1
|
Hernandez FJ. Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools. Immunology 2025; 174:279-286. [PMID: 39686519 PMCID: PMC11799398 DOI: 10.1111/imm.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence. They evolved the CRISPR-Cas system, an adaptive immune mechanism capable of remembering past invaders. The now-famous Cas9 nuclease, a key player in this system, has been harnessed for genome editing, revolutionising biotechnology. Over time, nucleases evolved from basic viral defence tools into complex regulators of immune function in higher organisms. In humans, DNases and RNases maintain immune balance by clearing cellular debris, preventing autoimmunity, and defending against pathogens. These enzymes have transformed from simple bacterial defenders to critical players in both human immunity and biotechnology. This review explores the evolutionary history of nucleases and their vital roles as protectors in the story of life's defence mechanisms.
Collapse
Affiliation(s)
- Frank J. Hernandez
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
- Department of Bioengineering and Biosciences, TECNUNNavarra UniversityDonostiaSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Manetsch P, Hottiger MO. Unleashing viral mimicry: A combinatorial strategy to enhance the efficacy of PARP7 inhibitors. Bioessays 2025; 47:e2400087. [PMID: 39502005 PMCID: PMC11755700 DOI: 10.1002/bies.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
Cancer cells exploit mechanisms to evade immune detection triggered by aberrant self-nucleic acids (NA). PARP7, a key player in this immune evasion strategy, has emerged as a potential target for cancer therapy. PARP7 inhibitors reactivate NA sensing, resulting in type I interferon (IFN) signaling, programmed cell death, anti-tumor immunity, and tumor regression. Cancer cells with elevated IFN-stimulated gene (ISG) scores, representing a viral mimicry-primed state, are particularly sensitive to PARP7 inhibition. This review focuses on the endogenous sources of NA in cancer and the potential to exploit elevated aberrant self-NA in cancer therapy. We describe strategies to increase cytoplamic NA levels, including targeting epigenetic control, DNA damage response, and mitochondrial function. We also discuss targeting RNA processing pathways, such as splicing and RNA editing, to enhance the immunostimulatory potential of existing NA. Combining PARP7 inhibitors with NA elevating strategies may improve cancer immunotherapy, especially for tumors with high ISG scores.
Collapse
Affiliation(s)
- Patrick Manetsch
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
- Molecular Life Science PhD Program of the Life Science Zurich Graduate SchoolUniversity of ZurichZurichSwitzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of DiseaseUniversity of ZurichZurichSwitzerland
| |
Collapse
|
3
|
Rodrigues KB, Weng Z, Graham ZA, Lavin K, McAdam J, Tuggle SC, Peoples B, Seay R, Yang S, Bamman MM, Broderick TJ, Montgomery SB. Exercise intensity and training alter the innate immune cell type and chromosomal origins of circulating cell-free DNA in humans. Proc Natl Acad Sci U S A 2025; 122:e2406954122. [PMID: 39805013 PMCID: PMC11761974 DOI: 10.1073/pnas.2406954122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD). Blood plasma was collected pre- and postexercise at weeks 0 and 12 and after 4 wk of detraining upon program completion. Whole-genome enzymatic methylation sequencing (EM-seq) with cell-type proportion deconvolution was applied to cfDNA obtained from the 50 plasma samples and paired to concentration measurements for 90 circulating cytokines. Acute exercise increased the release of cfDNA from neutrophils, dendritic cells (DCs), and macrophages proportional to exercise intensity. Exercise training reduced cfDNA released in HITT participants but not TRAD and from DCs and macrophages but not neutrophils. For most participants, training lowered mitochondrial cfDNA at rest, even after detraining. Using a sequencing analysis approach we developed, we concluded that rapid ETosis, a process of cell death where cells release DNA extracellular traps, was the likely source of cfDNA, demonstrated by enrichment of nuclear DNA. Further, several cytokines were induced by acute exercise, such as IL-6, IL-10, and IL-16, and training attenuated the induction of only IL-6 and IL-17F. Cytokine levels were not associated with cfDNA induction, suggesting that these cytokines are not the main cause of exercise-induced cfDNA. Overall, exercise intensity and training modulated cfDNA release and cytokine responses, contributing to the anti-inflammatory effects of regular exercise.
Collapse
Affiliation(s)
- Kameron B. Rodrigues
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Ziming Weng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Zachary A. Graham
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Kaleen Lavin
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Jeremy McAdam
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - S. Craig Tuggle
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Brandon Peoples
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Regina Seay
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Sufen Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL35294
| | - Marcas M. Bamman
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | - Timothy J. Broderick
- Healthspan, Resilience and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL32502
| | | |
Collapse
|
4
|
Nikkel DJ, Kaur R, Wetmore SD. How Can One Metal Power Nucleic Acid Phosphodiester Bond Cleavage by a Nuclease? Multiscale Computational Studies Highlight a Diverse Mechanistic Landscape. J Phys Chem B 2025; 129:3-18. [PMID: 39720842 DOI: 10.1021/acs.jpcb.4c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Despite the remarkable resistance of the nucleic acid phosphodiester backbone to degradation affording genetic stability, the P-O bond must be broken during DNA repair and RNA metabolism, among many other critical cellular processes. Nucleases are powerful enzymes that can enhance the uncatalyzed rate of phosphodiester bond cleavage by up to ∼1017-fold. Despite the most well accepted hydrolysis mechanism involving two metals (MA2+ to activate a water nucleophile and MB2+ to stabilize the leaving group), experimental evidence suggests that some nucleases can use a single metal to facilitate the chemical step, a controversial concept in the literature. The present perspective uses the case studies of four nucleases (I-PpoI, APE1, and bacterial and human EndoV) to highlight how computational approaches ranging from quantum mechanical (QM) cluster models to molecular dynamics (MD) simulations and combined quantum mechanics-molecular mechanics (QM/MM) calculations can reveal the atomic level details necessary to understand how a nuclease can use a single metal to facilitate this difficult chemistry. The representative nucleases showcase how different amino acid residues (e.g., histidine, aspartate) can fulfill the role of the first metal (MA2+) in the two-metal-mediated mechanisms. Nevertheless, differences in active site architectures afford diversity in the single-metal-mediated mechanism in terms of the metal-substrate coordination, the role of the metal, and the identities of the general acid and base. The greater understanding of the catalytic mechanisms of nucleases obtained from the body of work reviewed can be used to further explore the progression of diseases associated with nuclease (mis)activity and the development of novel nuclease applications such as disease diagnostics, gene engineering, and therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
5
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
6
|
Zhang Y, Yi D, Su M, Li Z, Li M. A Membrane-Confined Signal Amplification Strategy for Sensitive Monitoring of Extracellular Enzymatic Activity Upon Drug Stimulus. Anal Chem 2024; 96:13191-13196. [PMID: 39074853 DOI: 10.1021/acs.analchem.4c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Extracellular enzymes are not only strongly correlated with disease development but also play critical roles in modulating immune responses. Therefore, real-time monitoring of extracellular enzymatic activity can afford straightforward insights into their spatiotemporal dynamics upon drug stimulus, and provide promising tools to unravel their key roles in modulating the cell signaling. Although DNA-based sensing probes have been frequently developed for the detection of a variety of biomolecules, there still lacks a modular design strategy for amplified imaging of extracellular enzymatic activity associated with live cells. Herein, we developed an enzymatically triggerable signal amplification strategy for real-time dynamic imaging of extracellular enzyme activity through a cell membrane-confined hybrid chain reaction (HCR). We demonstrated that, by modifying the initiator DNA with enzyme-specific incision sites and cholesterol tail, extracellular enzyme-trigged HCR could be fulfilled on the surface of the cellular membrane, facilitating amplified detection of extracellular enzymatic activity. Dynamic monitoring of enzyme secretion of cancer cells upon stimulus or macrophage cells upon inflammation challenge has also been achieved. We envision that the design strategy could provide valuable information for dissecting the role of extracellular enzymes in modulating cell responses to drug treatment.
Collapse
Affiliation(s)
- Yiyi Zhang
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Deyu Yi
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Meichan Su
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengping Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Coupland LA, Spiro C, Quah BJC, Orlov A, Browne A, O'Meara CH, Kang CW, Frost S, Schulz L, Lombardo L, Parish CR, Aneman A. PLASMA DYNAMICS OF NEUTROPHIL EXTRACELLULAR TRAPS AND CELL-FREE DNA IN SEPTIC AND NONSEPTIC VASOPLEGIC SHOCK: A PROSPECTIVE COMPARATIVE OBSERVATIONAL COHORT STUDY. Shock 2024; 62:193-200. [PMID: 38813920 DOI: 10.1097/shk.0000000000002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
ABSTRACT Background: The association between neutrophil extracellular traps (NETs) and the requirement for vasopressor and inotropic support in vasoplegic shock is unclear. This study aimed to investigate the dynamics of plasma levels of NETs and cell-free DNA (cfDNA) up to 48 h after the admission to the intensive care unit (ICU) for management of vasoplegic shock of infectious (SEPSIS) or noninfectious (following cardiac surgery, CARDIAC) origin. Methods: This is a prospective, observational study of NETs and cfDNA plasma levels at 0H (admission) and then at 12H, 24H, and 48H in SEPSIS and CARDIAC patients. The vasopressor inotropic score (VIS), the Sequential Organ Failure Assessment (SOFA) score, and time spent with invasive ventilation, in ICU and in hospital, were recorded. Associations between NETs/cfDNA and VIS and SOFA were analyzed by Spearman's correlation (rho), and between NETs/cfDNA and ventilation/ICU/hospitalization times by generalized linear regression. Results: Both NETs and cfDNA remained elevated over 48 h in SEPSIS (n = 46) and CARDIAC (n = 30) patients, with time-weighted average concentrations greatest in SEPSIS (NETs median difference 0.06 [0.02-0.11], P = 0.005; cfDNA median difference 0.48 [0.20-1.02], P < 0.001). The VIS correlated to NETs (rho = 0.3-0.60 in SEPSIS, P < 0.01, rho = 0.36-0.57 in CARDIAC, P ≤ 0.01) and cfDNA (rho = 0.40-0.56 in SEPSIS, P < 0.01, rho = 0.38-0.47 in CARDIAC, P < 0.05). NETs correlated with SOFA. Neither NETs nor cfDNA were independently associated with ventilator/ICU/hospitalization times. Conclusion: Plasma levels of NETs and cfDNA correlated with the dose of vasopressors and inotropes administered over 48 h in patients with vasoplegic shock from sepsis or following cardiac surgery. NETs levels also correlated with organ dysfunction. These findings suggest that similar mechanisms involving release of NETs are involved in the pathophysiology of vasoplegic shock irrespective of an infectious or noninfectious etiology.
Collapse
Affiliation(s)
| | - Calista Spiro
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Benjamin J-C Quah
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anna Orlov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Anna Browne
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Connor H O'Meara
- Department of Otorhinolaryngology, Head & Neck Surgery, The Canberra Hospital, Garran, ACT, Australia
| | - Chang-Won Kang
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Luis Schulz
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia
| | - Lien Lombardo
- Intensive Care Unit, Liverpool Hospital, Sydney, Australia
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | |
Collapse
|
8
|
Garreau A, Santa P, Dubois M, Brisou D, Levionnois É, Laurent P, Ferriere A, Roubertie A, Loizon S, Duluc D, Blanco P, Contin-Bordes C, Truchetet ME, Sisirak V. The deficiency of DNASE1L3 does not affect systemic sclerosis pathogenesis in two inducible murine models of the disease. Eur J Immunol 2024; 54:e2350903. [PMID: 38576111 DOI: 10.1002/eji.202350903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
We induced systemic sclerosis (SSc)-like disease in both wild-type and Dnase1l3-deficient mice using two distinct approaches involving bleomycin and hypochlorous acid injections. Our observations revealed that the deficiency in DNASE1L3 did not affect tissue fibrosis or inflammation caused by these treatments. Despite the association of single nucleotide polymorphisms in humans with SSc pathogenesis, our study demonstrates that DNASE1L3 is dispensable in two inducible murine models of SSc-like pathogenesis.
Collapse
Affiliation(s)
- Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Maxime Dubois
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Damien Brisou
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | | | - Paôline Laurent
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | | | - Anaïs Roubertie
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Séverine Loizon
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Dorothée Duluc
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Cécile Contin-Bordes
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- Department of Rheumatology, Bordeaux University Hospital, Bordeaux, France
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
9
|
Sveiven M, Serrano AK, Rosenberg J, Conrad DJ, Hall DA, O’Donoghue AJ. A GMR enzymatic assay for quantifying nuclease and peptidase activity. Front Bioeng Biotechnol 2024; 12:1363186. [PMID: 38544982 PMCID: PMC10966768 DOI: 10.3389/fbioe.2024.1363186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 04/17/2024] Open
Abstract
Hydrolytic enzymes play crucial roles in cellular processes, and dysregulation of their activities is implicated in various physiological and pathological conditions. These enzymes cleave substrates such as peptide bonds, phosphodiester bonds, glycosidic bonds, and other esters. Detecting aberrant hydrolase activity is vital for understanding disease mechanisms and developing targeted therapeutic interventions. This study introduces a novel approach to measuring hydrolase activity using giant magnetoresistive (GMR) spin valve sensors. These sensors change resistance in response to magnetic fields, and here, they are functionalized with specific substrates for hydrolases conjugated to magnetic nanoparticles (MNPs). When a hydrolase cleaves its substrate, the tethered magnetic nanoparticle detaches, causing a measurable shift in the sensor's resistance. This design translates hydrolase activity into a real-time, activity-dependent signal. The assay is simple, rapid, and requires no washing steps, making it ideal for point-of-care settings. Unlike fluorescent methods, it avoids issues like autofluorescence and photobleaching, broadening its applicability to diverse biofluids. Furthermore, the sensor array contains 80 individually addressable sensors, allowing for the simultaneous measurement of multiple hydrolases in a single reaction. The versatility of this method is demonstrated with substrates for nucleases, Bcu I and DNase I, and the peptidase, human neutrophil elastase. To demonstrate a clinical application, we show that neutrophil elastase in sputum from cystic fibrosis patients hydrolyze the peptide-GMR substrate, and the cleavage rate strongly correlates with a traditional fluorogenic substrate. This innovative assay addresses challenges associated with traditional enzyme measurement techniques, providing a promising tool for real-time quantification of hydrolase activities in diverse biological contexts.
Collapse
Affiliation(s)
- Michael Sveiven
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Ana K. Serrano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Rosenberg
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Douglas J. Conrad
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Drew A. Hall
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Goikoetxea G, Akhtar KTK, Prysiazhniuk A, Borsa BA, Aldag ME, Kavruk M, Ozalp VC, Hernandez FJ. Fluorescent and electrochemical detection of nuclease activity associated with Streptococcus pneumoniae using specific oligonucleotide probes. Analyst 2024; 149:1289-1296. [PMID: 38240377 DOI: 10.1039/d3an01532g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Streptococcus pneumoniae (S. pneumoniae) represents a significant pathogenic threat, often responsible for community-acquired pneumonia with potentially life-threatening consequences if left untreated. This underscores the pressing clinical need for rapid and accurate detection of this harmful bacteria. In this study, we report the screening and discovery of a novel biomarker for S. pneumoniae detection. We used S. pneumoniae nucleases as biomarker and we have identified a specific oligonucleotide that works as substrate. This biomarker relies on a specific nuclease activity found on the bacterial membrane, forming the basis for the development of both fluorescence and electrochemical biosensors. We observed an exceptionally high sensitivity in the performance of the electrochemical biosensor, detecting as low as 102 CFU mL-1, whereas the fluorescence sensor demonstrated comparatively lower efficiency, with a detection limit of 106 CFU mL-1. Moreover, the specificity studies have demonstrated the biosensors' remarkable capacity to identify S. pneumoniae from other pathogenic bacteria. Significantly, both biosensors have demonstrated the ability to identify S. pneumoniae cultured from clinical samples, providing compelling evidence of the potential clinical utility of this innovative detection system.
Collapse
Affiliation(s)
- Garazi Goikoetxea
- Nucleic Acids Technologies Laboratory (NAT-Lab), Linköping University, 58185, Sweden.
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of Basque Country (UPV/EHU), 48940, Spain
- SOMAprobes SL. Donostia, 20009, Spain
| | - Khadija-Tul Kubra Akhtar
- Nucleic Acids Technologies Laboratory (NAT-Lab), Linköping University, 58185, Sweden.
- Wallenberg Center for Molecular Medicine, Linköping University, 58185, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Sweden
| | - Alona Prysiazhniuk
- Nucleic Acids Technologies Laboratory (NAT-Lab), Linköping University, 58185, Sweden.
- Wallenberg Center for Molecular Medicine, Linköping University, 58185, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Sweden
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Baris A Borsa
- Nucleic Acids Technologies Laboratory (NAT-Lab), Linköping University, 58185, Sweden.
- Wallenberg Center for Molecular Medicine, Linköping University, 58185, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Sweden
| | | | - Murat Kavruk
- Department of Medical Biology, School of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Veli C Ozalp
- Department of Medical Biology, Atilim University, 06830, Ankara, Turkey
| | - Frank J Hernandez
- Nucleic Acids Technologies Laboratory (NAT-Lab), Linköping University, 58185, Sweden.
- Wallenberg Center for Molecular Medicine, Linköping University, 58185, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Sweden
| |
Collapse
|
11
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Schwartz RE, Conboy IM. Non-Intrinsic, Systemic Mechanisms of Cellular Senescence. Cells 2023; 12:2769. [PMID: 38132089 PMCID: PMC10741531 DOI: 10.3390/cells12242769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular senescence is believed to contribute to aging and disease through the activity of secreted factors that promote inflammation, remodel the extracellular matrix, and adversely modify the behavior of non-senescent cells. While the markers and properties of senescent cells are still under investigation, it is postulated that cellular senescence manifests in vivo as the consequence of cellular damage that accumulates and becomes exacerbated with time. Yet, the notions that senescence has a solely intrinsic and time-dependent nature are questioned by the rapid induction of senescence in young mice and young cells in vitro by exposure to blood from aged animals. Here, we review some of the research on the systemically present factors that increase with age and may contribute to extrinsically induced senescence or "bystander senescence". These include proteins, reactive oxygen species, lipids, and nucleic acids, which may be present in individual soluble form, in vesicles, and in non-membranous multi-component macromolecules.
Collapse
Affiliation(s)
| | - Irina M. Conboy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA;
| |
Collapse
|
13
|
Kong LZ, Kim SM, Wang C, Lee SY, Oh SC, Lee S, Jo S, Kim TD. Understanding nucleic acid sensing and its therapeutic applications. Exp Mol Med 2023; 55:2320-2331. [PMID: 37945923 PMCID: PMC10689850 DOI: 10.1038/s12276-023-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 11/12/2023] Open
Abstract
Nucleic acid sensing is involved in viral infections, immune response-related diseases, and therapeutics. Based on the composition of nucleic acids, nucleic acid sensors are defined as DNA or RNA sensors. Pathogen-associated nucleic acids are recognized by membrane-bound and intracellular receptors, known as pattern recognition receptors (PRRs), which induce innate immune-mediated antiviral responses. PRR activation is tightly regulated to eliminate infections and prevent abnormal or excessive immune responses. Nucleic acid sensing is an essential mechanism in tumor immunotherapy and gene therapies that target cancer and infectious diseases through genetically engineered immune cells or therapeutic nucleic acids. Nucleic acid sensing supports immune cells in priming desirable immune responses during tumor treatment. Recent studies have shown that nucleic acid sensing affects the efficiency of gene therapy by inhibiting translation. Suppression of innate immunity induced by nucleic acid sensing through small-molecule inhibitors, virus-derived proteins, and chemical modifications offers a potential therapeutic strategy. Herein, we review the mechanisms and regulation of nucleic acid sensing, specifically covering recent advances. Furthermore, we summarize and discuss recent research progress regarding the different effects of nucleic acid sensing on therapeutic efficacy. This study provides insights for the application of nucleic acid sensing in therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seok-Min Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Soo Yun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Se-Chan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
- Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
14
|
Park JY, Cho YL, Chae JR, Lee JH, Kang WJ. Enhancement of in vivo targeting properties of ErbB2 aptamer by chemical modification. PLoS One 2023; 18:e0291624. [PMID: 37729138 PMCID: PMC10511116 DOI: 10.1371/journal.pone.0291624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Aptamers have great potential for diagnostics and therapeutics due to high specificity to target molecules. However, studies have shown that aptamers are rapidly distributed and excreted from blood circulation due to nuclease degradation. To overcome this issue and to improve in vivo pharmacokinetic properties, inverted deoxythymidine (idT) incorporation at the end of aptamer has been developed. The goal of this study was to evaluate the biological characterization of 3'-idT modified ErbB2 aptamer and compare with that of unmodified aptamer via nuclear imaging. ErbB2-idT aptamer was labeled with radioisotope F-18 by base-pair hybridization using complementary oligonucleotide platform. The hyErbB2-idT aptamer demonstrated specific binding to targets in a ErbB2 expressing SK-BR-3 and KPL4 cells in vitro. Ex vivo biodistribution and in vivo imaging was studied in KPL4 xenograft bearing Balb/c nu/nu mice. 18F-hyErbB2-idT aptamer had significantly higher retention in the tumor (1.36 ± 0.17%ID/g) than unmodified 18F-hyErbB2 (0.98 ± 0.19%ID/g) or scrambled aptamer (0.79 ± 0.26% ID/g) at 1 h post-injection. 18F-hyErbB2-idT aptamer exhibited relatively slow blood clearance and delayed excretion by the renal and hepatobiliary system than 18F-hyErbB2 aptamer. In vivo PET imaging study showed that 18F-hyErbB2-idT aptamer had more stronger PET signals on KPL4 tumor than 18F-hyErbB2 aptamer. The results of this study demonstrate that attachment of idT at 3'-end of aptamer have a substantial influence on biological stability and extended blood circulation led to enhanced tumor uptake of aptamer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Lee
- INTEROligo Corporation, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Govindarajulu M, Ramesh S, Beasley M, Lynn G, Wallace C, Labeau S, Pathak S, Nadar R, Moore T, Dhanasekaran M. Role of cGAS-Sting Signaling in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24098151. [PMID: 37175853 PMCID: PMC10179704 DOI: 10.3390/ijms24098151] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
There is mounting evidence that the development of Alzheimer's disease (AD) interacts extensively with immunological processes in the brain and extends beyond the neuronal compartment. Accumulation of misfolded proteins can activate an innate immune response that releases inflammatory mediators and increases the severity and course of the disease. It is widely known that type-I interferon-driven neuroinflammation in the central nervous system (CNS) accelerates the development of numerous acute and chronic CNS diseases. It is becoming better understood how the cyclic GMP-AMP synthase (cGAS) and its adaptor protein Stimulator of Interferon Genes (STING) triggers type-I IFN-mediated neuroinflammation. We discuss the principal elements of the cGAS-STING signaling pathway and the mechanisms underlying the association between cGAS-STING activity and various AD pathologies. The current understanding of beneficial and harmful cGAS-STING activity in AD and the current treatment pathways being explored will be discussed in this review. The cGAS-STING regulation offers a novel therapeutic opportunity to modulate inflammation in the CNS because it is an upstream regulator of type-I IFNs.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - McNeil Beasley
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Graham Lynn
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Caleigh Wallace
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sammie Labeau
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Timothy Moore
- Units Administration, Research Programs, Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 2316 Walker Building, Auburn, AL 36849, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
16
|
Melamud MM, Buneva VN, Ermakov EA. Circulating Cell-Free DNA Levels in Psychiatric Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:3402. [PMID: 36834811 PMCID: PMC9963116 DOI: 10.3390/ijms24043402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The cell-free DNA (cfDNA) levels are known to increase in biological fluids in various pathological conditions. However, the data on circulating cfDNA in severe psychiatric disorders, including schizophrenia, bipolar disorder (BD), and depressive disorders (DDs), is contradictory. This meta-analysis aimed to analyze the concentrations of different cfDNA types in schizophrenia, BD, and DDs compared with healthy donors. The mitochondrial (cf-mtDNA), genomic (cf-gDNA), and total cfDNA concentrations were analyzed separately. The effect size was estimated using the standardized mean difference (SMD). Eight reports for schizophrenia, four for BD, and five for DDs were included in the meta-analysis. However, there were only enough data to analyze the total cfDNA and cf-gDNA in schizophrenia and cf-mtDNA in BD and DDs. It has been shown that the levels of total cfDNA and cf-gDNA in patients with schizophrenia are significantly higher than in healthy donors (SMD values of 0.61 and 0.6, respectively; p < 0.00001). Conversely, the levels of cf-mtDNA in BD and DDs do not differ compared with healthy individuals. Nevertheless, further research is needed in the case of BD and DDs due to the small sample sizes in the BD studies and the significant data heterogeneity in the DD studies. Additionally, further studies are needed on cf-mtDNA in schizophrenia or cf-gDNA and total cfDNA in BD and DDs due to insufficient data. In conclusion, this meta-analysis provides the first evidence of increases in total cfDNA and cf-gDNA in schizophrenia but shows no changes in cf-mtDNA in BD and DDs. Increased circulating cfDNA in schizophrenia may be associated with chronic systemic inflammation, as cfDNA has been found to trigger inflammatory responses.
Collapse
Affiliation(s)
- Mark M. Melamud
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Song JX, Villagomes D, Zhao H, Zhu M. cGAS in nucleus: The link between immune response and DNA damage repair. Front Immunol 2022; 13:1076784. [PMID: 36591232 PMCID: PMC9797516 DOI: 10.3389/fimmu.2022.1076784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
As the first barrier of host defense, innate immunity sets up the parclose to keep out external microbial or virus attacks. Depending on the type of pathogens, several cytoplasm pattern recognition receptors exist to sense the attacks from either foreign or host origins, triggering the immune response to battle with the infections. Among them, cGAS-STING is the major pathway that mainly responds to microbial DNA, DNA virus infections, or self-DNA, which mainly comes from genome instability by-product or released DNA from the mitochondria. cGAS was initially found functional in the cytoplasm, although intriguing evidence indicates that cGAS exists in the nucleus where it is involved in the DNA damage repair process. Because the close connection between DNA damage response and immune response and cGAS recognizes DNA in length-dependent but DNA sequence-independent manners, it is urgent to clear the function balance of cGAS in the nucleus versus cytoplasm and how it is shielded from recognizing the host origin DNA. Here, we outline the current conception of immune response and the regulation mechanism of cGAS in the nucleus. Furthermore, we will shed light on the potential mechanisms that are restricted to be taken away from self-DNA recognition, especially how post-translational modification regulates cGAS functions.
Collapse
Affiliation(s)
- Jia-Xian Song
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deana Villagomes
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China,*Correspondence: Min Zhu,
| |
Collapse
|
18
|
Das R, Kanjilal P, Medeiros J, Thayumanavan S. What's Next after Lipid Nanoparticles? A Perspective on Enablers of Nucleic Acid Therapeutics. Bioconjug Chem 2022; 33:1996-2007. [PMID: 35377622 PMCID: PMC9530067 DOI: 10.1021/acs.bioconjchem.2c00058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent success of mRNA-based COVID-19 vaccines have bolstered the strength of nucleic acids as a therapeutic platform. The number of new clinical trial candidates is skyrocketing with the potential to address many unmet clinical needs. Despite advancements in other aspects, the systemic delivery of nucleic acids to target sites remains a major challenge. Thus, nucleic acid based therapy has yet to reach its full potential. In this review, we shed light on a select few prospective technologies that exhibit substantial potential over traditional nanocarrier designs for nucleic acid delivery. We critically analyze these systems with specific attention to the possibilities for clinical translation.
Collapse
Affiliation(s)
- Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Pintu Kanjilal
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jewel Medeiros
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Zou YR, Davidson A. Nucleic Acid Sensing and Systemic Lupus Erythematosus: The Danger of Self. THE JOURNAL OF IMMUNOLOGY 2022; 209:431-433. [DOI: 10.4049/jimmunol.2200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
This Pillars of Immunology article is a commentary on “Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors,” a pivotal article written by E. A. Leadbetter, I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik and A. Marshak-Rothstein, and published in Nature in 2002. https://www.nature.com/articles/416603a.
Collapse
Affiliation(s)
- Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| |
Collapse
|
20
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
21
|
Mori G, Delfino D, Pibiri P, Rivetti C, Percudani R. Origin and significance of the human DNase repertoire. Sci Rep 2022; 12:10364. [PMID: 35725583 PMCID: PMC9208542 DOI: 10.1038/s41598-022-14133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The human genome contains four DNase1 and two DNase2 genes. The origin and functional specialization of this repertoire are not fully understood. Here we use genomics and transcriptomics data to infer the evolutionary history of DNases and investigate their biological significance. Both DNase1 and DNase2 families have expanded in vertebrates since ~ 650 million years ago before the divergence of jawless and jawed vertebrates. DNase1, DNase1L1, and DNase1L3 co-existed in jawless fish, whereas DNase1L2 originated in amniotes by tandem duplication of DNase1. Among the non-human DNases, DNase1L4 and newly identified DNase1L5 derived from early duplications that were lost in terrestrial vertebrates. The ancestral gene of the DNase2 family, DNase2b, has been conserved in synteny with the Uox gene across 700 million years of animal evolution,while DNase2 originated in jawless fish. DNase1L1 acquired a GPI-anchor for plasma membrane attachment in bony fishes, and DNase1L3 acquired a C-terminal basic peptide for the degradation of microparticle DNA in jawed vertebrates. The appearance of DNase1L2, with a distinct low pH optimum and skin localization, is among the amniote adaptations to life on land. The expansion of the DNase repertoire in vertebrates meets the diversified demand for DNA debris removal in complex multicellular organisms.
Collapse
Affiliation(s)
- Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Danila Delfino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Paola Pibiri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
22
|
Landelouci K, Sinha S, Pépin G. Type-I Interferon Signaling in Fanconi Anemia. Front Cell Infect Microbiol 2022; 12:820273. [PMID: 35198459 PMCID: PMC8859461 DOI: 10.3389/fcimb.2022.820273] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fanconi Anemia (FA) is a genome instability syndrome caused by mutations in one of the 23 repair genes of the Fanconi pathway. This heterogenous disease is usually characterized by congenital abnormalities, premature ageing and bone marrow failure. FA patients also show a high predisposition to hematological and solid cancers. The Fanconi pathway ensures the repair of interstrand crosslinks (ICLs) DNA damage. Defect in one of its proteins prevents functional DNA repair, leading to the accumulation of DNA breaks and genome instability. Accumulating evidence has documented a close relationship between genome instability and inflammation, including the production of type-I Interferon. In this context, type-I Interferon is produced upon activation of pattern recognition receptors by nucleic acids including by the cyclic GMP-AMP synthase (cGAS) that detects DNA. In mouse models of diseases displaying genome instability, type-I Interferon response is responsible for an important part of the pathological symptoms, including premature aging, short stature, and neurodegeneration. This is illustrated in mouse models of Ataxia-telangiectasia and Aicardi-Goutières Syndrome in which genetic depletion of either Interferon Receptor IFNAR, cGAS or STING relieves pathological symptoms. FA is also a genetic instability syndrome with symptoms such as premature aging and predisposition to cancer. In this review we will focus on the different molecular mechanisms potentially leading to type-I Interferon activation. A better understanding of the molecular mechanisms engaging type-I Interferon signaling in FA may ultimately lead to the discovery of new therapeutic targets to rescue the pathological inflammation and premature aging associated with Fanconi Anemia.
Collapse
Affiliation(s)
- Karima Landelouci
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Shruti Sinha
- Department of Biotechnology, GITAM Institute of Technology, GITAM deemed to be University, Visakhapatnam, India
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
23
|
Cytosolic Self-DNA—A Potential Source of Chronic Inflammation in Aging. Cells 2021; 10:cells10123544. [PMID: 34944052 PMCID: PMC8700131 DOI: 10.3390/cells10123544] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is the consequence of a lifelong accumulation of stochastic damage to tissues and cellular components. Advancing age closely associates with elevated markers of innate immunity and low-grade chronic inflammation, probably reflecting steady increasing incidents of cellular and tissue damage over the life course. The DNA sensing cGAS-STING signaling pathway is activated by misplaced cytosolic self-DNA, which then initiates the innate immune responses. Here, we hypothesize that the stochastic release of various forms of DNA from the nucleus and mitochondria, e.g., because of DNA damage, altered nucleus integrity, and mitochondrial damage, can result in chronic activation of inflammatory responses that characterize the aging process. This cytosolic self-DNA-innate immunity axis may perturb tissue homeostasis and function that characterizes human aging and age-associated pathology. Proper techniques and experimental models are available to investigate this axis to develop therapeutic interventions.
Collapse
|
24
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
25
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|