. The present study demonstrates that fenofibrate significantly reduces not only the serum activity of tissue damage biomarker enzymes (LDH and GOT) but also the circulating proportions of pro-inflammatory monocytes (CD11b+ LY6Chigh). Furthermore, both CD11b+ Ly6Clow F4/80high macrophages (MΦ) and recently differentiated CD11b+ Ly6Chigh F4/80high monocyte-derived macrophages (MdMΦ) shift toward a resolving phenotype (CD206high) in the hearts of fenofibrate-treated mice. This shift correlates with a reduction in fibrosis, inflammation, and restoration of ventricular function in the early stages of Chagas disease. These findings encourage the repositioning of fenofibrate as a potential ancillary immunotherapy adjunct to antiparasitic drugs, addressing inflammation to mitigate Chagas disease symptoms.
Collapse
Affiliation(s)
- Javier Ruiz Luque
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Ágata Carolina Cevey
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Azul Victoria Pieralisi
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Carolina Poncini
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Fernando Erra Díaz
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Marcus Vinicius Azevedo Reis
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Martin Donato
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Buenos Aires C1121A6B, Argentina
| | - Gerardo Ariel Mirkin
- CONICET - Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires C1121A6B, Argentina
| | - Nora Beatriz Goren
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| | - Federico Nicolás Penas
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires C1121A6B, Argentina
| |
Collapse
|
5
|
Kunanopparat A, Dinh TTH, Ponpakdee P, Padungros P, Kaewduangduen W, Ariya-anandech K, Tummamunkong P, Samaeng A, Sae-ear P, Leelahavanichkul A, Hirankarn N, Ritprajak P. Complement receptor 3-dependent engagement by Candida glabrata β-glucan modulates dendritic cells to induce regulatory T-cell expansion. Open Biol 2024; 14:230315. [PMID: 38806144 PMCID: PMC11293457 DOI: 10.1098/rsob.230315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata β-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata β-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata β-glucan to CR3. Our data suggest that C. glabrata β-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Truc Thi Huong Dinh
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Pathophysiology and Immunology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Pranpariya Ponpakdee
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Warerat Kaewduangduen
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Kasirapat Ariya-anandech
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Amanee Samaeng
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-ear
- Faculty of Dentistry, Oral Biology Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, Faculty of Dentistry, Center of Excellence in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Zhang W, Cai Z, Liang D, Han J, Wu P, Shan J, Meng G, Zeng H. Immune Cell-Related Genes in Juvenile Idiopathic Arthritis Identified Using Transcriptomic and Single-Cell Sequencing Data. Int J Mol Sci 2023; 24:10619. [PMID: 37445800 DOI: 10.3390/ijms241310619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children. The heterogeneity of the disease can be investigated via single-cell RNA sequencing (scRNA-seq) for its gap in the literature. Firstly, five types of immune cells (plasma cells, naive CD4 T cells, memory-activated CD4 T cells, eosinophils, and neutrophils) were significantly different between normal control (NC) and JIA samples. WGCNA was performed to identify genes that exhibited the highest correlation to differential immune cells. Then, 168 differentially expressed immune cell-related genes (DE-ICRGs) were identified by overlapping 13,706 genes identified by WGCNA and 286 differentially expressed genes (DEGs) between JIA and NC specimens. Next, four key genes, namely SOCS3, JUN, CLEC4C, and NFKBIA, were identified by a protein-protein interaction (PPI) network and three machine learning algorithms. The results of functional enrichment revealed that SOCS3, JUN, and NFKBIA were all associated with hallmark TNF-α signaling via NF-κB. In addition, cells in JIA samples were clustered into four groups (B cell, monocyte, NK cell, and T cell groups) by single-cell data analysis. CLEC4C and JUN exhibited the highest level of expression in B cells; NFKBIA and SOCS3 exhibited the highest level of expression in monocytes. Finally, real-time quantitative PCR (RT-qPCR) revealed that the expression of three key genes was consistent with that determined by differential analysis. Our study revealed four key genes with prognostic value for JIA. Our findings could have potential implications for JIA treatment and investigation.
Collapse
Affiliation(s)
- Wenbo Zhang
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
- The Joint Center for Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, Shanghai 200031, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhe Cai
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
| | - Dandan Liang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiaochan Han
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ping Wu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiayi Shan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Guangxun Meng
- The Joint Center for Infection and Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Chinese Academy of Sciences, Shanghai 200031, China
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huasong Zeng
- The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
7
|
Cevey ÁC, Pieralisi AV, Donato M, Rada J, Gelpi RJ, Mirkin GA, Goren NB, Penas FN. Macrophages Mediate Healing Properties of Fenofibrate in Experimental Chagasic Cardiomyopathy. ACS Infect Dis 2023; 9:213-220. [PMID: 36661566 DOI: 10.1021/acsinfecdis.2c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated. Here we show, for the first time, that macrophages play a fundamental role in the fenofibrate-mediated modulation of heart pro-inflammatory response and fibrosis caused by the infection with Trypanosoma cruzi. Furthermore, macrophages are required for fenofibrate to improve the loss of ventricular function and this restoration correlates with an anti-inflammatory microenvironment. Understanding the contributions of macrophages to the healing properties of fenofibrate reinforces its potential use as a therapeutic drug, with the aim of helping to solve a public health problem, such as chronic Chagas disease.
Collapse
Affiliation(s)
- Ágata Carolina Cevey
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS). Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Azul Victoria Pieralisi
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS). Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Martín Donato
- Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jimena Rada
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS). Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Ricardo Jorge Gelpi
- Facultad de Medicina, Instituto de Fisiopatología Cardiovascular (INFICA), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gerardo Ariel Mirkin
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM). Facultad de Medicina, CONICET - Universidad de Buenos Aires. Buenos Aires C1121ABG, Argentina
| | - Nora Beatriz Goren
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS). Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Federico Nicolás Penas
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS). Facultad de Medicina, CONICET - Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
8
|
Montalvo-Ocotoxtle IG, Rojas-Velasco G, Rodríguez-Morales O, Arce-Fonseca M, Baeza-Herrera LA, Arzate-Ramírez A, Meléndez-Ramírez G, Manzur-Sandoval D, Lara-Romero ML, Reyes-Ortega A, Espinosa-González P, Palacios-Rosas E. Chagas Heart Disease: Beyond a Single Complication, from Asymptomatic Disease to Heart Failure. J Clin Med 2022; 11:7262. [PMID: 36555880 PMCID: PMC9784121 DOI: 10.3390/jcm11247262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Chagas cardiomyopathy (CC), caused by the protozoan Trypanosoma cruzi, is an important cause of cardiovascular morbidity and mortality in developing countries. It is estimated that 6 to 7 million people worldwide are infected, and it is predicted that it will be responsible for 200,000 deaths by 2025. The World Health Organization (WHO) considers Chagas disease (CD) as a Neglected Tropical Disease (NTD), which must be acknowledged and detected in time, as it remains a clinical and diagnostic challenge in both endemic and non-endemic regions and at different levels of care. The literature on CC was analyzed by searching different databases (Medline, Cochrane Central, EMBASE, PubMed, Google Scholar, EBSCO) from 1968 until October 2022. Multicenter and bioinformatics trials, systematic and bibliographic reviews, international guidelines, and clinical cases were included. The reference lists of the included papers were checked. No linguistic restrictions or study designs were applied. This review is intended to address the current incidence and prevalence of CD and to identify the main pathogenic mechanisms, clinical presentation, and diagnosis of CC.
Collapse
Affiliation(s)
- Isis G. Montalvo-Ocotoxtle
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gustavo Rojas-Velasco
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Minerva Arce-Fonseca
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Luis A. Baeza-Herrera
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Arturo Arzate-Ramírez
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gabriela Meléndez-Ramírez
- Magnetic Resonance Imaging Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Daniel Manzur-Sandoval
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Mayra L. Lara-Romero
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| | - Antonio Reyes-Ortega
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Patricia Espinosa-González
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Palacios-Rosas
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| |
Collapse
|
9
|
Alkhayyat SS, Al-kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GES, Simal-Gandara J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 2022; 71:1159-1167. [PMID: 35941297 PMCID: PMC9360649 DOI: 10.1007/s00011-022-01615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fenofibrate is an agonist of peroxisome proliferator activated receptor alpha (PPAR-α), that possesses anti-inflammatory, antioxidant, and anti-thrombotic properties. Fenofibrate is effective against a variety of viral infections and different inflammatory disorders. Therefore, the aim of critical review was to overview the potential role of fenofibrate in the pathogenesis of SARS-CoV-2 and related complications. RESULTS By destabilizing SARS-CoV-2 spike protein and preventing it from binding angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 entry, fenofibrate can reduce SARS-CoV-2 entry in human cells Fenofibrate also suppresses inflammatory signaling pathways, which decreases SARS-CoV-2 infection-related inflammatory alterations. In conclusion, fenofibrate anti-inflammatory, antioxidant, and antithrombotic capabilities may help to minimize the inflammatory and thrombotic consequences associated with SARSCoV-2 infection. Through attenuating the interaction between SARS-CoV-2 and ACE2, fenofibrate can directly reduce the risk of SARS-CoV-2 infection. CONCLUSIONS As a result, fenofibrate could be a potential treatment approach for COVID-19 control.
Collapse
Affiliation(s)
- Shadi Salem Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M. AboKamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty Science, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
10
|
Zhang L, Li G, Liang B, Su X, Xie H, Sun H, Wu G. Integrative analyses of immune-related biomarkers and associated mechanisms in coronary heart disease. BMC Med Genomics 2022; 15:219. [PMID: 36266609 PMCID: PMC9585797 DOI: 10.1186/s12920-022-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Various studies showed that the effect of immune activation is pro-atherogenic and coronary heart disease (CHD) should therefore be considered an autoimmune disease. This study aimed to identify potential immune-related biomarkers, pathways, and the potential regulatory networks underlying CHD. Differentially expressed genes (DEGs) between CHD and control samples were determined by analyzing GSE71226 and GSE9128. The overlapping differential expression immune-related genes (DE-IRGs) for CHD were identified by analyzing the ImmPort database and two GEO databases. A total of 384 DE-IRGs were identified. Subsequently, comprehensive enrichment analyses suggested that DE-IRGs were enriched in immune-related pathways, including autoimmune thyroid disease, the intestinal immune network for IGA production, and downstream signaling events of B cell receptors. The signature of DE-IRGs was validated using an external independent dataset GSE20681 (AUC = 0.875). Furthermore, we conducted protein–protein interaction network analysis and identified eight hub genes, which were most enriched in regulation of defense response, NF-κB signaling pathway, regulation of JNK cascade, and regulation of cytokine production. Moreover, networks of miRNAs-mRNAs and transcription factors (TFs)-mRNA underlying the integrated data were established, involving eight miRNAs and 76 TF-targeting hub genes. Ultimately, 17 SNPs in miRNA-mediated gene networks were identified. We screened potential immune-related genes in CHD and constructed miRNA-mRNA-TF and SNP-miRNA networks, which not only provide inspired insights into the occurrence and the molecular mechanisms of CHD but also lay a foundation for targeting potential biomarkers using immunotherapy and for understanding the molecular mechanisms of CHD.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Clinical Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Guibin Li
- Department of Orthopaedics, Jilin Province FAW General Hospital, Changchun, China
| | - Bo Liang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Su
- Department of Human Resources, Jilin Province FAW General Hospital, Changchun, China
| | - Haolin Xie
- Medical Association Office, Jilin Province FAW General Hospital, Changchun, China
| | - Hongxia Sun
- Department of Pharmacology, School of Pharmacy, Beihua University, Jilin, China
| | - Ge Wu
- Department of Clinical Pharmacy, Jilin Province FAW General Hospital, Changchun, China.
| |
Collapse
|
11
|
Pieralisi AV, Cevey ÁC, Penas FN, Prado N, Mori A, Gili M, Mirkin GA, Gagliardi J, Goren NB. Fenofibrate Increases the Population of Non-Classical Monocytes in Asymptomatic Chagas Disease Patients and Modulates Inflammatory Cytokines in PBMC. Front Cell Infect Microbiol 2022; 11:785166. [PMID: 35360222 PMCID: PMC8963737 DOI: 10.3389/fcimb.2021.785166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic Chagas disease cardiomyopathy (CCC) is the most important clinical manifestation of infection with Trypanosma cruzi (T. cruzi) due to its frequency and effects on morbidity and mortality. Peripheral blood mononuclear cells (PBMC) infiltrate the tissue and differentiate into inflammatory macrophages. Advances in pathophysiology show that myeloid cell subpopulations contribute to cardiac homeostasis, emerging as possible therapeutic targets. We previously demonstrated that fenofibrate, PPARα agonist, controls inflammation, prevents fibrosis and improves cardiac function in a murine infection model. In this work we investigated the spontaneous release of inflammatory cytokines and chemokines, changes in the frequencies of monocyte subsets, and fenofibrate effects on PBMC of seropositive patients with different clinical stages of Chagas disease. The results show that PBMC from Chagas disease patients display higher levels of IL-12, TGF-β, IL-6, MCP1, and CCR2 than cells from uninfected individuals (HI), irrespectively of the clinical stage, asymptomatic (Asy) or with Chagas heart disease (CHD). Fenofibrate reduces the levels of pro-inflammatory mediators and CCR2 in both Asy and CHD patients. We found that CHD patients display a significantly higher percentage of classical monocytes in comparison with Asy patients and HI. Besides, Asy patients have a significantly higher percentage of non-classical monocytes than CHD patients or HI. However, no difference in the intermediate monocyte subpopulation was found between groups. Moreover, monocytes from Asy or CHD patients exhibit different responses upon stimulation in vitro with T. cruzi lysates and fenofibrate treatment. Stimulation with T. cruzi significantly increases the percentage of classical monocytes in the Asy group whereas the percentage of intermediate monocytes decreases. Besides, there are no changes in their frequencies in CHD or HI. Notably, stimulation with T. cruzi did not modify the frequency of the non-classical monocytes subpopulation in any of the groups studied. Moreover, fenofibrate treatment of T. cruzi-stimulated cells, increased the frequency of the non-classical subpopulation in Asy patients. Interestingly, fenofibrate restores CCR2 levels but does not modify HLA-DR expression in any groups. In conclusion, our results emphasize a potential role for fenofibrate as a modulator of monocyte subpopulations towards an anti-inflammatory and healing profile in different stages of chronic Chagas disease.
Collapse
Affiliation(s)
- Azul V. Pieralisi
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Ágata C. Cevey
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Federico N. Penas
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Nilda Prado
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Ana Mori
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Mónica Gili
- Hospital Municipal de Rehabilitación Respiratoria María Ferrer, Buenos Aires, Argentina
| | - Gerardo A. Mirkin
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Juan Gagliardi
- Division of Cardiology, Hospital del Gobierno de la Ciudad de Buenos Aires "Dr. Cosme Argerich", Buenos Aires, Argentina
| | - Nora B. Goren
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
- CONICET Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- *Correspondence: Nora B. Goren,
| |
Collapse
|
12
|
Cevey ÁC, Mascolo PD, Penas FN, Pieralisi AV, Sequeyra AS, Mirkin GA, Goren NB. Benznidazole Anti-Inflammatory Effects in Murine Cardiomyocytes and Macrophages Are Mediated by Class I PI3Kδ. Front Immunol 2021; 12:782891. [PMID: 34925364 PMCID: PMC8675942 DOI: 10.3389/fimmu.2021.782891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-β, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.
Collapse
Affiliation(s)
- Ágata C Cevey
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Paula D Mascolo
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Federico N Penas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Azul V Pieralisi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Aldana S Sequeyra
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nora B Goren
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
13
|
Wu J, Cao J, Fan Y, Li C, Hu X. Comprehensive analysis of miRNA-mRNA regulatory network and potential drugs in chronic chagasic cardiomyopathy across human and mouse. BMC Med Genomics 2021; 14:283. [PMID: 34844599 PMCID: PMC8628461 DOI: 10.1186/s12920-021-01134-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Chronic chagasic cardiomyopathy (CCC) is the leading cause of heart failure in Latin America and often causes severe inflammation and fibrosis in the heart. Studies on myocardial function and its molecular mechanisms in patients with Chronic chagasic cardiomyopathy are very limited. In order to understand the development and progression of Chronic chagasic cardiomyopathy and find targets for its diagnosis and treatment, the field needs to better understand the exact molecular mechanisms involved in these processes. Methods The mRNA microarray datasets GSE84796 (human) and GSE24088 (mouse) were obtained from the Gene Expression Omnibus (GEO) database. Homologous genes between the two species were identified using the online database mining tool Biomart, followed by differential expression analysis, gene enrichment analysis and protein–protein interaction (PPI) network construction. Cytohubba plug-in of Cytoscape software was used to identify Hub gene, and miRNet was used to construct the corresponding miRNA–mRNA regulatory network. miRNA-related databases: miRDB, Targetscan and miRWalk were used to further evaluate miRNAs in the miRNA–mRNA network. Furthermore, Comparative Toxicogenomics Database (CTD) and L1000 Platform were used to identify hub gene-related drugs. Results A total of 86 homologous genes were significantly differentially expressed in the two datasets, including 73 genes with high expression and 13 genes with low expression. These differentially expressed genes were mainly enriched in the terms of innate immune response, signal transduction, protein binding, Natural killer cell mediated cytotoxicity, Tuberculosis, Chemokine signaling pathway, Chagas disease and PI3K−Akt signaling pathway. The top 10 hub genes LAPTM5, LCP1, HCLS1, CORO1A, CD48, TYROBP, RAC2, ARHGDIB, FERMT3 and NCF4 were identified from the PPI network. A total of 122 miRNAs were identified to target these hub genes and 30 of them regulated two or more hub genes at the same time. miRDB, Targetscan and miRWalk were further analyzed and screened out hsa-miR-34c-5p, hsa-miR-34a-5p and hsa-miR-16-5p as miRNAs regulating these hub genes. Finally, Progesterone, Flutamide, Nimesulide, Methotrexate and Temozolomide were identified to target these hub genes and might be targeted therapies for Chronic chagasic cardiomyopathy. Conclusions In this study, the potential genes associated with Chronic chagasic cardiomyopathy are identified and a miRNA–mRNA regulatory network is constructed. This study explores the molecular mechanisms of Chronic chagasic cardiomyopathy and provides important clues for finding new therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01134-3.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China.,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan, 430071, China. .,Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Ivanova N, Leite ALJ, Vieira MB, Silva OHCE, Mota LWR, Costa GDP, de Azevedo CS, Auharek SA, Novaes RD, Pinto KMDC, Bianchi RF, Talvani A. New Insights Into Blue Light Phototherapy in Experimental Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2021; 11:673070. [PMID: 34722326 PMCID: PMC8549511 DOI: 10.3389/fcimb.2021.673070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The search for an effective etiologic treatment to eliminate Trypanosoma cruzi, the causative agent of Chagas disease, has continued for decades and yielded controversial results. In the 1970s, nifurtimox and benznidazole were introduced for clinical assessment, but factors such as parasite resistance, high cellular toxicity, and efficacy in acute and chronic phases of the infection have been debated even today. This study proposes an innovative strategy to support the controlling of the T. cruzi using blue light phototherapy or blue light-emitting diode (LED) intervention. In in vitro assays, axenic cultures of Y and CL strains of T. cruzi were exposed to 460 nm and 40 µW/cm2 of blue light for 5 days (6 h/day), and parasite replication was evaluated daily. For in vivo experiments, C57BL6 mice were infected with the Y strain of T. cruzi and exposed to 460 nm and 7 µW/cm2 of blue light for 9 days (12 h/day). Parasite count in the blood and cardiac tissue was determined, and plasma interleukin (IL-6), tumoral necrosis factor (TNF), chemokine ligand 2 (CCL2), and IL-10 levels and the morphometry of the cardiac tissue were evaluated. Blue light induced a 50% reduction in T. cruzi (epimastigote forms) replication in vitro after 5 days of exposure. This blue light-mediated parasite control was also observed by the T. cruzi reduction in the blood (trypomastigote forms) and in the cardiac tissue (parasite DNA and amastigote nests) of infected mice. Phototherapy reduced plasma IL-6, TNF and IL-10, but not CCL2, levels in infected animals. This non-chemical therapy reduced the volume density of the heart stroma in the cardiac connective tissue but did not ameliorate the mouse myocarditis, maintaining a predominance of pericellular and perivascular mononuclear inflammatory infiltration with an increase in polymorphonuclear cells. Together, these data highlight, for the first time, the use of blue light therapy to control circulating and tissue forms of T. cruzi. Further investigation would demonstrate the application of this promising and potential complementary strategy for the treatment of Chagas disease.
Collapse
Affiliation(s)
- Natália Ivanova
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ana Luísa Junqueira Leite
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Marcel Barbosa Vieira
- Laboratório de Polímerose Propriedades Eletrônicas de Materiais, Departamento de Física, ICEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Otto Henrique Cezar E Silva
- Laboratório de Polímerose Propriedades Eletrônicas de Materiais, Departamento de Física, ICEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ludmilla Walter Reis Mota
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Guilherme de Paula Costa
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós-graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Sarah Alves Auharek
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teofilo Otoni, Brazil
| | - Romulo Dias Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Kelerson Mauro de Castro Pinto
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Escola de Educação Física, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rodrigo Fernando Bianchi
- Laboratório de Polímerose Propriedades Eletrônicas de Materiais, Departamento de Física, ICEB, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - André Talvani
- Laboratório de Imunobiologia da Inflamação, Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós Graduação em Ecologia de Biomas Tropicais, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós-graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Brazil.,Programa de Pós-graduação em Infectologia e Medicina Tropical, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|