1
|
Luo Q, Li Z, Sun W, Wang G, Yao H, Wang G, Liu B, Ding J. Myocardia-Injected Synergistically Anti-Apoptotic and Anti-Inflammatory Poly(amino acid) Hydrogel Relieves Ischemia-Reperfusion Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420171. [PMID: 39906023 DOI: 10.1002/adma.202420171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Indexed: 02/06/2025]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction, but its efficacy is frequently limited by ischemia-reperfusion injury (IRI). While antioxidant and anti-inflammatory therapies have shown significant potential in alleviating IRI, these strategies have not yielded satisfactory clinical outcomes. For that, a thermo-sensitive myocardial-injectable poly(amino acid) hydrogel of methoxy poly(ethylene glycol)45-poly(L-methionine20-co-L-alanine10) (mPEG45-P(Met20-co-Ala10), PMA) loaded with FTY720 (PMA/FTY720) is developed to address IRI through synergistic anti-apoptotic and anti-inflammatory effects. Upon injection into the ischemic myocardium, the PMA aqueous solution undergoes a sol-to-gel phase transition and gradually degrades in response to reactive oxygen species (ROS), releasing FTY720 on demand. PMA acts synergistically with FTY720 to inhibit cardiomyocyte apoptosis and modulate pro-inflammatory M1 macrophage polarization toward anti-inflammatory M2 macrophages by clearing ROS, thereby mitigating the inflammatory response and promoting vascular regeneration. In a rat IRI model, PMA/FTY720 reduces the apoptotic cell ratio by 81.8%, increases vascular density by 34.0%, and enhances left ventricular ejection fraction (LVEF) by 12.8%. In a rabbit IRI model, the gel-based sustained release of FTY720 enhanced LVEF by an additional 7.2% compared to individual treatment. In summary, the engineered PMA hydrogel effectively alleviates IRI through synergistic anti-apoptosis and anti-inflammation actions, offering valuable clinical potential for treating myocardial IRI.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhibo Li
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Wei Sun
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Guoliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Haochen Yao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, 130061, P. R. China
| | - Guoqing Wang
- Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, 126 Xinmin Street, Changchun, 130061, P. R. China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun, 130041, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Chen L, Zhu F, Gao X, Yang Y, Jin G, Zhou Y, Dong G, Zhou G. Spleen tyrosine kinase aggravates intestinal inflammation through regulating inflammatory responses of macrophage in ulcerative colitis. Int Immunopharmacol 2025; 148:114122. [PMID: 39862635 DOI: 10.1016/j.intimp.2025.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent chronic, non-specific inflammatory disease, and macrophages play a crucial role in its pathogenesis. Spleen tyrosine kinase (Syk) is strongly associated with the pathogenesis of several inflammatory diseases. However, the role of Syk in the pathogenesis of UC is still obscure. METHODS Syk expression was analyzed in peripheral blood mononuclear cells (PBMCs) and colonic tissues of UC patients using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunofluorescence. A public database was used to analyze the expression of selected signature genes of interest in UC patients with different expressions of Syk. R788, a small molecule inhibitor of Syk, was used to treat macrophages from mice. The functions of macrophages were assessed using qRT-PCR, flow cytometry, and fluorescence microscopy. Dextran sodium sulfate (DSS)-induced colitis mice model was established to determine the role of Syk in UC. RESULTS The Syk levels were markedly increased in PBMCs, colonic tissues, and colonic mucosa lamina propria macrophages from UC patients, and positively related to disease activity. Inhibition of Syk with R788 decreased pro-inflammatory genes expression and increased anti-inflammatory genes expression in peritoneal macrophages and bone marrow macrophages. Blockade of Syk enhanced phagocytosis and bactericidal ability of macrophages. Syk promoted the production of reactive oxygen species of macrophages and M1-type macrophage polarization. Furthermore, inhibition of Syk alleviated intestinal mucosal inflammation in DSS-induced colitis model. CONCLUSIONS Syk plays a vital role in intestinal inflammation by regulating inflammatory responses of macrophages in UC. Targeting Syk may be a promising therapeutic approach for UC.
Collapse
Affiliation(s)
- Leilei Chen
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Xizhuang Gao
- Department of Clinical Medicine, Jining Medical University, Jining 272000, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Guiyuan Jin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, Shandong, China
| | - Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining 272000, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Guangxi Zhou
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272000, China.
| |
Collapse
|
3
|
Leon Guerrero PA, Rasmussen JP, Peterman E. Calcium dynamics of skin-resident macrophages during homeostasis and tissue injury. Mol Biol Cell 2024; 35:br26. [PMID: 39535893 PMCID: PMC11656469 DOI: 10.1091/mbc.e24-09-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Immune cells depend on rapid changes in intracellular calcium activity to modulate cell function. Skin contains diverse immune cell types and is critically dependent on calcium signaling for homeostasis and repair, yet the dynamics and functions of calcium in skin immune cells remain poorly understood. Here, we characterize calcium activity in Langerhans cells, skin-resident macrophages responsible for surveillance and clearance of cellular debris after tissue damage. Langerhans cells reside in the epidermis and extend dynamic dendrites in close proximity to adjacent keratinocytes and somatosensory peripheral axons. We find that homeostatic Langerhans cells exhibit spontaneous and transient changes in calcium activity, with calcium flux occurring primarily in the cell body and rarely in the dendrites. Triggering somatosensory axon degeneration increases the frequency of calcium activity in Langerhans cell dendrites. By contrast, we show that Langerhans cells exhibit a sustained increase in intracellular calcium following engulfment of damaged keratinocytes. Altering intracellular calcium activity leads to a decrease in engulfment efficiency of keratinocyte debris. Our findings demonstrate that Langerhans cells exhibit context-specific changes in calcium activity and highlight the utility of skin as an accessible model for imaging calcium dynamics in tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Jeffrey P. Rasmussen
- Department of Biology, University of Washington, Seattle 98195, WA
- Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle 98109, WA
| | - Eric Peterman
- Department of Biology, University of Washington, Seattle 98195, WA
| |
Collapse
|
4
|
Turley J, Robertson F, Chenchiah IV, Liverpool TB, Weavers H, Martin P. Deep learning reveals a damage signalling hierarchy that coordinates different cell behaviours driving wound re-epithelialisation. Development 2024; 151:dev202943. [PMID: 39177163 PMCID: PMC11449448 DOI: 10.1242/dev.202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
One of the key tissue movements driving closure of a wound is re-epithelialisation. Earlier wound healing studies describe the dynamic cell behaviours that contribute to wound re-epithelialisation, including cell division, cell shape changes and cell migration, as well as the signals that might regulate these cell behaviours. Here, we have used a series of deep learning tools to quantify the contributions of each of these cell behaviours from movies of repairing wounds in the Drosophila pupal wing epithelium. We test how each is altered after knockdown of the conserved wound repair signals Ca2+ and JNK, as well as after ablation of macrophages that supply growth factor signals believed to orchestrate aspects of the repair process. Our genetic perturbation experiments provide quantifiable insights regarding how these wound signals impact cell behaviours. We find that Ca2+ signalling is a master regulator required for all contributing cell behaviours; JNK signalling primarily drives cell shape changes and divisions, whereas signals from macrophages largely regulate cell migration and proliferation. Our studies show deep learning to be a valuable tool for unravelling complex signalling hierarchies underlying tissue repair.
Collapse
Affiliation(s)
- Jake Turley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | | | | | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Bristol BS8 1UG, UK
- Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Rd, Cambridge CB3 0EH, UK
| | - Helen Weavers
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Iriawati I, Vitasasti S, Rahmadian FNA, Barlian A. Isolation and characterization of plant-derived exosome-like nanoparticles from Carica papaya L. fruit and their potential as anti-inflammatory agent. PLoS One 2024; 19:e0304335. [PMID: 38959219 PMCID: PMC11221653 DOI: 10.1371/journal.pone.0304335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Inflammation is an immune system response that identifies and eliminates foreign material. However, excessive and persistent inflammation could disrupt the healing process. Plant-derived exosome-like nanoparticles (PDENs) are a promising candidate for therapeutic application because they are safe, biodegradable and biocompatible. In this study, papaya PDENs were isolated by a PEG6000-based method and characterized by dynamic light scattering (DLS), transmission Electron Microscopy (TEM), bicinchoninic acid (BCA) assay method, GC-MS analysis, total phenolic content (TPC) analysis, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. For the in vitro test, we conducted internalization analysis, toxicity assessment, determination of nitrite concentration, and assessed the expression of inflammatory cytokine genes using qRT-PCR in RAW 264.7 cells. For the in vivo test, inflammation was induced by caudal fin amputation followed by analysis of macrophage and neutrophil migration in zebrafish (Danio rerio) larvae. The result showed that papaya PDENs can be well isolated using the optimized differential centrifugation method with the addition of 30 ppm pectolyase, 15% PEG, and 0.2 M NaCl, which exhibited cup-shaped and spherical morphological structure with an average diameter of 168.8±9.62 nm. The papaya PDENs storage is stable in aquabidest and 25 mM trehalose solution at -20˚C until the fourth week. TPC estimation of all papaya PDENs ages did not show a significant change, while the DPPH test exhibited a significant change in the second week. The major compounds contained in Papaya PDENs is 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). Papaya PDENs can be internalized and is non-cytotoxic to RAW 264.7 cells. Moreover, LPS-induced RAW 264.7 cells treated with papaya PDENs showed a decrease in NO production and downregulation mRNA expression of pro-inflammatory cytokine genes (IL-1B and IL-6) and an upregulation in mRNA expression of anti-inflammatory cytokine gene (IL-10). In addition, in vivo tests conducted on zebrafish treated with PDENs papaya showed inhibition of macrophage and neutrophil cell migration. These findings suggest that PDENs papaya possesses anti-inflammatory properties.
Collapse
Affiliation(s)
- Iriawati Iriawati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Safira Vitasasti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
6
|
Liu W, Ding Y, Shen Z, Xu C, Yi W, Wang D, Zhou Y, Zon LI, Liu JX. BF170 hydrochloride enhances the emergence of hematopoietic stem and progenitor cells. Development 2024; 151:dev202476. [PMID: 38940293 DOI: 10.1242/dev.202476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Generation of hematopoietic stem and progenitor cells (HSPCs) ex vivo and in vivo, especially the generation of safe therapeutic HSPCs, still remains inefficient. In this study, we have identified compound BF170 hydrochloride as a previously unreported pro-hematopoiesis molecule, using the differentiation assays of primary zebrafish blastomere cell culture and mouse embryoid bodies (EBs), and we demonstrate that BF170 hydrochloride promoted definitive hematopoiesis in vivo. During zebrafish definitive hematopoiesis, BF170 hydrochloride increases blood flow, expands hemogenic endothelium (HE) cells and promotes HSPC emergence. Mechanistically, the primary cilia-Ca2+-Notch/NO signaling pathway, which is downstream of the blood flow, mediated the effects of BF170 hydrochloride on HSPC induction in vivo. Our findings, for the first time, reveal that BF170 hydrochloride is a compound that enhances HSPC induction and may be applied to the ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - YuYan Ding
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Shen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Xu
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William Yi
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhou
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute/Children's Hospital, 300 Longwood Avenue, Karp 8, Boston, MA 02115, USA
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Liu Y, Zheng Y, Ding S. The correlation between serum calcium levels and prognosis in patients with severe acute osteomyelitis. Front Immunol 2024; 15:1378730. [PMID: 38903514 PMCID: PMC11186995 DOI: 10.3389/fimmu.2024.1378730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To explore the relationship between serum calcium levels and the prognosis of severe acute osteomyelitis, and to assess the effectiveness of calcium levels in prognostic evaluation. METHODS Relevant patient records of individuals diagnosed with severe acute osteomyelitis were obtained for this retrospective study from the Medical Information Mart for Intensive Care (MIMIC-IV). The study aimed to assess the impact of different indicators on prognosis by utilizing COX regression analysis. To enhance prognostic prediction for critically ill patients, a nomogram was developed. The discriminatory capacity of the nomogram was evaluated using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, in addition to the calibration curve. RESULT The study analyzed a total of 1,133 cases of severe acute osteomyelitis, divided into the survivor group (1,025 cases) and the non-survivor group (108 cases). Significant differences were observed between the two groups in terms of age, hypertension, sepsis, renal injury, and various laboratory indicators, including WBC, PLT, Ca2+, CRP, hemoglobin, albumin, and creatinine (P<0.05). However, no significant differences were found in race, gender, marital status, detection of wound microbiota, blood sugar, lactate, and ALP levels. A multivariate COX proportional hazards model was constructed using age, hypertension, sepsis, Ca2+, creatinine, albumin, and hemoglobin as variables. The results revealed that hypertension and sepsis had a significant impact on survival time (HR=0.514, 95% CI 0.339-0.779, P=0.002; HR=1.696, 95% CI 1.056-2.723, P=0.029). Age, hemoglobin, Ca2+, albumin, and creatinine also showed significant effects on survival time (P<0.05). However, no statistically significant impact on survival time was observed for the other variables (P>0.05). To predict the survival time, a nomogram was developed using the aforementioned indicators and achieved an AUC of 0.841. The accuracy of the nomogram was further confirmed by the ROC curve and calibration curve. CONCLUSION According to the findings, this study establishes that a reduction in serum calcium levels serves as a distinct and standalone predictor of mortality among individuals diagnosed with severe acute osteomyelitis during their stay in the Intensive Care Unit (ICU) within a span of two years.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Pediatric Surgery, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yan Zheng
- Department of School of Foundation, Zhejiang Pharmaceutical University, Ningbo, China
| | - Sheng Ding
- Department of Pediatric Surgery, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Isiaku AI, Zhang Z, Pazhakh V, Lieschke GJ. A nox2/cybb zebrafish mutant with defective myeloid cell reactive oxygen species production displays normal initial neutrophil recruitment to sterile tail injuries. G3 (BETHESDA, MD.) 2024; 14:jkae079. [PMID: 38696730 PMCID: PMC11152067 DOI: 10.1093/g3journal/jkae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Reactive oxygen species are important effectors and modifiers of the acute inflammatory response, recruiting phagocytes including neutrophils to sites of tissue injury. In turn, phagocytes such as neutrophils are both consumers and producers of reactive oxygen species. Phagocytes including neutrophils generate reactive oxygen species in an oxidative burst through the activity of a multimeric phagocytic nicotinamide adenine dinucleotide phosphate oxidase complex. Mutations in the NOX2/CYBB (previously gp91phox) nicotinamide adenine dinucleotide phosphate oxidase subunit are the commonest cause of chronic granulomatous disease, a disease characterized by infection susceptibility and an inflammatory phenotype. To model chronic granulomatous disease, we made a nox2/cybb zebrafish (Danio rerio) mutant and demonstrated it to have severely impaired myeloid cell reactive oxygen species production. Reduced early survival of nox2 mutant embryos indicated an essential requirement for nox2 during early development. In nox2/cybb zebrafish mutants, the dynamics of initial neutrophil recruitment to both mild and severe surgical tailfin wounds was normal, suggesting that excessive neutrophil recruitment at the initiation of inflammation is not the primary cause of the "sterile" inflammatory phenotype of chronic granulomatous disease patients. This nox2 zebrafish mutant adds to existing in vivo models for studying reactive oxygen species function in myeloid cells including neutrophils in development and disease.
Collapse
Affiliation(s)
- Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zuobing Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Vahid Pazhakh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Center and The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| |
Collapse
|
9
|
Li S, Wu Y, Peng X, Chen H, Zhang T, Chen H, Yang J, Xie Y, Qi H, Xiang W, Huang B, Zhou S, Hu Y, Tan Q, Du X, Huang J, Zhang R, Li X, Luo F, Jin M, Su N, Luo X, Huang S, Yang P, Yan X, Lian J, Zhu Y, Xiong Y, Xiao G, Liu Y, Shen C, Kuang L, Ni Z, Chen L. A Novel Cargo Delivery System-AnCar-Exo LaIMTS Ameliorates Arthritis via Specifically Targeting Pro-Inflammatory Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306143. [PMID: 38083984 PMCID: PMC10870055 DOI: 10.1002/advs.202306143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Indexed: 02/17/2024]
Abstract
Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.
Collapse
|
10
|
Mu Y, Du Z, Gao W, Xiao L, Crawford R, Xiao Y. The effect of a bionic bone ionic environment on osteogenesis, osteoimmunology, and in situ bone tissue engineering. Biomaterials 2024; 304:122410. [PMID: 38043465 DOI: 10.1016/j.biomaterials.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Bone, a mineralized tissue, continuously undergoes remodeling. It is a process that engages the mineralization and demineralization of the bone matrix, orchestrated by the interactions among cells and cell-secreted biomolecules under the bone ionic microenvironment (BIE). The osteoinductive properties of the demineralized organic bone matrix and many biological factors have been well-investigated. However, the impact of the bone ionic environment on cell differentiation and osteogenesis remains largely unknown. In this study, we extracted and isolated inorganic bone components (bone-derived monetite, BM) using a low-temperature method and, for the first time, investigated whether the BIE could actively affect cell differentiation and regulate osteoimmune reactions. It was evidenced that the BIE could foster the osteogenesis of human bone marrow stromal cells (hBMSCs) and promote hBMSCs mineralization without using osteogenic inductive agents. Interestingly, it was noted that BIE resulted in intracellular mineralization, evidenced by intracellular accumulation of carbonate hydroxyapatite similar to that oberved in osteoblasts cultured in osteoinductive media. Additionally, BIE was found to enhance osteogenesis by generating a favorable osteoimmune environment. In a rat calvarial bone defect model, the osteogenic capacity of BIE was evaluated using a collagen type I-impregnated BM (Col-BM) composite. It showed that Col-BM significantly promoted new bone formation in the critical-size bone defect areas. Taken together, this is the first study that investigated the influence of the BIE on osteogenesis, osteoimmunology, and in situ bone tissue engineering. The innate osteoinductive potential of inorganic bone components, both in vitro and in vivo, not only expands the understanding of the BIE on osteogenesis but also benefits future biomaterials engineering for bone tissue regeneration.
Collapse
Affiliation(s)
- Yuqing Mu
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Zhibin Du
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Wendong Gao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Ross Crawford
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia; The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia; School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
11
|
Yu H, Sun J, She K, Lv M, Zhang Y, Xiao Y, Liu Y, Han C, Xu X, Yang S, Wang G, Zang G. Sprayed PAA-CaO 2 nanoparticles combined with calcium ions and reactive oxygen species for antibacterial and wound healing. Regen Biomater 2023; 10:rbad071. [PMID: 37719928 PMCID: PMC10503269 DOI: 10.1093/rb/rbad071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023] Open
Abstract
The most common socioeconomic healthcare issues in clinical are burns, surgical incisions and other skin injuries. Skin lesion healing can be achieved with nanomedicines and other drug application techniques. This study developed a nano-spray based on cross-linked amorphous calcium peroxide (CaO2) nanoparticles of polyacrylic acid (PAA) for treating skin wounds (PAA-CaO2 nanoparticles). CaO2 serves as a 'drug' precursor, steadily and continuously releasing calcium ions (Ca2+) and hydrogen peroxide (H2O2) under mildly acidic conditions, while PAA-CaO2 nanoparticles exhibited good spray behavior in aqueous form. Tests demonstrated that PAA-CaO2 nanoparticles exhibited low cytotoxicity and allowed L929 cells proliferation and migration in vitro. The effectiveness of PAA-CaO2 nanoparticles in promoting wound healing and inhibiting bacterial growth in vivo was assessed in SD rats using full-thickness skin defect and Staphylococcus aureus (S.aureus)-infected wound models based thereon. The results revealed that PAA-CaO2 nanoparticles demonstrated significant advantages in both aspects. Notably, the infected rats' skin defects healed in 12 days. The benefits are linked to the functional role of Ca2+ coalesces with H2O2 as known antibacterial and healing-promoted agents. Therefore, we developed nanoscale PAA-CaO2 sprays to prevent bacterial development and heal skin lesions.
Collapse
Affiliation(s)
- Hong Yu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiale Sun
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Kepeng She
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yiqiao Zhang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yawen Xiao
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yangkun Liu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Xu
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuqing Yang
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
12
|
Wang L, Tang Y, Herman MA, Spurney RF. Pharmacologic blockade of the natriuretic peptide clearance receptor promotes weight loss and enhances insulin sensitivity in type 2 diabetes. Transl Res 2023; 255:140-151. [PMID: 36563959 PMCID: PMC10441142 DOI: 10.1016/j.trsl.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
While natriuretic peptides (NPs) are primarily known for their renal and cardiovascular actions, NPs stimulate lipolysis in adipocytes and induce a thermogenic program in white adipose tissue (WAT) that resembles brown fat. The biologic effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which binds and degrades NPs. Knockout (KO) of NPRC protects against diet induced obesity and improves insulin sensitivity in obese mice. To determine if pharmacologic blockade of NPRC enhanced the beneficial metabolic actions of NPs in type 2 diabetes, we blocked NP clearance in a mouse model of type 2 diabetes using the specific NPRC ligand ANP(4-23). We found that treatment with ANP(4-23) caused a significant decrease in body weight by increasing energy expenditure and reducing fat mass without a change in lean body mass. The decrease in fat mass was associated with a significant improvement in insulin sensitivity and reduced serum insulin levels. These beneficial effects were accompanied by a decrease in infiltrating macrophages in adipose tissue, and reduced expression of inflammatory markers in both serum and WAT. These data suggest that inhibiting NP clearance may be an effective pharmacologic approach to promote weight loss and enhance insulin sensitivity in type 2 diabetes. Optimizing the therapeutic approach may lead to useful therapies for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Yuping Tang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Mark A Herman
- Division of Endocrinology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina; Duke Molecular Physiology Institute, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina.
| |
Collapse
|
13
|
Chopra K, Folkmanaitė M, Stockdale L, Shathish V, Ishibashi S, Bergin R, Amich J, Amaya E. Duox is the primary NADPH oxidase responsible for ROS production during adult caudal fin regeneration in zebrafish. iScience 2023; 26:106147. [PMID: 36843843 PMCID: PMC9950526 DOI: 10.1016/j.isci.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Milda Folkmanaitė
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Liam Stockdale
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Vishali Shathish
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rachel Bergin
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda 28220 Madrid, Spain
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
15
|
Tursch A, Holstein TW. From injury to patterning—MAPKs and Wnt signaling in Hydra. Curr Top Dev Biol 2023; 153:381-417. [PMID: 36967201 DOI: 10.1016/bs.ctdb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Hydra has a regenerative capacity that is not limited to individual organs but encompasses the entire body. Various global and integrative genome, transcriptome and proteome approaches have shown that many of the signaling pathways and transcription factors present in vertebrates are already present in Cnidaria, the sister group of Bilateria, and are also activated in regeneration. It is now possible to investigate one of the central questions of regeneration biology, i.e., how does the patterning system become activated by the injury signals that initiate regeneration. This review will present the current data obtained in Hydra and draw parallels with regeneration in Bilateria. Important findings of this global analysis are that the Wnt signaling pathway has a dual function in the regeneration process. In the early phase Wnt is activated generically and in a second phase of pattern formation it is activated in a position specific manner. Thus, Wnt signaling is part of the generic injury response, in which mitogen-activated protein kinases (MAPKs) are initially activated via calcium and reactive oxygen species (ROS). The MAPKs, p38, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERK) are essential for Wnt activation in Hydra head and foot regenerates. Furthermore, the antagonism between the ERK signaling pathway and stress-induced MAPKs results in a balanced induction of apoptosis and mitosis. However, the early Wnt genes are activated by MAPK signaling rather than apoptosis. Early Wnt gene activity is differentially integrated with a stable, β-Catenin-based gradient along the primary body axis maintaining axial polarity and activating further Wnts in the regenerating head. Because MAPKs and Wnts are highly evolutionarily conserved, we hypothesize that this mechanism is also present in vertebrates but may be activated to different degrees at the level of early Wnt gene integration.
Collapse
|
16
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
George A, Martin P. Wound Healing Insights from Flies and Fish. Cold Spring Harb Perspect Biol 2022; 14:a041217. [PMID: 35817511 PMCID: PMC9620851 DOI: 10.1101/cshperspect.a041217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
All organisms from single-cell amoebae through to Homo sapiens have evolved strategies for repairing wounds as an essential homeostatic mechanism for rebuilding their outer barrier layers after damage. In multicellular animals, this outer barrier layer is the skin, and, for more than a century, scientists have been attempting to unravel the mechanisms underpinning skin repair because of its clear clinical relevance to pathologies that range from chronic nonhealing wounds, through to excessive scarring. Most of these studies have been in rabbits and rodents, or in in vitro scratch wound models, but in the last decades, two newcomer model organisms to wound healing studies-flies and fish-have brought genetic tractability and unparalleled opportunities for live imaging to the field. These two models are complementary to one another, and to mouse and in vitro approaches, and thus offer different insights into various aspects of the wound repair process.
Collapse
Affiliation(s)
- Anne George
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Paul Martin
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
18
|
Sipka T, Park SA, Ozbilgic R, Balas L, Durand T, Mikula K, Lutfalla G, Nguyen-Chi M. Macrophages undergo a behavioural switch during wound healing in zebrafish. Free Radic Biol Med 2022; 192:200-212. [PMID: 36162743 DOI: 10.1016/j.freeradbiomed.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
In response to wound signals, macrophages are immediately recruited to the injury where they acquire distinct phenotypes and functions, playing crucial roles both in host defense and healing process. Although macrophage phenotypes have been intensively studied during wound healing, mostly using markers and expression profiles, the impact of the wound environment on macrophage shape and behaviour, and the underlying mechanisms deserve more in-depth investigation. Here, we sought to characterize the dynamics of macrophage recruitment and behaviour during aseptic wounding of the caudal fin fold of the zebrafish larva. Using a photo-conversion approach, we demonstrated that macrophages are recruited to the wounded fin fold as a single wave where they switch their phenotype. Intravital imaging of macrophage shape and trajectories revealed that wound-macrophages display a highly stereotypical set of behaviours and change their shape from amoeboid to elongated shape as wound healing proceeds. Using a pharmacological inhibitor of 15-lipoxygenase and protectin D1, a specialized pro-resolving lipid, we investigated the role of polyunsaturated fatty acid metabolism in macrophage behaviour. While inhibition of 15-lipoxygenase using PD146176 or Nordihydroguaiaretic acid (NDGA) decreases the switch from amoeboid to elongated shape, protectin D1 accelerates macrophage reverse migration and favours elongated morphologies. Altogether, our findings suggest that individual macrophages at the wound switch their phenotype leading to important changes in behaviour and shape to adapt to changing environment, and highlight the crucial role of lipid metabolism in the control of macrophage behaviour plasticity during inflammation in vivo.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Seol Ah Park
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Karol Mikula
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | | |
Collapse
|
19
|
Sebo DJ, Fetsko AR, Phipps KK, Taylor MR. Functional identification of the zebrafish Interleukin-1 receptor in an embryonic model of Il-1β-induced systemic inflammation. Front Immunol 2022; 13:1039161. [PMID: 36389773 PMCID: PMC9643328 DOI: 10.3389/fimmu.2022.1039161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/01/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory cytokine that plays a vital role in the innate immune system. To observe the innate immune response in vivo, several transgenic zebrafish lines have been developed to model IL-1β-induced inflammation and to visualize immune cell migration and proliferation in real time. However, our understanding of the IL-1β response in zebrafish is limited due to an incomplete genome annotation and a lack of functional data for the cytokine receptors involved in the inflammatory process. Here, we use a combination of database mining, genetic analyses, and functional assays to identify zebrafish Interleukin-1 receptor, type 1 (Il1r1). We identified putative zebrafish il1r1 candidate genes that encode proteins with predicted structures similar to human IL1R1. To examine functionality of these candidates, we designed highly effective morpholinos to disrupt gene expression in a zebrafish model of embryonic Il-1β-induced systemic inflammation. In this double transgenic model, ubb:Gal4-EcR, uas:il1βmat , the zebrafish ubiquitin b (ubb) promoter drives expression of the modified Gal4 transcription factor fused to the ecdysone receptor (EcR), which in turn drives the tightly-regulated expression and secretion of mature Il-1β only in the presence of the ecdysone analog tebufenozide (Teb). Application of Teb to ubb:Gal4-EcR, uas:il1βmat embryos causes premature death, fin degradation, substantial neutrophil expansion, and generation of reactive oxygen species (ROS). To rescue these deleterious phenotypes, we injected ubb:Gal4-EcR, uas:il1βmat embryos with putative il1r1 morpholinos and found that knockdown of only one candidate gene prevented the adverse effects caused by Il-1β. Mosaic knockout of il1r1 using the CRISPR/Cas9 system phenocopied these results. Taken together, our study identifies the functional zebrafish Il1r1 utilizing a genetic model of Il-1β-induced inflammation and provides valuable new insights to study inflammatory conditions specifically driven by Il-1β or related to Il1r1 function in zebrafish.
Collapse
Affiliation(s)
- Dylan J. Sebo
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Audrey R. Fetsko
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Kallie K. Phipps
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| | - Michael R. Taylor
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
- Pharmacology and Toxicology Program, School of Pharmacy, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
20
|
Narra SS, Rondeau P, Fernezelian D, Gence L, Ghaddar B, Bourdon E, Lefebvre d'Hellencourt C, Rastegar S, Diotel N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J Comp Neurol 2022; 531:238-255. [PMID: 36282721 DOI: 10.1002/cne.25421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022]
Abstract
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNA-sequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2 O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish.
Collapse
Affiliation(s)
- Sai Sandhya Narra
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Danielle Fernezelian
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Batoul Ghaddar
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Emmanuel Bourdon
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems‐Biological Information Processing (IBCS‐BIP), Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI) Saint‐Denis de La Réunion France
| |
Collapse
|
21
|
Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev 2022; 184:114233. [PMID: 35304171 PMCID: PMC10726003 DOI: 10.1016/j.addr.2022.114233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | | | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
23
|
Bohaud C, Johansen MD, Jorgensen C, Ipseiz N, Kremer L, Djouad F. The Role of Macrophages During Zebrafish Injury and Tissue Regeneration Under Infectious and Non-Infectious Conditions. Front Immunol 2021; 12:707824. [PMID: 34367168 PMCID: PMC8334857 DOI: 10.3389/fimmu.2021.707824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
The future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days. Recent studies have also emphasized the crucial role of distinct macrophage subpopulations in tissue regeneration, contributing to the early phases of inflammation and promoting tissue repair and regeneration in late stages once inflammation is resolved. However, while most studies were conducted under non-infectious conditions, this situation does not necessarily reflect all the complexities of the interactions associated with injury often involving entry of pathogenic microorganisms. There is emerging evidence that the presence of infectious pathogens can largely influence and modulate the host immune response and the regenerative processes, which is sometimes more representative of the true complexities underlying regenerative mechanics. Herein, we present the current knowledge regarding the paths involved in the repair of non-infected and infected wounds using the zebrafish model.
Collapse
Affiliation(s)
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, CHU, Montpellier, France
| | - Natacha Ipseiz
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | |
Collapse
|