1
|
Hart AP, Kotzin JJ, Schulz SW, Dunham JS, Keenan AL, Baker JF, Wells AD, Beiting DP, Laufer TM. Angiotensin receptor blockers modulate the lupus CD4+ T cell epigenome characterized by TNF family-linked signaling. JCI Insight 2024; 10:e176811. [PMID: 39688922 PMCID: PMC11948580 DOI: 10.1172/jci.insight.176811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
In systemic lupus erythematosus (lupus), environmental effects acting within a permissive genetic background lead to autoimmune dysregulation. Dysfunction of CD4+ T cells contributes to pathology by providing help to autoreactive B and T cells, and CD4+ T cell dysfunction coincides with altered DNA methylation and histone modifications of select gene loci. However, chromatin accessibility states of distinct T cell subsets and mechanisms driving heterogeneous chromatin states across patients remain poorly understood. We defined the transcriptome and epigenome of multiple CD4+ T cell populations from patients with lupus and healthy individuals. Most patients with lupus, regardless of disease activity, had enhanced chromatin accessibility bearing hallmarks of inflammatory cytokine signals. Single-cell approaches revealed that chromatin changes extended to naive CD4+ T cells, uniformly affecting naive subpopulations. Transcriptional data and cellular and protein analyses suggested that the TNF family members, TNF-α, LIGHT, and TWEAK, were linked to observed molecular changes and the altered lupus chromatin state. However, we identified a patient subgroup prescribed angiotensin receptor blockers (ARBs), which lacked TNF-linked lupus chromatin accessibility features. These data raise questions about the role of lupus-associated chromatin changes in naive CD4+ T cell activation and differentiation and implicate ARBs in the regulation of disease-driven epigenetic states.
Collapse
Affiliation(s)
- Andrew P. Hart
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Kotzin
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Joshua F. Baker
- Division of Rheumatology, Department of Medicine, and
- Division of Rheumatology, Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics and
| | - Andrew D. Wells
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Terri M. Laufer
- Division of Rheumatology, Department of Medicine, and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Schepps S, Xu J, Yang H, Mandel J, Mehta J, Tolotta J, Baker N, Tekmen V, Nikbakht N, Fortina P, Fuentes I, LaFleur B, Cho RJ, South AP. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research. Clin Chem Lab Med 2024; 62:1880-1891. [PMID: 38656304 DOI: 10.1515/cclm-2023-1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) are two emerging research technologies that uniquely characterize gene expression microenvironments on a cellular or subcellular level. The skin, a clinically accessible tissue composed of diverse, essential cell populations, serves as an ideal target for these high-resolution investigative approaches. Using these tools, researchers are assembling a compendium of data and discoveries in healthy skin as well as a range of dermatologic pathophysiologies, including atopic dermatitis, psoriasis, and cutaneous malignancies. The ongoing advancement of single-cell approaches, coupled with anticipated decreases in cost with increased adoption, will reshape dermatologic research, profoundly influencing disease characterization, prognosis, and ultimately clinical practice.
Collapse
Affiliation(s)
- Samuel Schepps
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jonathan Xu
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Henry Yang
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jenna Mandel
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jaanvi Mehta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Julianna Tolotta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Nicole Baker
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Volkan Tekmen
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| | - Ignacia Fuentes
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Directora de Investigación Fundación DEBRA Chile, Santiago, Chile
| | - Bonnie LaFleur
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- R. Ken Coit College of Pharmacy, University of Arizona, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond J Cho
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Department of Dermatology, University of San Francisco, San Francisco, CA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| |
Collapse
|
3
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
4
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Ehtesham N, Alesaeidi S, Mohammad Zadeh D, Saghaei M, Fakhri M, Bayati Z, Esmaeilzadeh E, Mosallaei M. Significant heightened methylation levels of RUNX3 gene promoter in patients with systemic lupus erythematosus. Lupus 2024; 33:547-554. [PMID: 38511579 DOI: 10.1177/09612033241241850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Researchers are actively investigating new diagnostic and prognostic biomarkers that offer improved sensitivity and specificity for systemic lupus erythematosus (SLE). One area of interest is DNA methylation changes. Previous studies have shown a connection between the RUNX3 gene dysfunction and SLE. In this study, the focus was on examining the methylation level of the RUNX3 promoter in peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy individuals. METHODS A total of 80 individuals diagnosed with SLE from Iran, along with 77 healthy individuals, were included. The methylation levels of the RUNX3 gene in the extracted DNA were evaluated using the MethyQESD method. To determine the diagnostic effectiveness of the RUNX3 promoter methylation level, a receiver operating characteristic (ROC) curve was generated. RESULTS The methylation of the RUNX3 promoter was found to be significantly higher in patients with SLE compared to healthy individuals (p < .001). This difference in methylation levels was observed between SLE patients and healthy individuals and between SLE patients with renal involvement and those without renal involvement (86.29 ± 10.30 vs 40.28 ± 24.21, p < .001). ROC analyses revealed that the methylation level of the RUNX3 promoter had a diagnostic power of 0.769 [95% CI (0.681-0.814)] for SLE. Additionally, there was a positive correlation between the RUNX3 methylation level and levels of creatinine and C4. CONCLUSION The findings of this study emphasize the potential use of RUNX3 methylation levels in PBMCs of SLE patients as biomarkers for diagnosing the disease, predicting renal damage, and assessing disease activity.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorita Mohammad Zadeh
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Mozhdeh Saghaei
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Fakhri
- Department of Rheumatology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bayati
- Department of Genetics, Faculty of Sciences, Arak University, Arak, Iran
| | - Emran Esmaeilzadeh
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| | - Meysam Mosallaei
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| |
Collapse
|
6
|
Li M, Yao X, Chao L. Observation on the effect of intraoperative risk management combined with comfort nursing in gynecological laparoscopic surgery. Medicine (Baltimore) 2023; 102:e34394. [PMID: 37478267 PMCID: PMC10662797 DOI: 10.1097/md.0000000000034394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023] Open
Abstract
To explore the effect of intraoperative risk management combined with comfort nursing in gynecological laparoscopic surgery. A retrospective analysis of 384 cases of laparoscopic surgery subjects admitted from February 2019 to June 2022 in the department of gynecology in our hospital were performed and divided into the control group (n = 192) and observation group (n = 192) according to the difference care that they received. Comfort nursing was taken in the control group, and intraoperative risk management combined with comfort nursing was given in the observation group. The coagulation indexes (activated partial thromboplastin time, prothrombin time, and thrombin time), immune inflammation indexes (monocytes and neutrophils), the incidence of lower limb deep vein thrombosis (DVT) and the satisfaction of nursing care were compared between the 2 groups. After care, activated partial thromboplastin time, prothrombin time, and thrombin time in the observation group were significantly longer than those in the control group, and the counts of monocytes and neutrophils in the observation group were significantly lower than those in the control group (P < .05). The incidence of DVT in the observation group was notablely lower than those in the control group (P = .008). The nursing satisfaction in the observation group was notablely higher than those in the control group (P < .001). Intraoperative risk management combined with comfort nursing intervention can improve the level of coagulation indicators and immune inflammation indicators after gynecological laparoscopic surgery, reduce the incidence of DVT, and improve subject nursing satisfaction.
Collapse
Affiliation(s)
- Meixuan Li
- Department of Second Center Operating Room, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Yao
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Chao
- Department of Second Center Operating Room, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Ding L, Li X, Zhu H, Luo H. Single-Cell Sequencing in Rheumatic Diseases: New Insights from the Perspective of the Cell Type. Aging Dis 2022; 13:1633-1651. [PMID: 36465169 PMCID: PMC9662270 DOI: 10.14336/ad.2022.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/02/2023] Open
Abstract
Rheumatic diseases are a group of highly heterogeneous autoimmune and inflammatory disorders involving multiple systems. Dysfunction of immune and non-immune cells participates in the complex pathogenesis of rheumatic diseases. Therefore, studies on the abnormal activation of cell subtypes provided a specific basis for understanding the pathogenesis of rheumatic diseases, which promoted the accuracy of disease diagnosis and the effectiveness of various treatments. However, there was still a far way to achieve individualized precision medicine as the result of heterogeneity among cell subtypes. To obtain the biological information of cell subtypes, single-cell sequencing, a cutting-edge technology, is used for analyzing their genomes, transcriptomes, epigenetics, and proteomics. Novel results identified multiple cell subtypes in tissues of patients with rheumatic diseases by single-cell sequencing. Consequently, we provide an overview of recent applications of single-cell sequencing in rheumatic disease and cross-tissue to understand the cell subtypes and functions.
Collapse
Affiliation(s)
- Liqing Ding
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaojing Li
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Honglin Zhu
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Hui Luo
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
8
|
Hu J, Li W, Qiao X, Li W, Xie K, Wang Y, Huang B, Zhao Q, Liu L, Fan X. Characterization of microRNA Profiles in Pasteurella multocida-Infected Rabbits and Identification of miR-29-5p as a Regulator of Antibacterial Immune Response. Front Vet Sci 2021; 8:746638. [PMID: 34869721 PMCID: PMC8635715 DOI: 10.3389/fvets.2021.746638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pasteurella multocida is the pathogenic agent for a variety of severe diseases in livestock, including rabbits. MicroRNAs (miRNAs) participate in the immune response to the pathogen. Distinct miRNA expression patterns were explored in rabbit lung by small-RNA deep sequencing to assess dysregulated miRNAs during P. multocida infection. Totally, 571 miRNAs were screened, of which, 62 were novel, and 32 exhibited differential expression (DE). Of the 32 known DE-miRNAs, 13 and 15 occurred at 1 day and 3 days post-infection (dpi); and ocu-miR-107-3p and ocu-miR-29b-5p were shared between the two time points. Moreover, 7,345 non-redundant target genes were predicted for the 32 DE-miRNAs. Putative target genes were enriched in diverse GO and KEGG pathways and might be crucial for disease resistance. Interestingly, upregulation of ocu-miR-29-5p suppresses P. multocida propagation and downregulates expression of epithelial membrane protein-2 (EMP2) and T-box 4 (TBX4) genes by binding to their 3' untranslated region in RK13 cells. Thus, ocu-miR-29-5p may indirectly inhibit P. multocida invasion by modulating genes related to the host immune response, such as EMP2 and TBX4.
Collapse
Affiliation(s)
- Jiaqing Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xibo Qiao
- Shandong New Hexin Technology Co. Ltd., Taian, China
| | - Wenjie Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Kerui Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Bing Huang
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qiaoya Zhao
- Shandong Provincial Key Laboratory of Poultry Disease Diagnose and Immune, Institute of Poultry, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
9
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|