1
|
Cao CH, Li WL, Zhang Y, Wei T, Yang CL, Li XL, Liu B. A Rare Patient of SEZ6L2 Antibody-Associated Cerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2025; 24:68. [PMID: 40111551 DOI: 10.1007/s12311-025-01824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Chen-Hui Cao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wen-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ting Wei
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
2
|
Kirikae H, He X, Ohnishi T, Miyazaki H, Yoshikawa T, Owada Y, Maekawa M. Gene Expression Profiling in the Cortex of Fabp4 Knockout Mice. Neuropsychopharmacol Rep 2025; 45:e70006. [PMID: 39921359 PMCID: PMC11806211 DOI: 10.1002/npr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
AIMS Fatty acid binding protein 4, adipocyte (Fabp4), is well known for its role in peripheral lipid metabolism, but its potential role in brain function remains largely unexplored. This study aimed to investigate Fabp4 expression in the adult mouse brain and explore gene expression changes in Fabp4 knockout (KO) mice to assess its potential impact on brain function. METHODS We conducted in situ hybridization to assess Fabp4 expression in key brain regions of adult mice. In parallel, differential gene expression analysis using RNA-seq was conducted in the prefrontal cortex of Fabp4 KO mice to identify genes affected by Fabp4 deficiency. RESULTS No Fabp4 expression was detected in the brains of mice, suggesting a lack of direct involvement in the central nervous system. However, Fabp4 KO mice exhibited significant changes in gene expression in the brain, with 31 genes upregulated and 30 downregulated. Downregulated genes were linked to histone methylation and metabolic processes, while upregulated ones were associated with synaptic organization. CONCLUSION Although Fabp4 is not expressed in the brain, its deficiency leads to substantial changes in gene expression, likely mediated by peripheral metabolic pathways and epigenetic regulation. These changes may explain the previously observed autism-like behaviors and increased dendritic spine density in Fabp4 KO mice. This study sheds light on the role of systemic lipid metabolism in neurodevelopmental disorders such as autism spectrum disorder (ASD) and highlights epigenetic mechanisms as potential mediators of these effects.
Collapse
Affiliation(s)
- Hinako Kirikae
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Xiaofeng He
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuo Ohnishi
- Department of NutritionAkita Nutrition Junior CollegeAkitaJapan
| | - Hirofumi Miyazaki
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Takeo Yoshikawa
- Laboratory for Molecular PsychiatryRIKEN Center for Brain Science WakoSaitamaJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Motoko Maekawa
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
3
|
Chen J, Wang X, Rao X, Luo H, Shen Y, Gan J. Integrated analysis of proteomics and metabolomics in infantile epileptic spasms syndrome. Sci Rep 2025; 15:4457. [PMID: 39915639 PMCID: PMC11803095 DOI: 10.1038/s41598-025-88943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Infantile Epileptic Spasms Syndrome (IESS) is a severe developmental epileptic encephalopathy that manifests in infancy, significantly impacting the health and quality of life of affected children. The treatment of IESS poses a significant challenge, primarily due to the incomplete understanding of its etiology and pathogenesis. Objective: This study aims to investigate the pathogenic mechanisms of IESS, utilizing metabolomics and proteomics analyses to uncover potential biomarkers for the disease, thereby providing new insights for diagnostic and therapeutic strategies. Cerebrospinal fluid samples from 6 IESS patients and 6 control subjects with benign intracranial hypertension were collected and analyzed using metabolomics and proteomics techniques. Significant differential metabolites and proteins were identified and correlated to determine key proteins associated with specific metabolites. The study then expanded the sample size to 10 per group and validated the identified proteins through ELISA analysis. A total of 24 differential metabolites (12 upregulated and 12 downregulated) and 79 differential proteins (18 upregulated and 61 downregulated) were identified. Metabolomic analysis suggests that linoleic acid is a highly noteworthy differential metabolite in the cerebrospinal fluid of IESS patients. The associated differential protein HLA-A and SEZ6L2 proteins were notably downregulated (p < 0.05). Linoleic acid and its metabolism-related proteins HLA-A and SEZ6L2 could serve as potential biomarkers for IESS, providing new insights into the complex pathogenic mechanisms of the disease. Additionally, these findings also assist in identifying new therapeutic targets and developing more effective treatment strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Xiaoqian Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Xueyi Rao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Huan Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Yajun Shen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China.
| | - Jing Gan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, 610041, China.
- WCSUH-Tianfu·Sichuan Provincial Children's Hospital, No. 898, Kesi Road, Dongpo District, Meishan City, Sichuan Province, China.
| |
Collapse
|
4
|
Liu M, Ren H, Yao D, Yao M, Jiang N, Fan S, Guan H. Autoimmune cerebellar ataxia associated with anti-SEZ6L2 antibody: report of three cases. J Neurol 2025; 272:127. [PMID: 39812691 DOI: 10.1007/s00415-024-12756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Mange Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Dongpi Yao
- Department of Neurology, Beijing Chaoyang Integrative Medicine Rescue and First Aid Hospital, Beijing, China
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Nan Jiang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
5
|
Ding L, Zeng J, Zhao J. Overexpression of SEZ6L2 and Immune Infiltration in Cancer Based on Gene Image Diagnosis. Skin Res Technol 2024; 30:e70096. [PMID: 39360664 PMCID: PMC11447639 DOI: 10.1111/srt.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND With the rapid advancement of optical image diagnostic technology, researchers are delving into the potential applications in the field of cancer diagnosis and treatment. The exact link between the SEZ6L2 gene and cancer immune infiltration remains elusive. MATERIALS AND METHODS This study aims to investigate the relationship between SEZ6L2 gene overexpression and cancer immune infiltration using optical image diagnostic technology, thereby presenting novel insights for enhancing cancer diagnosis and treatment strategies. Tissue samples obtained from cancer patients were meticulously analyzed to quantitatively assess the expression of the SEZ6L2 gene through light image diagnostic technology. Additionally, immunohistochemical techniques were employed to assess the nature and quantity of immune infiltrating cells within the cancerous tissues. RESULTS The enrichment pathways were found to include complement activation, circulating immunoglobulin mediated humoral immune response, protein activation cascade, immunoglobulin complex, and immunoglobulin. In addition, the expression of SEZ6L2 is closely related to the infiltration level of tumor infiltrating immune cells (TIICs), and there is a potential relationship between the expression of SEZ6L2 and different marker genes of TIIC. CONCLUSION Increased SEZ6L2 mRNA expression in breast invasive carcinoma was significantly associated with negative prognosis and immune invasion. SEZ6L2 may be a novel prognostic biomarker and a potential immunotherapeutic target in BRCA.
Collapse
Affiliation(s)
- Liangfu Ding
- Department of General Surgery, Chongming Branch of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jilin Zeng
- Department of General Surgery, Chongming Branch of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junyong Zhao
- Department of General Surgery, Chongming Branch of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Thyroid and Breast, Division of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Belluomini L, Sposito M, Avancini A, Insolda J, Milella M, Rossi A, Pilotto S. Unlocking New Horizons in Small-Cell Lung Cancer Treatment: The Onset of Antibody-Drug Conjugates. Cancers (Basel) 2023; 15:5368. [PMID: 38001628 PMCID: PMC10670928 DOI: 10.3390/cancers15225368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive disease, accounting for about 15% of all lung cancer cases. Despite initial responses to chemoimmunotherapy, SCLC recurs and becomes resistant to treatment. Recently, antibody-drug conjugates (ADCs) have emerged as a promising therapeutic option for SCLC. ADCs consist of an antibody that specifically targets a tumor antigen linked to a cytotoxic drug. The antibody delivers the drug directly to the cancer cells, minimizing off-target toxicity and improving the therapeutic index. Several ADCs targeting different tumor antigens are currently being evaluated in clinical trials for SCLC. Despite the negative results of rovalpituzumab tesirine (Rova-T), other ADCs targeting different antigens, such as B7-H3, seizure-related homolog 6 (SEZ6), and CEACAM5, have also been investigated in clinical trials, including for SCLC, and their results suggest preliminary activity, either alone or in combination with other therapies. More recently, sacituzumab govitecan, an anti-TROP2 ADC, demonstrated promising activity in lung cancer, including SCLC. Furthermore, an anti-B7-H3 (CD276), ifinatamab deruxtecan (DS7300A), showed a high response rate and durable responses in heavily pretreated SCLC. Overall, ADCs represent an intriguing approach to treating SCLC, particularly in the relapsed or refractory setting. Further studies are needed to determine their efficacy and safety and the best location in the treatment algorithm for SCLC. In this review, we aim to collect and describe the results regarding the past, the present, and the future of ADCs in SCLC.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Marco Sposito
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Alice Avancini
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Jessica Insolda
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Michele Milella
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| | - Antonio Rossi
- Therapeutic Science & Strategy Unit, Oncology Centre of Excellence, IQVIA, 20019 Milan, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, 37134 Verona, Italy; (L.B.); (M.S.); (A.A.); (J.I.); (M.M.); (S.P.)
| |
Collapse
|
8
|
Shen D, Zhou Q, Meng H, Zhang M, Peng L, Chen S. Image features of anti-SEZ6L2 encephalitis, a rare cause of ataxia and parkinsonism. J Neurol 2023; 270:4549-4553. [PMID: 37160799 DOI: 10.1007/s00415-023-11756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Dingding Shen
- Department of Neurology, Shanghai Ruijin Hospital, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Qinming Zhou
- Department of Neurology, Shanghai Ruijin Hospital, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huanyu Meng
- Department of Neurology, Shanghai Ruijin Hospital, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Zhang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lisheng Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Sheng Chen
- Department of Neurology, Shanghai Ruijin Hospital, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
9
|
Kather A, Holtbernd F, Brunkhorst R, Hasan D, Markewitz R, Wandinger KP, Wiesmann M, Schulz JB, Tauber SC. Anti-SEZ6L2 antibodies in paraneoplastic cerebellar syndrome: case report and review of the literature. Neurol Res Pract 2022; 4:54. [PMID: 36310162 PMCID: PMC9620611 DOI: 10.1186/s42466-022-00218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/01/2022] [Indexed: 12/03/2022] Open
Abstract
Seizure Related 6 Homolog Like 2 (SEZ6L2) protein has been shown to have implications in neuronal and especially motor function development. In oncology, overexpression of SEZ6L2 serves as a negative prognostic marker in several tumor entities. Recently, few cases of anti-SEZ6L2 antibody mediated cerebellar syndromes were reported. In this article, we present a case of a 70-year-old woman with subacute onset of gait disturbance, dysarthria and limb ataxia. Serum anti-SEZ6L2 antibodies were markedly increased, and further diagnostic workup revealed left sided breast cancer. Neurological symptoms and SEZ6L2 titer significantly improved after curative tumor therapy. This is a very rare and educationally important report of anti-SEZ6L2 autoimmune cerebellar syndrome with a paraneoplastic etiology. Additionally, we performed a review of the current literature for SEZ6L2, focusing on comparing the published cases on autoimmune cerebellar syndrome.
Collapse
|
10
|
Tai DJC, Razaz P, Erdin S, Gao D, Wang J, Nuttle X, de Esch CE, Collins RL, Currall BB, O'Keefe K, Burt ND, Yadav R, Wang L, Mohajeri K, Aneichyk T, Ragavendran A, Stortchevoi A, Morini E, Ma W, Lucente D, Hastie A, Kelleher RJ, Perlis RH, Talkowski ME, Gusella JF. Tissue- and cell-type-specific molecular and functional signatures of 16p11.2 reciprocal genomic disorder across mouse brain and human neuronal models. Am J Hum Genet 2022; 109:1789-1813. [PMID: 36152629 PMCID: PMC9606388 DOI: 10.1016/j.ajhg.2022.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
Chromosome 16p11.2 reciprocal genomic disorder, resulting from recurrent copy-number variants (CNVs), involves intellectual disability, autism spectrum disorder (ASD), and schizophrenia, but the responsible mechanisms are not known. To systemically dissect molecular effects, we performed transcriptome profiling of 350 libraries from six tissues (cortex, cerebellum, striatum, liver, brown fat, and white fat) in mouse models harboring CNVs of the syntenic 7qF3 region, as well as cellular, transcriptional, and single-cell analyses in 54 isogenic neural stem cell, induced neuron, and cerebral organoid models of CRISPR-engineered 16p11.2 CNVs. Transcriptome-wide differentially expressed genes were largely tissue-, cell-type-, and dosage-specific, although more effects were shared between deletion and duplication and across tissue than expected by chance. The broadest effects were observed in the cerebellum (2,163 differentially expressed genes), and the greatest enrichments were associated with synaptic pathways in mouse cerebellum and human induced neurons. Pathway and co-expression analyses identified energy and RNA metabolism as shared processes and enrichment for ASD-associated, loss-of-function constraint, and fragile X messenger ribonucleoprotein target gene sets. Intriguingly, reciprocal 16p11.2 dosage changes resulted in consistent decrements in neurite and electrophysiological features, and single-cell profiling of organoids showed reciprocal alterations to the proportions of excitatory and inhibitory GABAergic neurons. Changes both in neuronal ratios and in gene expression in our organoid analyses point most directly to calretinin GABAergic inhibitory neurons and the excitatory/inhibitory balance as targets of disruption that might contribute to changes in neurodevelopmental and cognitive function in 16p11.2 carriers. Collectively, our data indicate the genomic disorder involves disruption of multiple contributing biological processes and that this disruption has relative impacts that are context specific.
Collapse
Affiliation(s)
- Derek J C Tai
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Parisa Razaz
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Serkan Erdin
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer Wang
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xander Nuttle
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Celine E de Esch
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan L Collins
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benjamin B Currall
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn O'Keefe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas D Burt
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rachita Yadav
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lily Wang
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiana Mohajeri
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tatsiana Aneichyk
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashok Ragavendran
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Weiyuan Ma
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Raymond J Kelleher
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Division of Clinical Research, Massachusetts General Hospital, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael E Talkowski
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Functional and Expressional Analyses Reveal the Distinct Role of Complement Factor I in Regulating Complement System Activation during GCRV Infection in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms231911369. [PMID: 36232671 PMCID: PMC9569754 DOI: 10.3390/ijms231911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.
Collapse
|
12
|
Luo SS, Zou KX, Zhu H, Cheng Y, Yan YS, Sheng JZ, Huang HF, Ding GL. Integrated Multi-Omics Analysis Reveals the Effect of Maternal Gestational Diabetes on Fetal Mouse Hippocampi. Front Cell Dev Biol 2022; 10:748862. [PMID: 35237591 PMCID: PMC8883435 DOI: 10.3389/fcell.2022.748862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear. Using a GDM mouse model, we collected hippocampi, the structure critical to cognitive processes, for electron microscopy, methylome and transcriptome analyses. Reduced representation bisulfite sequencing (RRBS) and RNA-seq in the GDM fetal hippocampi showed altered methylated modification and differentially expressed genes enriched in common pathways involved in neural synapse organization and signal transmission. We further collected fetal mice brains for metabolome analysis and found that in GDM fetal brains, the metabolites displayed significant changes, in addition to directly inducing cognitive dysfunction, some of which are important to methylation status such as betaine, fumaric acid, L-methionine, succinic acid, 5-methyltetrahydrofolic acid, and S-adenosylmethionine (SAM). These results suggest that GDM affects metabolites in fetal mice brains and further affects hippocampal DNA methylation and gene regulation involved in cognition, which is a potential mechanism for the adverse neurocognitive effects of GDM in offspring.
Collapse
Affiliation(s)
- Si-Si Luo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ke-Xin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - He-Feng Huang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
13
|
Mehdiyeva A, Hietaharju A, Sipilä J. SEZ6L2 Antibody-Associated Cerebellar Ataxia Responsive to Sequential Immunotherapy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1131. [PMID: 35031588 PMCID: PMC8759717 DOI: 10.1212/nxi.0000000000001131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
Objectives Seizure-related 6 homolog like 2 (SEZ6L2) antibody–associated ataxia is an extremely rare disease. Six patients have been reported and none of them improved significantly with immunotherapy. Herein, we present the case of a patient with cerebellar ataxia and SEZ6L2 antibodies who benefited from immunotherapy, which dramatically altered the course of her disease. Methods We present a case report of a 73-year-old woman with progressive balance problems. Her condition had rapidly deteriorated in the 2 weeks before the admission to our hospital leading to repeated falls and eventually left her bed-ridden. Results She presented with severe trunk ataxia, bidirectional nystagmus, dysarthric speech, and persistent nausea. With the exception of cerebellar atrophy, extensive imaging studies revealed no pathology. SEZ6L2 antibodies were found in both CSF and serum. Over a period of 9 months, our patient received immunotherapy consisting of steroid pulse therapy, IV immunoglobulin infusions, rituximab, and cyclophosphamide. Consequently, her condition improved markedly, and she was discharged home from the neurologic rehabilitation unit. Discussion Our case report shows that intense sequential immunotherapy may considerably improve level of functioning in some patients with SEZ6L2 antibody–associated cerebellar ataxia. Classification of Evidence This provides Class IV evidence. It is a single observational study without controls.
Collapse
Affiliation(s)
- Ayla Mehdiyeva
- From the Department of Neurology (A.M., J.S.), North Karelia Central Hospital, Joensuu; Department of Neurology (A.M.), University of Eastern Finland, Kuopio, Finland; Department of Neurology (A.H.), Tampere University Hospital; Clinical Neurosciences (J.S.), University of Turku, Turku, Finland.
| | - Aki Hietaharju
- From the Department of Neurology (A.M., J.S.), North Karelia Central Hospital, Joensuu; Department of Neurology (A.M.), University of Eastern Finland, Kuopio, Finland; Department of Neurology (A.H.), Tampere University Hospital; Clinical Neurosciences (J.S.), University of Turku, Turku, Finland
| | - Jussi Sipilä
- From the Department of Neurology (A.M., J.S.), North Karelia Central Hospital, Joensuu; Department of Neurology (A.M.), University of Eastern Finland, Kuopio, Finland; Department of Neurology (A.H.), Tampere University Hospital; Clinical Neurosciences (J.S.), University of Turku, Turku, Finland
| |
Collapse
|
14
|
Deng Y, Zhou Y, Shi J, Yang J, Huang H, Zhang M, Wang S, Ma Q, Liu Y, Li B, Yan J, Yang H. Potential genetic biomarkers predict adverse pregnancy outcome during early and mid-pregnancy in women with systemic lupus erythematosus. Front Endocrinol (Lausanne) 2022; 13:957010. [PMID: 36465614 PMCID: PMC9708709 DOI: 10.3389/fendo.2022.957010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Effectively predicting the risk of adverse pregnancy outcome (APO) in women with systemic lupus erythematosus (SLE) during early and mid-pregnancy is a challenge. This study was aimed to identify potential markers for early prediction of APO risk in women with SLE. METHODS The GSE108497 gene expression dataset containing 120 samples (36 patients, 84 controls) was downloaded from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA) was performed, and differentially expressed genes (DEGs) were screened to define candidate APO marker genes. Next, three individual machine learning methods, random forest, support vector machine-recursive feature elimination, and least absolute shrinkage and selection operator, were combined to identify feature genes from the APO candidate set. The predictive performance of feature genes for APO risk was assessed using area under the receiver operating characteristic curve (AUC) and calibration curves. The potential functions of these feature genes were finally analyzed by conventional gene set enrichment analysis and CIBERSORT algorithm analysis. RESULTS We identified 321 significantly up-regulated genes and 307 down-regulated genes between patients and controls, along with 181 potential functionally associated genes in the WGCNA analysis. By integrating these results, we revealed 70 APO candidate genes. Three feature genes, SEZ6, NRAD1, and LPAR4, were identified by machine learning methods. Of these, SEZ6 (AUC = 0.753) showed the highest in-sample predictive performance for APO risk in pregnant women with SLE, followed by NRAD1 (AUC = 0.694) and LPAR4 (AUC = 0.654). After performing leave-one-out cross validation, corresponding AUCs for SEZ6, NRAD1, and LPAR4 were 0.731, 0.668, and 0.626, respectively. Moreover, CIBERSORT analysis showed a positive correlation between regulatory T cell levels and SEZ6 expression (P < 0.01), along with a negative correlation between M2 macrophages levels and LPAR4 expression (P < 0.01). CONCLUSIONS Our preliminary findings suggested that SEZ6, NRAD1, and LPAR4 might represent the useful genetic biomarkers for predicting APO risk during early and mid-pregnancy in women with SLE, and enhanced our understanding of the origins of pregnancy complications in pregnant women with SLE. However, further validation was required.
Collapse
Affiliation(s)
- Yu Deng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Yiran Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiangcheng Shi
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Junting Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hong Huang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Shuxian Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Qian Ma
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yingnan Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Boya Li
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Jie Yan
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
- *Correspondence: Huixia Yang,
| |
Collapse
|
15
|
Ong-Pålsson E, Njavro JR, Wilson Y, Pigoni M, Schmidt A, Müller SA, Meyer M, Hartmann J, Busche MA, Gunnersen JM, Munro KM, Lichtenthaler SF. The β-Secretase Substrate Seizure 6-Like Protein (SEZ6L) Controls Motor Functions in Mice. Mol Neurobiol 2021; 59:1183-1198. [PMID: 34958451 PMCID: PMC8857007 DOI: 10.1007/s12035-021-02660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/20/2021] [Indexed: 11/03/2022]
Abstract
The membrane protein seizure 6-like (SEZ6L) is a neuronal substrate of the Alzheimer's disease protease BACE1, and little is known about its physiological function in the nervous system. Here, we show that SEZ6L constitutive knockout mice display motor phenotypes in adulthood, including changes in gait and decreased motor coordination. Additionally, SEZ6L knockout mice displayed increased anxiety-like behaviour, although spatial learning and memory in the Morris water maze were normal. Analysis of the gross anatomy and proteome of the adult SEZ6L knockout cerebellum did not reveal any major differences compared to wild type, indicating that lack of SEZ6L in other regions of the nervous system may contribute to the phenotypes observed. In summary, our study establishes physiological functions for SEZ6L in regulating motor coordination and curbing anxiety-related behaviour, indicating that aberrant SEZ6L function in the human nervous system may contribute to movement disorders and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Emma Ong-Pålsson
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Yvette Wilson
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Martina Pigoni
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Michael Meyer
- Biomedical Center, Ludwig Maximilian University Munich, 82152, Planegg/Munich, Germany
| | - Jana Hartmann
- UK Dementia Research Institute at UCL, University College London, Great Britain, London, WC1E 6BT, UK.,Institute of Neuroscience, Technical University of Munich, 80802, Munich, Germany
| | - Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, Great Britain, London, WC1E 6BT, UK
| | - Jenny M Gunnersen
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kathryn M Munro
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
16
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
17
|
Tipping the balance: intricate roles of the complement system in disease and therapy. Semin Immunopathol 2021; 43:757-771. [PMID: 34698894 PMCID: PMC8547127 DOI: 10.1007/s00281-021-00892-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The ability of the complement system to rapidly and broadly react to microbial intruders, apoptotic cells and other threats by inducing forceful elimination responses is indispensable for its role as host defense and surveillance system. However, the danger sensing versatility of complement may come at a steep price for patients suffering from various immune, inflammatory, age-related, or biomaterial-induced conditions. Misguided recognition of cell debris or transplants, excessive activation by microbial or damaged host cells, autoimmune events, and dysregulation of the complement response may all induce effector functions that damage rather than protect host tissue. Although complement has long been associated with disease, the prevalence, impact and complexity of complement’s involvement in pathological processes is only now becoming fully recognized. While complement rarely constitutes the sole driver of disease, it acts as initiator, contributor, and/or exacerbator in numerous disorders. Identifying the factors that tip complement’s balance from protective to damaging effects in a particular disease continues to prove challenging. Fortunately, however, molecular insight into complement functions, improved disease models, and growing clinical experience has led to a greatly improved understanding of complement’s pathological side. The identification of novel complement-mediated indications and the clinical availability of the first therapeutic complement inhibitors has also sparked a renewed interest in developing complement-targeted drugs, which meanwhile led to new approvals and promising candidates in late-stage evaluation. More than a century after its description, complement now has truly reached the clinic and the recent developments hold great promise for diagnosis and therapy alike.
Collapse
|