1
|
Fei H, Lu X, Shi Z, Liu X, Yang C, Zhu X, Lin Y, Jiang Z, Wang J, Huang D, Liu L, Zhang S, Jiang L. Deciphering the preeclampsia-specific immune microenvironment and the role of pro-inflammatory macrophages at the maternal-fetal interface. eLife 2025; 13:RP100002. [PMID: 40152904 PMCID: PMC11952753 DOI: 10.7554/elife.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RA-CCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3-CCR7+Helios-CD127-CD8+) and pro-inflam Macs (CD206-CD163-CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163-CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206- pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1-IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal-fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.
Collapse
Affiliation(s)
- Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Cuiyu Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan HospitalHangzhouChina
| | - Yuhan Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Ziqun Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Jianmin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Liu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for Reproductive Health and DiseaseHangzhouChina
- Zhejiang Key Laboratory of Precise Protection and Promotion of FertilityHangzhouChina
| |
Collapse
|
2
|
Wu JJ, Zheng X, Wu C, Ma W, Wang Y, Wang J, Wei Y, Zeng X, Zhang S, Guan W, Chen F. Melatonin alleviates high temperature exposure induced fetal growth restriction via the gut-placenta-fetus axis in pregnant mice. J Adv Res 2025; 68:131-146. [PMID: 38382594 PMCID: PMC11785557 DOI: 10.1016/j.jare.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024] Open
Abstract
INTRODUCTION Global warming augments the risk of adverse pregnancy outcomes in vulnerable expectant mothers. Pioneering investigations into heat stress (HS) have predominantly centered on its direct impact on reproductive functions, while the potential roles of gut microbiota, despite its significant influence on distant tissues, remain largely unexplored. Our understanding of deleterious mechanisms of HS and the development of effective intervention strategies to mitigate the detrimental impacts are still limited. OBJECTIVES In this study, we aimed to explore the mechanisms by which melatonin targets gut microbes to alleviate HS-induced reproductive impairment. METHODS We firstly evaluated the alleviating effects of melatonin supplementation on HS-induced reproductive disorder in pregnant mice. Microbial elimination and fecal microbiota transplantation (FMT) experiments were then conducted to confirm the efficacy of melatonin through regulating gut microbiota. Finally, a lipopolysaccharide (LPS)-challenged experiment was performed to verify the mechanism by which melatonin alleviates HS-induced reproductive impairment. RESULTS Melatonin supplementation reinstated gut microbiota in heat stressed pregnant mice, reducing LPS-producing bacteria (Aliivibrio) and increasing beneficial butyrate-producing microflora (Butyricimonas). This restoration corresponded to decreased LPS along the maternal gut-placenta-fetus axis, accompanied by enhanced intestinal and placental barrier integrity, safeguarding fetuses from oxidative stress and inflammation, and ultimately improving fetal weight. Further pseudo-sterile and fecal microbiota transplantation trials confirmed that the protective effect of melatonin on fetal intrauterine growth under HS was partially dependent on gut microbiota. In LPS-challenged pregnant mice, melatonin administration mitigated placental barrier injury and abnormal angiogenesis via the inactivation of the TLR4/MAPK/VEGF signaling pathway, ultimately leading to enhanced nutrient transportation in the placenta and thereby improving the fetal weight. CONCLUSION Melatonin alleviates HS-induced low fetal weight during pregnancy via the gut-placenta-fetus axis, the first time highlighting the gut microbiota as a novel intervention target to mitigate the detrimental impact of global temperature rise on vulnerable populations.
Collapse
Affiliation(s)
- Jia-Jin Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyu Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Caichi Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Wen Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yibo Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, PR China
| | - Shihai Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Wutai Guan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Shen W, Wang Q, Shen G, Gu M, Shen Q, Zhang A, Zhu X. Regulation of macrophage polarization by metformin through inhibition of TLR4/NF-κB pathway to improve pre-eclampsia. Placenta 2025; 160:89-99. [PMID: 39787954 DOI: 10.1016/j.placenta.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Pre-eclampsia (PE) is a pregnancy complication featuring hypertension and proteinuria. Metformin exerts clinically preventive effects on PE with an unspecified mechanism. METHODS Placental tissues from PE patients and normal pregnant (NP) women were collected. Twenty-four pregnant mice were divided into control, PE (40 μg/kg lipopolysaccharides (LPS)-induced modeling), aspirin, and metformin groups. After acquisition of bone marrow-derived macrophages (BMDM) and THP-1 cells, cells were categorized into control, LPS (100 ng/mL), metformin, and metformin + toll-like receptor 4 (TLR4) agonist RS 09 groups. Inflammatory factors and macrophage polarization were detected by ELISA, flow cytometry, immunofluorescence, immunohistochemistry, and qRT-PCR methods. TLR4/Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway protein expression was examined using Western blot. RESULTS Both PE patients and PE-like mice enhanced inducible nitric oxide synthase (iNOS), TLR4, p-NF-κB/NF-κB, and p-inhibitor of NF-κB (IκBα)/IκBα expression, and lower arginase 1 (Arg-1) expression. Moreover, metformin treatment in PE-like mice increased fetal number and weight and reduced hypertension, proteinuria, insulin resistance, tumor necrosis factor-α (TNF-α), IL-6, IL-1β, chemokine ligand 4 (CCL4), C-X-C motif chemokine ligand 2 (CXCL2) expression and M1 macrophage polarization, with similar inhibition to aspirin. In LPS-induced cells, metformin had the same effects mentioned above. Decreased TLR4, p-NF-κB/NF-κB, and p-IκBα/IκBα protein expression was caused by metformin both in vivo and in vitro. In vitro, RS 09 intervention inhibited anti-inflammatory and pro-M2 polarizing effects of metformin, activating TLR4/NF-κB pathway. CONCLUSION Metformin may ameliorate PE by promoting M2 macrophage polarization through up-regulating TLR4/NF-κB pathway, laying theoretical basis for metformin clinical application in PE.
Collapse
Affiliation(s)
- Wei Shen
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China
| | - Qingfu Wang
- Department of Anesthesia, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China
| | - Guofang Shen
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China
| | - Meiling Gu
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China
| | - Qifeng Shen
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China
| | - Ailan Zhang
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China.
| | - Xiaohong Zhu
- Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, 311200, China.
| |
Collapse
|
4
|
Huang Y, Bai Z, Sui S. miR-224-5p alleviates preeclampsia-like mouse symptoms by targeting PANX1 to inhibit ferroptosis in trophoblast cells. Placenta 2024; 158:113-125. [PMID: 39426351 DOI: 10.1016/j.placenta.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Preeclampsia (PE) is a high morbidity and lethality disease specific to pregnancy, and insufficient placental trophoblast invasion acts as a crucial factor contributing to PE development. The present study investigated the function and potential mechanism of microRNA (miR)-224-5p within PE. In the study, miR-224-5p expression was reduced within placental tissue samples of the PE mouse model and PE cell model. Restoration of miR-224-5p expression markedly inhibited ROS levels and ferroptosis, lowered blood pressure in pregnant mice, increased the live birth rate, and enhanced trophoblast cell proliferation and invasion as well as suppressed their apoptosis. miR-224-5p could target and suppress PANX1, and overexpression of PANX1 could significantly advance ferroptosis and cause trophoblast dysfunction, a process that might be relieved via restoring miR-224-5p expression. In conclusion, miR-224-5p/PANX1 ameliorates trophoblast dysfunction by inhibiting ferroptosis, which provides a potential new option for clinical treatment of PE.
Collapse
Affiliation(s)
- Ying Huang
- Department of Obstestrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Zhiai Bai
- Department of Obstestrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China
| | - Shuang Sui
- Department of Obstestrics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
5
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
6
|
Scharf P, Sandri S, Borges PP, Franco de Oliveira T, Farsky SHP. A single and short exposure to heated tobacco vapor or cigarette smoke affects macrophage activation and polarization. Toxicology 2024; 506:153859. [PMID: 38825031 DOI: 10.1016/j.tox.2024.153859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The toxicity of heated tobacco products (HTP) on the immune cells remains unclear. Here, U937-differentiated macrophages were exposed to a single and short-term exposure (30 minutes) of HTP vapor or cigarette smoke (CS) in an air-liquid interface (ALI) system to evaluate the effects on macrophages' early activation and polarization. In our system, HTP released lower amounts of polycyclic aromatic hydrocarbons (PAHs), but higher nicotine levels than CS into the cell culture supernatant. Both tobacco products triggered the expression of the α-7 nicotinic receptor (α7 nAChR) and reactive oxygen species (ROS) production. When challenged with a bacterial product, lipopolysaccharide (LPS), cells exposed to HTP or CS failed to respond properly and enhance ROS production upon LPS stimuli. Furthermore, both tobacco products also impaired bacterial phagocytosis and the exposures triggered higher IL-1β secretion. The α7 nAChR antagonist treatment rescued the effects caused only by HTP exposure. The CS-exposed group switched macrophage to the pro-inflammatory M1, while HTP polarized to the suppressive M2 profile. Associated, data highlight that HTP and CS exposures similarly activate macrophages; nonetheless, the α7 nAChR pathway is only involved in HTP actions, and the distinct subsequent polarization caused by HTP or CS may influence the outcome of host defense.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP 05508-000, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP 05508-000, Brazil
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP 05508-000, Brazil
| | - Tiago Franco de Oliveira
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Ye A, Li L, Chen H, Tao P, Lou S. Nicotine regulates abnormal macrophage polarization and trophoblast invasion associated with preterm labor via the α7nAChR/SIRT1 axis. Placenta 2024; 147:42-51. [PMID: 38308901 DOI: 10.1016/j.placenta.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Preterm birth (PTB) frequently results from the syndrome of preterm labor (PTL). PTL is linked to an atypical maternal inflammatory response, as well as intrauterine inflammation and/or infection. In this study, we explored the mechanisms involved in nicotine-mediated abnormal macrophage polarization and trophoblast invasion associated with PTL. METHODS First, THP-1-M0 macrophages were generated by treating the human monocytic leukemia cell line (THP-1) with phorbol 12-myristate 13-acetate for a duration of 24 h. Afterward, nicotine treatment was administered, followed by coculturing with the HTR-8/SVneo trophoblast cell line (HTR-8) at a ratio of 1:1. Next, we transfected sh-α7nAChR and treated THP-1-M0 macrophages and HTR-8 cells with nicotine. In addition, we transfected THP-1-M0 macrophages with sh-NC or sh-SIRT1 or subjected them to 4 nM nicotinamide adenine dinucleotide (NAD) metabolic inhibitor FK866 treatment. Moreover, HTR-8 cells were treated with nicotine, after which THP-1-M0 macrophages were cocultured with HTR-8 cells. Finally, we constructed an in vivo RU486-induced PTL rat model to verify the effect of nicotine and the mechanisms involved. RESULTS We found that nicotine affected polarization and α7nAChR expression in HTR-8 cocultured THP-1-M0 macrophages. Knocking down α7nAChR blocked the effect of nicotine on the proliferation and invasion of HTR-8 cells. Furthermore, nicotine activated the α7nAChR/SIRT1 axis to regulate THP-1-M0 macrophage polarization through the cholinergic anti-inflammatory pathway. Additionally, NAD metabolism mediated the role of the α7nAChR/SIRT1 axis in nicotine-induced polarization of HTR-8 cocultured THP-1-M0 macrophages. In vivo experiments demonstrated that nicotine alleviated inflammation in PTL rats, which involved the α7nAChR/SIRT1 axis. CONCLUSION Nicotine regulated abnormal macrophage polarization and trophoblast invasion associated with PTL via the α7nAChR/SIRT1 axis.
Collapse
Affiliation(s)
- Aihua Ye
- Department of Obstetrics and Gynecology, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Liling Li
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Haozhong Chen
- Department of Emergency, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Ping Tao
- Department of Medical Administrating, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| | - Shuiping Lou
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| |
Collapse
|
8
|
Kim H, Choi MR, Jeon SH, Jang Y, Yang YD. Pathophysiological Roles of Ion Channels in Epidermal Cells, Immune Cells, and Sensory Neurons in Psoriasis. Int J Mol Sci 2024; 25:2756. [PMID: 38474002 DOI: 10.3390/ijms25052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.
Collapse
Affiliation(s)
- Hyungsup Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Republic of Korea
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
9
|
de Moura GA, Rocha YM, Moura FLD, Freitas JDO, Rodrigues JPV, Gonçalves VP, Nicolete R. Immune system cells modulation in patients with reproductive issues: A systematic review approach. JBRA Assist Reprod 2024; 28:78-89. [PMID: 37962966 PMCID: PMC10936913 DOI: 10.5935/1518-0557.20230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/21/2023] [Indexed: 11/16/2023] Open
Abstract
The aim of this study was to carry out a systematic literature review to investigate the main immune cells responsible for implantation failures. We selected papers from PubMed, Embase and Virtual Health Library databases. Eligible articles included publications between January 1, 2010 and April 24, 2022. Inclusion criteria were: observational and case-control studies; and the exclusion criteria were: review papers, letters to the editor, abstracts, animal studies and case reports. We extracted the following information: day of collection, number of patients, control group, age of patients, type of sample used, immune cells and cytokines. As main findings in our mapping, we found that in peripheral blood, CD3+, CD4+, CD8+, CD16+, CD56+, CD57+, CD69+, CD154+, CD158a+, NKp46 cells were increased and the CD4+, CD45+, Foxp3 and NKp46 markers were reduced. From the endometrial biopsies, there was an increase in CD3+, CD4+, CD5+, CD8+, CD16+, CD25+, CD45+, CD56+, CD57+, CD68+, CD127+ and a reduction in CD45+, CD56+, NKp46 and FoxP3 cells. Cytokines found increased in peripheral blood included IL-6, IL-10, IL-17, INF-γ, TGF-ß, TNF-α; while IL-4, IL-6, IL-10, IL-35, FoxP3, TGF-ß, SOCS3 were reduced. As for the biopsies, there was an increase in IL-2, IL-6, IL-17, IL-22, IL-23, INF-A1, INF-B1, INF-γ, TNF-R and a reduction in IL-6, IL-10, INF-γ, TGFß, TNF-α. We concluded that immune cells can be modulated during pregnancy failure, but further studies are needed to elucidate the modulating effect of the immune system on the endometrium of these patients.
Collapse
Affiliation(s)
- Gabriel Acácio de Moura
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | - Yasmim Mendes Rocha
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | | | | | - João Pedro Viana Rodrigues
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
| | - Vanessa Pinheiro Gonçalves
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
- North Northeast Biotechnology Network (RENORBIO), State University
of Ceará (UECE), Fortaleza, CE, Brazil
| | - Roberto Nicolete
- Post-Graduate Program in Pharmaceutical Sciences (PPGCF) Federal
University of Ceará (UFC), Fortaleza, CE, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ CEARÁ), Eusébio, CE,
Brazil
- North Northeast Biotechnology Network (RENORBIO), State University
of Ceará (UECE), Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
11
|
Roa-Vidal N, Rodríguez-Aponte AS, Lasalde-Dominicci JA, Capó-Vélez CM, Delgado-Vélez M. Cholinergic Polarization of Human Macrophages. Int J Mol Sci 2023; 24:15732. [PMID: 37958716 PMCID: PMC10650439 DOI: 10.3390/ijms242115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Macrophages serve as vital defenders, protecting the body by exhibiting remarkable cellular adaptability in response to invading pathogens and various stimuli. These cells express nicotinic acetylcholine receptors, with the α7-nAChR being extensively studied due to its involvement in activating the cholinergic anti-inflammatory pathway. Activation of this pathway plays a crucial role in suppressing macrophages' production of proinflammatory cytokines, thus mitigating excessive inflammation and maintaining host homeostasis. Macrophage polarization, which occurs in response to specific pathogens or insults, is a process that has received limited attention concerning the activation of the cholinergic anti-inflammatory pathway and the contributions of the α7-nAChR in this context. This review aims to present evidence highlighting how the cholinergic constituents in macrophages, led by the α7-nAChR, facilitate the polarization of macrophages towards anti-inflammatory phenotypes. Additionally, we explore the influence of viral infections on macrophage inflammatory phenotypes, taking into account cholinergic mechanisms. We also review the current understanding of macrophage polarization in response to these infections. Finally, we provide insights into the relatively unexplored partial duplication of the α7-nAChR, known as dup α7, which is emerging as a significant factor in macrophage polarization and inflammation scenarios.
Collapse
Affiliation(s)
- Natalia Roa-Vidal
- Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
| | - Adriana S. Rodríguez-Aponte
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA; (A.S.R.-A.); (C.M.C.-V.)
| | - José A. Lasalde-Dominicci
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA; (A.S.R.-A.); (C.M.C.-V.)
- Molecular Sciences Research Center, Clinical Bioreagent Center, University of Puerto Rico, San Juan, PR 00926, USA
- Department of Chemistry, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA
- Institute of Neurobiology, Medical Science Campus, University of Puerto Rico, San Juan, PR 00901, USA
| | - Coral M. Capó-Vélez
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA; (A.S.R.-A.); (C.M.C.-V.)
| | - Manuel Delgado-Vélez
- Department of Biology, Rio Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA; (A.S.R.-A.); (C.M.C.-V.)
- Molecular Sciences Research Center, Clinical Bioreagent Center, University of Puerto Rico, San Juan, PR 00926, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan, PR 00936, USA
| |
Collapse
|
12
|
Fang Y, Zhang T, Li L, Chen S, Wang L, Tang J, Liao Y. Nicotine Decreases Nerve Regeneration and Pain Behaviors via PTEN and Downstream Inflammation-Related Pathway in Two Rat Nerve Injury Models. eNeuro 2023; 10:ENEURO.0185-23.2023. [PMID: 37620149 PMCID: PMC10484360 DOI: 10.1523/eneuro.0185-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Neuropathic pain is stubborn and associated with the peripheral nerve regeneration process. Nicotine has been found to reduce pain, but whether it is involved in the regulation of nerve regeneration and the underlying mechanism are unknown. In this study, we examined the mechanical allodynia thermal hyperalgesia together with the peripheral nerve regeneration after nicotine exposure in two rat neuropathic pain models. In the spinal nerve ligation model, in which anatomic nerve regeneration can be easily observed, nicotine reduced anatomic measures of regeneration as well as expression of regeneration marker growth-associated protein 43 (GAP43). In the tibial nerve crush model, nicotine treatment significantly suppressed GAP43 expression and functional reinnervation as measured by myelinated action potential and electromyography of gastrocnemius. In both models, nicotine treatment reduced macrophage density in the sensory ganglia and peripheral nerve. These effects of nicotine were reversed by the selective α7 nicotinic acetylcholine receptor (nAChR) blocker methyllycaconitine. In addition, nicotine significantly elevated expression of PTEN (the phosphatase and tensin homolog deleted on chromosome 10), a key player in both regeneration and pain. Pharmacological interference of PTEN could regulate GAP43 expression, pain-related behaviors, and macrophage infiltration in a nicotine-treated nerve crush model. Our results reveal that nicotine and its α7-nAChR regulate both peripheral nerve regeneration process and pain though PTEN and the downstream inflammation-related pathway.
Collapse
Affiliation(s)
- Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Tingkai Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Shanshan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Liangliang Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
13
|
Kubo A, Matsubara K, Matsubara Y, Nakaoka H, Sugiyama T. The Influence of Nicotine on Trophoblast-Derived Exosomes in a Mouse Model of Pathogenic Preeclampsia. Int J Mol Sci 2023; 24:11126. [PMID: 37446304 DOI: 10.3390/ijms241311126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Preeclampsia (PE) is a serious complication of pregnancy with a pathogenesis that is not fully understood, though it involves the impaired invasion of extravillous trophoblasts (EVTs) into the decidual layer during implantation. Because the risk of PE is actually decreased by cigarette smoking, we considered the possibility that nicotine, a critical component of tobacco smoke, might protect against PE by modifying the content of exosomes from EVTs. We investigated the effects of nicotine on our PE model mouse and evaluated blood pressure. Next, exosomes were extracted from nicotine-treated extravillous trophoblasts (HTR-8/SVneo), and the peptide samples were evaluated by DIA (Data Independent Acquisition) proteomic analysis following nano LC-MS/MS. Hub proteins were identified using bioinformatic analysis. We found that nicotine significantly reduced blood pressure in a PE mouse model. Furthermore, we identified many proteins whose abundance in exosomes was modified by nicotine treatment of EVTs, and we used bioinformatic annotation and network analysis to select five key hub proteins with potential roles in the pathogenesis or prevention of PE. EVT-derived exosomes might influence the pathogenesis of PE because the cargo delivered by exosomes can signal to and modify the receiving cells and their environment.
Collapse
Affiliation(s)
- Ayane Kubo
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Keiichi Matsubara
- Department of Regional Pediatrics and Perinatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Yuko Matsubara
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Hirotomo Nakaoka
- Advanced Research Support Center, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| | - Takashi Sugiyama
- Department of Obstetrics and Gynecology, Ehime University Graduate School of Medicine, Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
14
|
Hadzikadunic H, Sjælland TB, Lindholt JS, Steffensen LB, Beck HC, Kavaliunaite E, Rasmussen LM, Stubbe J. Nicotine Administration Augments Abdominal Aortic Aneurysm Progression in Rats. Biomedicines 2023; 11:biomedicines11051417. [PMID: 37239088 DOI: 10.3390/biomedicines11051417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation and elastin degradation are key hallmarks in the pathogenesis of abdominal aortic aneurysms (AAAs). It has been acknowledged that activation of alpha7 nicotinic acetylcholine receptors (α7nAChRs) attenuates inflammation, termed the cholinergic anti-inflammatory pathway (CAP). Thus, we hypothesize that low-dose nicotine impairs the progression of elastase-induced AAAs in rats by exerting anti-inflammatory and anti-oxidative stress properties. Male Sprague-Dawley rats underwent surgical AAA induction with intraluminal elastase infusion. We compared vehicle rats with rats treated with nicotine (1.25 mg/kg/day), and aneurysm progression was monitored by weekly ultrasound images for 28 days. Nicotine treatment significantly promoted AAA progression (p = 0.031). Additionally, gelatin zymography demonstrated that nicotine significantly reduced pro-matrix metalloproteinase (pro-MMP) 2 (p = 0.029) and MMP9 (p = 0.030) activity in aneurysmal tissue. No significant difference was found in the elastin content or the score of elastin degradation between the groups. Neither infiltrating neutrophils nor macrophages, nor aneurysmal messenger RNA (mRNA) levels of pro- or anti-inflammatory cytokines, differed between the vehicle and nicotine groups. Finally, no difference in mRNA levels of markers for anti-oxidative stress or the vascular smooth muscle cells' contractile phenotype was observed. However, proteomics analyses of non-aneurysmal abdominal aortas revealed that nicotine decreased myristoylated alanine-rich C-kinase substrate and proteins, in ontology terms, inflammatory response and reactive oxygen species, and in contradiction to augmented AAAs. In conclusion, nicotine at a dose of 1.25 mg/kg/day augments AAA expansion in this elastase AAA model. These results do not support the use of low-dose nicotine administration for the prevention of AAA progression.
Collapse
Affiliation(s)
- Hana Hadzikadunic
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tea Bøvling Sjælland
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Jes S Lindholt
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lasse Bach Steffensen
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Hans Christian Beck
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Egle Kavaliunaite
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, 5000 Odense, Denmark
| | - Lars Melholt Rasmussen
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Jane Stubbe
- Elitary Research Centre of Individualized Treatment for Arterial Disease (CIMA), Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Cardiovascular and Renal Research Unit, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
15
|
Keever KR, Yakubenko VP, Hoover DB. Neuroimmune nexus in the pathophysiology and therapy of inflammatory disorders: role of α7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 191:106758. [PMID: 37028776 DOI: 10.1016/j.phrs.2023.106758] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
The α7-nicotinic acetylcholine receptor (α7nAChR) is a key protein in the cholinergic anti-inflammatory pathway (CAP) that links the nervous and immune systems. Initially, the pathway was discovered based on the observation that vagal nerve stimulation (VNS) reduced the systemic inflammatory response in septic animals. Subsequent studies form a foundation for the leading hypothesis about the central role of the spleen in CAP activation. VNS evokes noradrenergic stimulation of ACh release from T cells in the spleen, which in turn activates α7nAChRs on the surface of macrophages. α7nAChR-mediated signaling in macrophages reduces inflammatory cytokine secretion and modifies apoptosis, proliferation, and macrophage polarization, eventually reducing the systemic inflammatory response. A protective role of the CAP has been demonstrated in preclinical studies for multiple diseases including sepsis, metabolic disease, cardiovascular diseases, arthritis, Crohn's disease, ulcerative colitis, endometriosis, and potentially COVID-19, sparking interest in using bioelectronic and pharmacological approaches to target α7nAChRs for treating inflammatory conditions in patients. Despite a keen interest, many aspects of the cholinergic pathway are still unknown. α7nAChRs are expressed on many other subsets of immune cells that can affect the development of inflammation differently. There are also other sources of ACh that modify immune cell functions. How the interplay of ACh and α7nAChR on different cells and in various tissues contributes to the anti-inflammatory responses requires additional study. This review provides an update on basic and translational studies of the CAP in inflammatory diseases, the relevant pharmacology of α7nAChR-activated drugs and raises some questions that require further investigation.
Collapse
|
16
|
Patel DK, Ganguly K, Dutta SD, Patil TV, Lim KT. Cellulose nanocrystals vs. cellulose nanospheres: A comparative study of cytotoxicity and macrophage polarization potential. Carbohydr Polym 2023; 303:120464. [PMID: 36657847 DOI: 10.1016/j.carbpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Nanocellulose application has been increasing owing to its appealing physicochemical properties. Monitoring of the crystallinity, surface topography, and reactivity of this high-aspect-ratio nanomaterial is crucial for efficient tissue engineering. Controlling macrophage polarization phenotype remains a challenge in regenerative medicine and tissue engineering. Herein, we monitored the effects of shape-regulated (rod and spherical) nanocellulose on the macrophage modulatory potential of RAW 246.7 cells in vitro. Spherical nanocellulose (s-NC) exhibited higher thermal stability and biocompatibility than rod nanocellulose. Macrophage polarization was profoundly affected by nanocellulose topography and incubation period. M2 polarization was observed in vitro after 1 day of treatment with s-NC, followed by M1 polarization after treatment for longer periods. Transcriptome analysis similarly revealed that M1 polarization was dominant after 1 day h of incubation with both nanocellulose types. These findings demonstrate that macrophage polarization can be controlled by selecting suitable nanocellulose shape and incubation time for desired applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V Patil
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
17
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
18
|
Chen B, Sun L, Zeng G, Shen Z, Wang K, Yin L, Xu F, Wang P, Ding Y, Nie Q, Wu Q, Zhang Z, Xia J, Lin J, Luo Y, Cai J, Krausz KW, Zheng R, Xue Y, Zheng MH, Li Y, Yu C, Gonzalez FJ, Jiang C. Gut bacteria alleviate smoking-related NASH by degrading gut nicotine. Nature 2022; 610:562-568. [PMID: 36261549 PMCID: PMC9589931 DOI: 10.1038/s41586-022-05299-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.
Collapse
Affiliation(s)
- Bo Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Limin Yin
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Feng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Pengcheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jie Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology, Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China.
- The Key Laboratory of Molecular Cardiovascular Science, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
19
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
20
|
Lei W, Zhao C, Sun J, Jin Y, Duan Z. Electroacupuncture Ameliorates Intestinal Barrier Destruction in Mice With Bile Duct Ligation-Induced Liver Injury by Activating the Cholinergic Anti-Inflammatory Pathway. Neuromodulation 2022; 25:1122-1133. [PMID: 35300921 DOI: 10.1016/j.neurom.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Electroacupuncture (EA) at Zusanli (ST36) can attenuate inflammation in different rodent models. However, the therapeutic mechanisms underlying its action in inhibiting intestinal barrier destruction and liver injury in cholestasis mice have not been clarified. This study aimed at investigating whether EA at ST36 could activate the cholinergic anti-inflammatory pathway to inhibit intestinal barrier destruction and liver injury in cholestasis mice. MATERIALS AND METHODS Male Hmox1floxp/floxp C57BL/6 mice were randomized and subjected to a sham or bile duct ligation (BDL) surgery. The BDL mice were randomized and treated with, or without (BDL group), sham EA at ST36 (BDL+sham-ST36) or EA at ST36 (BDL+ST36), or received α-bungarotoxin (α-BGT), a specific inhibitor of nicotinic acetylcholine receptor α7 subunit (α7nAChR), before stimulation (BDL+ST36+α-BGT). These mice, together with a group of intestine-specific heme oxygenase-1 (HO-1) knockout (KO) Villin-Cre-HO-1-/- mice, were monitored for their body weights before and 14 days after BDL. The levels of plasma cytokines and liver injury-related alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured by enzyme-linked immunoassay, and pathological changes in the intestinal mucosa and liver fibrosis as well as intestinal barrier permeability in individual mice were examined by histology and immunohistochemistry. The levels of α7nAChR, HO-1, ZO-1, Occludin, Claudin-1, and NF-κBp65 expression and NF-κBp65 phosphorylation in intestinal tissues were quantified. RESULTS Compared with the sham group, BDL significantly increased the levels of plasma interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor α, ALT, and AST and caused intestinal mucosal damages, high permeability, and liver fibrosis in mice, which were remarkably mitigated, except for further increased levels of plasma IL-10 in the BDL+ST36 group of mice. Similarly, EA at ST36 significantly up-regulated α7nAChR and HO-1 expression; mitigated the BDL-decreased ZO-1, Occludin, and Claudin-1 expression; and attenuated the BDL-increased NF-κBp65 phosphorylation in intestinal tissues of mice. The therapeutic effects of EA at ST36 were significantly abrogated by pretreatment with α-BGT or HO-1 KO. CONCLUSION EA at ST36 inhibits the BDL-induced intestinal mucosal damage and liver fibrosis by activating the HO-1 cholinergic anti-inflammatory pathway in intestinal tissues of mice.
Collapse
Affiliation(s)
- Wei Lei
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Changcheng Zhao
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiasen Sun
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanling Jin
- Pathology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhijun Duan
- Second Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian, China; Laboratory of Integrated Chinese and Western Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|
22
|
Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk Between Trophoblast and Macrophage at the Maternal-Fetal Interface: Current Status and Future Perspectives. Front Immunol 2021; 12:758281. [PMID: 34745133 PMCID: PMC8566971 DOI: 10.3389/fimmu.2021.758281] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The immune tolerance microenvironment is crucial for the establishment and maintenance of pregnancy at the maternal-fetal interface. The maternal-fetal interface is a complex system containing various cells, including lymphocytes, decidual stromal cells, and trophoblasts. Macrophages are the second-largest leukocytes at the maternal-fetal interface, which has been demonstrated to play essential roles in remodeling spiral arteries, maintaining maternal-fetal immune tolerance, and regulating trophoblast's biological behaviors. Many researchers, including us, have conducted a series of studies on the crosstalk between macrophages and trophoblasts at the maternal-fetal interface: on the one hand, macrophages can affect the invasion and migration of trophoblasts; on the other hand, trophoblasts can regulate macrophage polarization and influence the state of the maternal-fetal immune microenvironment. In this review, we systemically introduce the functions of macrophages and trophoblasts and the cell-cell interaction between them for the establishment and maintenance of pregnancy. Advances in this area will further accelerate the basic research and clinical translation of reproductive medicine.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Periimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
23
|
Saranyutanon S, Acharya S, Deshmukh SK, Khan MA, Singh S, Singh AP. Nicotine causes alternative polarization of macrophages via Src-mediated STAT3 activation: Potential pathobiological implications. J Cell Physiol 2021; 237:1486-1497. [PMID: 34647621 DOI: 10.1002/jcp.30607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Nicotine is an addictive ingredient of tobacco products and other noncigarette substitutes, including those being used for smoking cessation to relieve withdrawal symptoms. Earlier research, however, has associated nicotine with the risk and poorer outcome of several diseases, including cancer. Macrophages are an important component of the innate immune system and can have both pro-and anti-inflammatory functions depending upon their polarization state. Here, we investigated the effect of nicotine on macrophage polarization, growth, and invasion to understand its role in human physiology. We observed that nicotine induced M2 polarization of RAW264.7 and THP-1-derived macrophages in a dose-dependent manner. Cytokine profiling suggested a mixed M2a/d phenotype of nicotine-polarized macrophages associated with tissue repair and pro-angiogenic functions. Moreover, nicotine treatment also enhanced the growth, motility, and invasion of macrophages. Mechanistic studies revealed increased phosphorylation of STAT3 in nicotine-treated macrophages that was mediated through Src activation. Importantly, pretreatment of macrophages with either Src or STAT3 inhibitor abrogated nicotine-induced macrophage polarization, growth, and motility, suggesting a functional role of the Src-STAT3 signaling axis. Together, our findings reveal a novel role of nicotine in immunosuppression via causing M2 polarization of macrophages that could be implicated in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Sirin Saranyutanon
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Srijan Acharya
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sachin Kumar Deshmukh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Mohammad Aslam Khan
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
24
|
Li H, Tang D, Chen J, Hu Y, Cai X, Zhang P. The Clinical Value of GDF15 and Its Prospective Mechanism in Sepsis. Front Immunol 2021; 12:710977. [PMID: 34566964 PMCID: PMC8456026 DOI: 10.3389/fimmu.2021.710977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is involved in the occurrence and development of many diseases, and there are few studies on its relationship with sepsis. This article aims to explore the clinical value of GDF15 in sepsis and to preliminarily explore its prospective regulatory effect on macrophage inflammation and its functions. We recruited 320 subjects (132 cases in sepsis group, 93 cases in nonsepsis group, and 95 cases in control group), then detected the serum GDF15 levels and laboratory indicators, and further investigated the correlation between GDF15 and laboratory indicators, and also analyzed the clinical value of GDF15 in sepsis diagnosis, severity assessment, and prognosis. In vitro, we used LPS to stimulate THP-1 and RAW264.7 cells to establish the inflammatory model, and detected the expression of GDF15 in the culture medium and cells under the inflammatory state. After that, we added GDF15 recombinant protein (rGDF15) pretreatment to explore its prospective regulatory effect on macrophage inflammation and its functions. The results showed that the serum GDF15 levels were significantly increased in the sepsis group, which was correlated with laboratory indexes of organ damage, coagulation indexes, inflammatory factors, and SOFA score. GDF15 also has a high AUC in the diagnosis of sepsis, which can be further improved by combining with other indicators. The dynamic monitoring of GDF15 levels can play an important role in the judgment and prognosis of sepsis. In the inflammatory state, the expression of intracellular and extracellular GDF15 increased. GDF15 can reduce the levels of cytokines, inhibit M1 polarization induced by LPS, and promote M2 polarization. Moreover, GDF15 also enhances the phagocytosis and bactericidal function of macrophages. Finally, we observed a decreased level of the phosphorylation of JAK1/STAT3 signaling pathway and the nuclear translocation of NF-κB p65 with the pretreatment of rGDF15. In summary, our study found that GDF15 has good clinical application value in sepsis and plays a protective role in the development of sepsis by regulating the functions of macrophages and inhibiting the activation of JAK1/STAT3 pathway and nuclear translocation of NF-κB p65.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|