1
|
Irizar H, Chun Y, Hsu HHL, Li YC, Zhang L, Arditi Z, Grishina G, Grishin A, Vicencio A, Pandey G, Bunyavanich S. Multi-omic integration reveals alterations in nasal mucosal biology that mediate air pollutant effects on allergic rhinitis. Allergy 2024; 79:3047-3061. [PMID: 38796780 PMCID: PMC11560721 DOI: 10.1111/all.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Allergic rhinitis is a common inflammatory condition of the nasal mucosa that imposes a considerable health burden. Air pollution has been observed to increase the risk of developing allergic rhinitis. We addressed the hypotheses that early life exposure to air toxics is associated with developing allergic rhinitis, and that these effects are mediated by DNA methylation and gene expression in the nasal mucosa. METHODS In a case-control cohort of 505 participants, we geocoded participants' early life exposure to air toxics using data from the US Environmental Protection Agency, assessed physician diagnosis of allergic rhinitis by questionnaire, and collected nasal brushings for whole-genome DNA methylation and transcriptome profiling. We then performed a series of analyses including differential expression, Mendelian randomization, and causal mediation analyses to characterize relationships between early life air toxics, nasal DNA methylation, nasal gene expression, and allergic rhinitis. RESULTS Among the 505 participants, 275 had allergic rhinitis. The mean age of the participants was 16.4 years (standard deviation = 9.5 years). Early life exposure to air toxics such as acrylic acid, phosphine, antimony compounds, and benzyl chloride was associated with developing allergic rhinitis. These air toxics exerted their effects by altering the nasal DNA methylation and nasal gene expression levels of genes involved in respiratory ciliary function, mast cell activation, pro-inflammatory TGF-β1 signaling, and the regulation of myeloid immune cell function. CONCLUSIONS Our results expand the range of air pollutants implicated in allergic rhinitis and shed light on their underlying biological mechanisms in nasal mucosa.
Collapse
Affiliation(s)
- Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yan-Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Galina Grishina
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alexander Grishin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alfin Vicencio
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
2
|
He K, Yang T, Yu J, Zang X, Jiang S, Xu S, Liu J, Xu Z, Wang W, Hong S. Dermatophagoides farinae microRNAs released to external environments via exosomes regulate inflammation-related gene expression in human bronchial epithelial cells. Front Immunol 2023; 14:1303265. [PMID: 38106417 PMCID: PMC10722260 DOI: 10.3389/fimmu.2023.1303265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Dermatophagoides farinae (DFA) is an important species of house dust mites (HDMs) that causes allergic diseases. Previous studies have focused on allergens with protein components to explain the allergic effect of HDMs; however, there is little knowledge on the role of microRNAs (miRNAs) in the allergic effect of HDMs. This study aimed to unravel the new mechanism of dust mite sensitization from the perspective of cross-species transport of extracellular vesicles-encapsulated miRNAs from HDMs. METHODS Small RNA (sRNA) sequencing was performed to detect miRNAs expression profiles from DFA, DFA-derived exosomes and DFA culture supernatants. A quantitative fluorescent real-time PCR (qPCR) assay was used to detect miRNAs expression in dust specimens. BEAS-2B cells endocytosed exosomes were modeled in vitro to detect miRNAs from DFA and the expression of related inflammatory factors. Representative dfa-miR-276-3p and dfa-novel-miR2 were transfected into BEAS-2B cells, and then differentially expressed genes (DEGs) were analyzed by RNA sequencing. Protein-protein interaction (PPI) network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms enrichment analyses were performed on the first 300 nodes of DEGs. RESULTS sRNA sequencing identified 42 conserved miRNAs and 66 novel miRNAs in DFA, DFA-derived exosomes, and DFA culture supernatants. A homology analysis was performed on the top 18 conserved miRNAs with high expression levels. The presence of dust mites and miRNAs from HDMs in living environment were also validated. Following uptake of DFA-derived exosomes by BEAS-2B cells, exosomes transported miRNAs from DFA to target cells and produced pro-inflammatory effects in corresponding cells. RNA sequencing identified DEGs in dfa-miR-276-3p and dfa-novel-miR2 transfected BEAS-2B cells. GO and KEGG enrichment analyses revealed the role of exosomes with cross-species transporting of DFA miRNAs in inflammatory signaling pathways, such as JAK-STAT signaling pathway, PI3K/AKT signaling pathway and IL-6-mediated signaling pathway. CONCLUSION Our findings demonstrate the miRNAs expression profiles in DFA for the first time. The DFA miRNAs are delivered into living environments via exosomes, and engulfed by human bronchial epithelial cells, and cross-species regulation may contribute to inflammation-related processes.
Collapse
Affiliation(s)
- Kaiyue He
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ting Yang
- Department of Dermatology, Affiliated Children’s Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jinyan Yu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Zang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shangde Jiang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuyue Xu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxi Liu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuyu Xu
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Health Commission Key Laboratory on Parasitic Disease Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Shanchao Hong
- Department of Clinical Laboratory, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Tan D, Lu M, Cai Y, Qi W, Wu F, Bao H, Qv M, He Q, Xu Y, Wang X, Shen T, Luo J, He Y, Wu J, Tang L, Barkat MQ, Xu C, Wu X. SUMOylation of Rho-associated protein kinase 2 induces goblet cell metaplasia in allergic airways. Nat Commun 2023; 14:3887. [PMID: 37393345 PMCID: PMC10314948 DOI: 10.1038/s41467-023-39600-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Allergic asthma is characterized by goblet cell metaplasia and subsequent mucus hypersecretion that contribute to the morbidity and mortality of this disease. Here, we explore the potential role and underlying mechanism of protein SUMOylation-mediated goblet cell metaplasia. The components of SUMOylaion machinery are specifically expressed in healthy human bronchial epithelia and robustly upregulated in bronchial epithelia of patients or mouse models with allergic asthma. Intratracheal suppression of SUMOylation by 2-D08 robustly attenuates not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Phosphoproteomics and biochemical analyses reveal SUMOylation on K1007 activates ROCK2, a master regulator of goblet cell metaplasia, by facilitating its binding to and activation by RhoA, and an E3 ligase PIAS1 is responsible for SUMOylation on K1007. As a result, knockdown of PIAS1 in bronchial epithelia inactivates ROCK2 to attenuate IL-13-induced goblet cell metaplasia, and bronchial epithelial knock-in of ROCK2(K1007R) consistently inactivates ROCK2 to alleviate not only allergen-induced airway inflammation, goblet cell metaplasia, and hyperreactivity, but IL-13-induced goblet cell metaplasia. Together, SUMOylation-mediated ROCK2 activation is an integral component of Rho/ROCK signaling in regulating the pathological conditions of asthma and thus SUMOylation is an additional target for the therapeutic intervention of this disease.
Collapse
Affiliation(s)
- Dan Tan
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiping Lu
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Yuqing Cai
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Weibo Qi
- Department of Thoracic Surgery, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Fugen Wu
- Department of Paediatrics, the First People's Hospital of Wenling City, Wenling City, 317500, China
| | - Hangyang Bao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meiyu Qv
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiangzhi Wang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiahao Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yangxun He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junsong Wu
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanfang Tang
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Clinical Research Center for Child Health, the Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310053, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zimmermann EJ, Candeias J, Gawlitta N, Bisig C, Binder S, Pantzke J, Offer S, Rastak N, Bauer S, Huber A, Kuhn E, Buters J, Groeger T, Delaval MN, Oeder S, Di Bucchianico S, Zimmermann R. Biological impact of sequential exposures to allergens and ultrafine particle-rich combustion aerosol on human bronchial epithelial BEAS-2B cells at the air liquid interface. J Appl Toxicol 2023. [PMID: 36869434 DOI: 10.1002/jat.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Elias Josef Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Joana Candeias
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Svenja Offer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anja Huber
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Jeroen Buters
- Center for Allergy and Environment (ZAUM), Technical University Munich, Munich, 80802, Germany
| | - Thomas Groeger
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mathilde N Delaval
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Cooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Mass Spectrometry Centre (JMSC), Chair of Analytical Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Tu W, Xiao X, Lu J, Liu X, Wang E, Yuan R, Wan R, Shen Y, Xu D, Yang P, Gong M, Gao P, Huang SK. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front Immunol 2023; 13:1099509. [PMID: 36776398 PMCID: PMC9912158 DOI: 10.3389/fimmu.2022.1099509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
Background Metal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear. Objective We sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms. Methods Asthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant. Results Compared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling. Conclusions Our findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.
Collapse
Affiliation(s)
- Wei Tu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China,Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jiahua Lu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaoyu Liu
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Eryi Wang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Ruyi Yuan
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Rongjun Wan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Damo Xu
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pingchang Yang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Miao Gong
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Shau-Ku Huang, ; Peisong Gao,
| | - Shau-Ku Huang
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan,*Correspondence: Shau-Ku Huang, ; Peisong Gao,
| |
Collapse
|
6
|
Tu W, Xiao X, Lu J, Liu X, Wang E, Yuan R, Wan R, Shen Y, Xu D, Yang P, Gong M, Gao P, Huang SK. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1099509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BackgroundMetal components of environmental PM2.5 are associated with the exacerbation of allergic diseases like asthma. In our recent hospital-based population study, exposure to vanadium is shown to pose a significant risk for current asthma, but the causal relationship and its underlying molecular mechanisms remain unclear.ObjectiveWe sought to determine whether vanadium co-exposure can aggravate house dust mite (HDM)-induced allergic airway inflammation and remodeling, as well as investigate its related mechanisms.MethodsAsthma mouse model was generated by using either vanadium pentoxide (V2O5) or HDM alone or in combination, in which the airway inflammation and remodeling was investigated. The effect of V2O5 co-exposure on HDM-induced epithelial-derived cytokine release and oxidative stress (ROS) generation was also examined by in vitro analyses. The role of ROS in V2O5 co-exposure-induced cytokine release and airway inflammation and remodeling was examined by using inhibitors or antioxidant.ResultsCompared to HDM alone, V2O5 co-exposure exacerbated HDM-induced airway inflammation with increased infiltration of inflammatory cells and elevated levels of Th1/Th2/Th17 and epithelial-derived (IL-25, TSLP) cytokines in the bronchoalveolar lavage fluids (BALFs). Intriguingly, V2O5 co-exposure also potentiated HDM-induced airway remodeling. Increased cytokine release was further supported by in vitro analysis in human bronchial epithelial cells (HBECs). Mechanistically, ROS, particularly mitochondrial-derived ROS, was significantly enhanced in HBECs after V2O5 co-exposure as compared to HDM challenge alone. Inhibition of ROS with its inhibitor N-acetyl-L-cysteine (NAC) and mitochondrial-targeted antioxidant MitoTEMPO blocked the increased epithelial release caused by V2O5 co-exposure. Furthermore, vitamin D3 as an antioxidant was found to inhibit V2O5 co-exposure-induced increased airway epithelial cytokine release and airway remodeling.ConclusionsOur findings suggest that vanadium co-exposure exacerbates epithelial ROS generation that contribute to increased allergic airway inflammation and remodeling.
Collapse
|
7
|
Wilson LB, McClure RS, Waters KM, Simonich MT, Tanguay RL. Concentration-response gene expression analysis in zebrafish reveals phenotypically-anchored transcriptional responses to retene. FRONTIERS IN TOXICOLOGY 2022; 4:950503. [PMID: 36093370 PMCID: PMC9453431 DOI: 10.3389/ftox.2022.950503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants and are associated with human disease. Canonically, many PAHs induce toxicity via activation of the aryl hydrocarbon receptor (AHR) pathway. While the interaction between PAHs and the AHR is well-established, understanding which AHR-regulated transcriptional effects directly result in observable phenotypes and which are adaptive or benign is important to better understand PAH toxicity. Retene is a frequently detected PAH in environmental sampling and has been associated with AHR2-dependent developmental toxicity in zebrafish, though its mechanism of toxicity has not been fully elucidated. To interrogate transcriptional changes causally associated with retene toxicity, we conducted whole-animal RNA sequencing at 48 h post-fertilization after exposure to eight retene concentrations. We aimed to identify the most sensitive transcriptomic responses and to determine whether this approach could uncover gene sets uniquely differentially expressed at concentrations which induce a phenotype. We identified a concentration-response relationship for differential gene expression in both number of differentially expressed genes (DEGs) and magnitude of expression change. Elevated expression of cyp1a at retene concentrations below the threshold for teratogenicity suggested that while cyp1a expression is a sensitive biomarker of AHR activation, it may be too sensitive to serve as a biomarker of teratogenicity. Genes differentially expressed at only non-teratogenic concentrations were enriched for transforming growth factor-β (TGF-β) signaling pathway disruption while DEGs identified at only teratogenic concentrations were significantly enriched for response to xenobiotic stimulus and reduction-oxidation reaction activity. DEGs which spanned both non-teratogenic and teratogenic concentrations showed similar disrupted biological processes to those unique to teratogenic concentrations, indicating these processes were disrupted at low exposure concentrations. Gene co-expression network analysis identified several gene modules, including those associated with PAHs and AHR2 activation. One, Module 7, was strongly enriched for AHR2-associated genes and contained the strongest responses to retene. Benchmark concentration (BMC) of Module seven genes identified a median BMC of 7.5 µM, nearly the highest retene concentration with no associated teratogenicity, supporting the hypothesis that Module seven genes are largely responsible for retene toxicity.
Collapse
Affiliation(s)
- Lindsay B. Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Ryan S. McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Katrina M. Waters
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Michael T. Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
- *Correspondence: Robyn L. Tanguay,
| |
Collapse
|
8
|
Wang J, Zhao Y, Zhang X, Tu W, Wan R, Shen Y, Zhang Y, Trivedi R, Gao P. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front Immunol 2022; 13:964575. [PMID: 35935956 PMCID: PMC9355649 DOI: 10.3389/fimmu.2022.964575] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
RATIONALE Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered as an important regulator for immune diseases. We have previously shown that AhR protects against allergic airway inflammation. The underlying mechanism, however, remains undetermined. OBJECTIVES We sought to determine whether AhR specifically in type II alveolar epithelial cells (AT2) modulates allergic airway inflammation and its underlying mechanisms. METHODS The role of AhR in AT2 cells in airway inflammation was investigated in a mouse model of asthma with AhR conditional knockout mice in AT2 cells (Sftpc-Cre;AhRf/f ). The effect of AhR on allergen-induced autophagy was examined by both in vivo and in vitro analyses. The involvement of autophagy in airway inflammation was analyzed by using autophagy inhibitor chloroquine. The AhR-regulated gene profiling in AT2 cells was also investigated by RNA sequencing (RNA-seq) analysis. RESULTS Sftpc-Cre;AhRf/f mice showed exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, an increased allergen-induced autophagy was observed in the lung tissues of Sftpc-Cre;AhRf/f mice when compared with wild-type mice. Further analyses suggested a functional axis of AhR-TGF-β1 that is critical in driving allergic airway inflammation through regulating allergen-induced cellular autophagy. Furthermore, inhibition of autophagy with autophagy inhibitor chloroquine significantly suppressed cockroach allergen-induced airway inflammation, Th2 cytokines in BALFs, and expression of autophagy-related genes LC3 and Atg5 in the lung tissues. In addition, RNA-seq analysis suggests that autophagy is one of the major pathways and that CALCOCO2/NDP52 and S1009 are major autophagy-associated genes in AT2 cells that may contribute to the AhR-mediated cockroach allergen-induced airway inflammation and, subsequently, allergic asthma. CONCLUSION These results suggest that AhR in AT2 cells functions as a protective mechanism against allergic airway inflammation through controlling cell autophagy.
Collapse
Affiliation(s)
- Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruchik Trivedi
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Zeng X, Xiao X, Hu S, He W, Wu G, Geng X, Fan J, Ma L, Liu J, Liu Z, Yang P. XBP1 is required in Th2 polarization induction in airway allergy. Theranostics 2022; 12:5337-5349. [PMID: 35910793 PMCID: PMC9330522 DOI: 10.7150/thno.75100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Th2 polarization plays a central role in the pathogenesis of allergic diseases such as airway allergy. The underlying mechanism is not fully understood yet. X-box-binding protein-1 (XBP1) can regulate immune cell activities upon exposing stressful events. The role of XBP1 in the development of Th2 polarization has not yet been explored. Methods: Mice carrying Xbp1-deficient CD4+ T cells were employed to observe the role of XBP1 in the induction of airway allergy. A cell culture model was established to evaluate the role of XBP1 in facilitating the Th2 lineage commitment. Results: We found that Xbp1 ablation in CD4+ T cells prevented induction of Th2 polarization in the mouse airway tract. XBP1 was indispensable in the Th2 lineage commitment. XBP1 mediated the effects of 3-methyl-4-nitrophenol (MNP) on facilitating inducing antigen-specific Th2 response in the airways. Exposure to MNP induced expression of XBP1 in CD4+ T cells. RhoA facilitated the binding between XBP1 and GATA3 in CD4+ T cells. XBP1 induced GATA3 phosphorylation to promote the Il4 gene transcription. Modulation of the RhoA/XBP1 axis mitigated experimental allergic response in the mouse airways. Conclusions: A potential therapeutic target, XBP1, was identified in this study. XBP1 was required in the development of skewed Th2 response in the airways. Inhibiting XBP1 alleviated Th2 polarization-related immune inflammation in the airways. The data suggest that inhibiting XBP1 has the translation potential for the treatment of airway allergy.
Collapse
Affiliation(s)
- Xianhai Zeng
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China
| | - Xiaojun Xiao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Suqin Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiyi He
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Gaohui Wu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China
| | - Jialiang Fan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Longpeng Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Jiangqi Liu
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China
| | - Zhiqiang Liu
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, China
| | - Pingchang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China
- Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Li C, Su F, Zhang L, Liu F, Fan W, Li Z, Ma J. Identifying Potential Diagnostic Genes for Diabetic Nephropathy Based on Hypoxia and Immune Status. J Inflamm Res 2021; 14:6871-6891. [PMID: 34934337 PMCID: PMC8684433 DOI: 10.2147/jir.s341032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Background The prognosis of diabetic nephropathy is poor, and early diagnosis of diabetic nephropathy is challenging. Fortunately, searching for DN-specific markers based on machine algorithms can facilitate diagnosis. Methods xCell model and CIBERSORT algorithm were used to analyze the relationship between immune cells and DN, and WGCNA analysis was used to evaluate the regulatory relationship between hypoxia gene and DN-related immune cells. Lasso regression and ROC regression were used to detect the ability of core genes to diagnose DN, the PPI network of core genes with high diagnostic ability was constructed, and the interaction between core genes was discussed. Results There were 519 differentially expressed genes in renal tubules and 493 differentially expressed genes in glomeruli. Immune and hypoxia responses are involved in the regulation of renal glomerulus and renal tubules. We found that there are 16 hypoxia-related genes involved in the regulation of hypoxia response. Seventeen hypoxia-related genes in renal tubules are involved in regulating hypoxia response on the proteasome signal pathway. Lasso and ROC regression were used to screen anoxic core genes. Further, we found that TGFBR3, APOLD1, CPEB1, and KDR are important in diagnosing DN glomerulopathy, respectively, PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B, which have high specificity for renal tubulopathy in DN. Conclusion Hypoxia and immune reactions are involved in the progression of DN. T cells are the central immune response cells. TGFBR3, APOLD1, CPEB1, and KDR have higher diagnostic accuracy in the diagnosis of DN. PSMB8, PSMB9, RHOA, VCAM1, and CDKN1B have higher diagnostic accuracy in DN diagnosis.
Collapse
Affiliation(s)
- Changyan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Feng Su
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Fang Liu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wenxing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - Zhen Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| | - JingYuan Ma
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
11
|
Hu X, Shen Y, Zhao Y, Wang J, Zhang X, Tu W, Kaufman W, Feng J, Gao P. Epithelial Aryl Hydrocarbon Receptor Protects From Mucus Production by Inhibiting ROS-Triggered NLRP3 Inflammasome in Asthma. Front Immunol 2021; 12:767508. [PMID: 34868022 PMCID: PMC8634667 DOI: 10.3389/fimmu.2021.767508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Background Despite long-standing recognition in the significance of mucus overproduction in asthma, its etiology remains poorly understood. Muc5ac is a secretory mucin that has been associated with reduced pulmonary function and asthma exacerbations. Objectives We sought to investigate the immunological pathway that controls Muc5ac expression and allergic airway inflammation in asthma. Methods Cockroach allergen-induced Muc5ac expression and aryl hydrocarbon receptor (AhR) signaling activation was examined in the human bronchial epithelial cells (HBECs) and mouse model of asthma. AhR regulation of Muc5ac expression, mitochondrial ROS (Mito-ROS) generation, and NLRP3 inflammasome was determined by AhR knockdown, the antagonist CH223191, and AhR-/- mice. The role of NLRP3 inflammasome in Muc5ac expression and airway inflammation was also investigated. Results Cockroach allergen induced Muc5ac overexpression in HBECs and airways of asthma mouse model. Increased expression of AhR and its downstream genes CYP1A1 and CYP1B1 was also observed. Mice with AhR deletion showed increased allergic airway inflammation and MUC5AC expression. Moreover, cockroach allergen induced epithelial NLRP3 inflammasome activation (e.g., NLRP3, Caspase-1, and IL-1β), which was enhanced by AhR knockdown or the antagonist CH223191. Furthermore, AhR deletion in HBECs led to enhanced ROS generation, particularly Mito-ROS, and inhibition of ROS or Mito-ROS subsequently suppressed the inflammasome activation. Importantly, inhibition of the inflammasome with MCC950, a NLRP3-specifc inhibitor, attenuated allergic airway inflammation and Muc5ac expression. IL-1β generated by the activated inflammasomes mediated cockroach allergen-induced Muc5ac expression in HBECs. Conclusions These results reveal a previously unidentified functional axis of AhR-ROS-NLRP3 inflammasome in regulating Muc5ac expression and airway inflammation.
Collapse
Affiliation(s)
- Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yilin Zhao
- Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - William Kaufman
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Juntao Feng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|