1
|
Chengsheng Y, Jiacui S, Hasegawa T, Yao L, Kondo T, Huiping L. Defining a non-eosinophilic inflammatory subtype in COPD: the role of CXCL9 and type 1 immune responses. Front Immunol 2025; 16:1576849. [PMID: 40313944 PMCID: PMC12043484 DOI: 10.3389/fimmu.2025.1576849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background C-X-C motif chemokine ligand 9 (CXCL9) is induced by the interferon-γ response, and its receptor, C-X-C motif chemokine receptor 3, is a well-established marker of T-helper 1 (Th1) cells, which play an essential role in type 1 immune responses. CXCL9 expression is upregulated in patients with interstitial lung disease (ILD), COVID-19, and asthma. Although type 1 inflammation and CD8+ T cell activation are considered central to the inflammatory pathophysiology of chronic obstructive pulmonary disease (COPD), the relationship between blood levels of Th1 chemokines and this pathophysiology remains unclear. This study aimed to investigate the relationship between CXCL9 and chronic respiratory diseases. Methods We conducted a retrospective cohort study. The serum levels of CXCL9, surfactant protein A (SP-A), Krebs von den Lungen-6 (KL-6), and C-reactive protein (CRP) were analyzed in 165 patients with ILD and COPD. COPD was diagnosed using pulmonary function tests according to the Global Initiative for Chronic Obstructive Lung Disease criteria. Statistical analyses included Fisher's exact test, Steel-Dwass test, Mann-Whitney U, and Wilcoxon test. An unsupervised hierarchical cluster analysis using complete linkage and Euclidean distance was performed for data clustering. Results CXCL9 levels were significantly higher in patients with COPD and interstitial ILD than in healthy smokers and non-smokers. The median serum CXCL9 levels in patients with ILD, COPD, healthy smokers, and healthy nonsmokers were 61.6, 69.3, 37.0, and 32.5pg/mL, respectively. CXCL9 levels in patients with COPD significantly correlated with KL-6, SP-A, blood eosinophil ratio, lactate dehydrogenase (LDH), and CRP levels, with correlation coefficients of 0.243, 0.381, 0.225, 0.369, and 0.293, respectively. Additionally, CXCL9 levels were negatively correlated with FEV1%. Levels of LDH and KL-6 and the neutrophil ratio were significantly elevated in non-eosinophilic COPD patients with high CXCL9 levels. Conclusions Our results highlight the potential role of CXCL9 in the inflammatory pathophysiology of COPD.
Collapse
Affiliation(s)
- Yin Chengsheng
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Jiacui
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Takehiro Hasegawa
- Research and Development Division, Sysmex R&D Centre Europe GmbH, Hamburg, Germany
| | - Ling Yao
- Application Support, Global Management, Sysmex Corporation, Kobe, Japan
| | - Takami Kondo
- Scientific Affairs, Sysmex Corporation, Kobe, Japan
| | - Li Huiping
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zhang C, Qiao P, Zhang J, Luo Y, Xiao C, Shen S, Hasegawa A, Qiao H, Wang G, Abe R, Fu M. A carbamazepine metabolite activates NLRP3 and controls skin homing of CD8 + T-cells in SJS/TEN. J Dermatol Sci 2024; 116:80-89. [PMID: 39500682 DOI: 10.1016/j.jdermsci.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe adverse drug reactions with extensive keratinocyte death. Carbamazepine (CBZ), the most commonly implicated drug in SJS/TEN, is metabolized by the cytochrome P450 enzyme 3A4 (CYP3A4) into carbamazepine-10,11-epoxide (CBZE) in the liver. While CD8+ cytotoxic T cells play an important role in SJS/TEN, the underlying mechanism of exuberant immune response by CD8+ T cells in these conditions remains incompletely understood. OBJECTIVES To examine the expression of NLRP3 inflammasome and their skin migration in CBZE-induced SJS/TEN. METHODS The expression of the NLRP3 inflammasome complex in skin lesions, sera, and blister fluids of SJS/TEN patients were analyzed by immunohistochemistry and enzyme-linked immunosorbent assay. NLRP3 formation and CD8+ T cell activation status and their functions were examined by immunoblotting, immunofluorescence, and chemotaxis assays. RESULTS The expression of the NLRP3 inflammasome complex was greatly increased in skin lesions of SJS/TEN patients. Moreover, IL-1β and IL-18 levels in sera and blister fluids of SJS/TEN patients were approximately 3-fold higher than those in healthy individuals, with a linear correlation between IL-1β levels and disease activity. CBZE induced NLRP3 inflammasome formation, upregulated CXCL9/CXCL10 levels, and activated CD8+ cytotoxic T cell functions via IL-1β/IL-1R or IL-18/IL-18R signaling in SJS/TEN keratinocytes, which promoted CD8+ cytotoxic T cell migration in SJS/TEN patients. CONCLUSION This study showed that CBZE promoted NLRP3 inflammasome formation and strengthened the activation and function of CD8+ cytotoxic T cells in the skin, which contributed to the initiation and progression of SJS/TEN.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - JieYu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - YiXin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ChunYing Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - ShengXian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Akio Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - HongJiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Meng Fu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
3
|
Zeng X, Li C, Liu Y, Liu W, Hu Y, Chen L, Huang X, Li Y, Hu K, Ouyang D, Rao T. HLA-B*35:01-mediated activation of emodin-specific T cells contributes to Polygonum multiflorum thunb. -induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118523. [PMID: 38969149 DOI: 10.1016/j.jep.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
4
|
Saadat M, Zare-Mirakabad F, Masoudi-Nejad A, Farahanchi Baradaran M, Hosseinkhan N. HLAPepBinder: An Ensemble Model for The Prediction Of HLA-Peptide Binding. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3927. [PMID: 40225296 PMCID: PMC11993240 DOI: 10.30498/ijb.2024.459448.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/03/2024] [Indexed: 04/15/2025]
Abstract
Background Human leukocyte antigens (HLAs) play a pivotal role in orchestrating the host's immune response, offering a promising avenue with reduced adverse effects compared to conventional treatments. Cancer immunotherapies use HLA class I molecules for T cells to recognize tumor antigens, emphasizing the importance of identifying peptides that bind effectively to HLAs. Computer modeling of HLA-peptide binding speeds up the search for immunogenic epitopes, which enhances the prospect of personalized medicine and targeted therapies. The Immune Epitope Database (IEDB) is a vital repository, housing curated immune epitope data and prediction tools for HLA-peptide binding. It can be challenging for immunologists to choose the best tool from the IEDB for predicting HLA-peptide binding. This has led to the creation of consensus-based methods that combine the results of several predictors. One of the major challenges in these methods is how to effectively integrate the results from multiple predictors. Objectives Previous consensus-based methods integrate at most three tools by relying on simple strategies, such as selecting prediction methods based on their proximity to HLA in training data. In this study, we introduce HLAPepBinder, a novel consensus approach using ensemble machine learning methods to predict HLA-peptide binding, addressing the challenges biologists face in model selection. Materials and Methods The key contribution is the development of an automatic pipeline named HLAPepBinder that integrates the predictions of multiple models using a random forest approach. Unlike previous approaches, HLAPepBinder seamlessly integrates results from all nine predictors, providing a comprehensive and accurate predictive framework. By combining the strengths of these models, HLAPepBinder eliminates the need for manual model selection, providing a streamlined and reliable solution for biologists. Results HLAPepBinder offers a practical and high-performing alternative for HLA-peptide binding predictions, outperforming both traditional methods and complex deep learning models. Compared to the recently introduced transformer-based model, TranspHLA, which requires substantial computational resources, HLAPepBinder demonstrates superior performance in both prediction accuracy and resource efficiency. Notably, it operates effectively in limited computational environments, making it accessible to researchers with minimal resources. The codes are available online at https://github.com/CBRC-lab/HLAPepBinder. Conclusion Our study introduces a novel ensemble-learning model designed to enhance the accuracy and efficiency of HLA-peptide binding predictions. Due to the lack of reliable negative data and the typical assumption of unknown interactions being negative, we focus on analyzing the unknown HLA-peptide bindings in the test set that our model predicts with 100% certainty as positive bindings. Using HLAPepBinder, we identify 26 HLA-peptide pairs with absolute prediction confidence. These predictions are validated through a multi-step pipeline involving literature review, BLAST sequence similarity analysis, and molecular docking studies. This comprehensive validation process highlights HLAPepBinder's ability to make accurate and reliable predictions, contributing significantly to advancements in immunotherapy and vaccine development.
Collapse
Affiliation(s)
- Mahsa Saadat
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahanchi Baradaran
- Computational Biology Research Center (CBRC), Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Nazanin Hosseinkhan
- Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mifsud NA, Illing PT, Ho R, Tuomisto JE, Fettke H, Mullan KA, McCluskey J, Rossjohn J, Vivian J, Reantragoon R, Purcell AW. The allopurinol metabolite, oxypurinol, drives oligoclonal expansions of drug-reactive T cells in resolved hypersensitivity cases and drug-naïve healthy donors. Allergy 2023; 78:2980-2993. [PMID: 37452515 PMCID: PMC10952278 DOI: 10.1111/all.15814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/18/2023]
Abstract
Allopurinol (ALP) is a successful drug used in the treatment of gout. However, this drug has been implicated in hypersensitivity reactions that can cause severe to life-threatening reactions such as Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). Individuals who carry the human leukocyte antigen (HLA)-B*58:01 allotype are at higher risk of experiencing a hypersensitivity reaction (odds ratios ranging from 5.62 to 580.3 for mild to severe reactions, respectively). In addition to the parent drug, the metabolite oxypurinol (OXP) is implicated in triggering T cell-mediated immunopathology via a labile interaction with HLA-B*58:01. To date, there has been limited information regarding the T-cell receptor (TCR) repertoire usage of reactive T cells in patients with ALP-induced SJS or TEN and, in particular, there are no reports examining paired αβTCRs. Here, using in vitro drug-treated PBMCs isolated from both resolved ALP-induced SJS/TEN cases and drug-naïve healthy donors, we show that OXP is the driver of CD8+ T cell-mediated responses and that drug-exposed memory T cells can exhibit a proinflammatory immunophenotype similar to T cells described during active disease. Furthermore, this response supported the pharmacological interaction with immune receptors (p-i) concept by showcasing (i) the labile metabolite interaction with peptide/HLA complexes, (ii) immunogenic complex formation at the cell surface, and (iii) lack of requirement for antigen processing to elicit drug-induced T cell responsiveness. Examination of paired OXP-induced αβTCR repertoires highlighted an oligoclonal and private clonotypic profile in both resolved ALP-induced SJS/TEN cases and drug-naïve healthy donors.
Collapse
Affiliation(s)
- Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Patricia T. Illing
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Rebecca Ho
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Johanna E. Tuomisto
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Heidi Fettke
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Present address:
Cancer Research, Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Present address:
Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Kerry A. Mullan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Present address:
ADREM Data Lab, Department of Computer ScienceUniversity of AntwerpAntwerpBelgium
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Institute of Infection and ImmunityCardiff University School of MedicineCardiffUK
| | - Julian Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Present address:
St. Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Present address:
Department of MedicineThe University of MelbourneMelbourneVictoriaAustralia
| | - Rangsima Reantragoon
- Immunology Division, Department of Microbiology, Department of MicrobiologyChulalongkorn UniversityBangkokThailand
- Center of Excellence in Immunology and Immune‐mediated Disease, Faculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
6
|
Lerner A, Benzvi C, Vojdani A. SARS-CoV-2 Gut-Targeted Epitopes: Sequence Similarity and Cross-Reactivity Join Together for Molecular Mimicry. Biomedicines 2023; 11:1937. [PMID: 37509576 PMCID: PMC10376948 DOI: 10.3390/biomedicines11071937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The gastrointestinal tract can be heavily infected by SARS-CoV-2. Being an auto-immunogenic virus, SARS-CoV-2 represents an environmental factor that might play a role in gut-associated autoimmune diseases. However, molecular mimicry between the virus and the intestinal epitopes is under-investigated. The present study aims to elucidate sequence similarity between viral antigens and human enteric sequences, based on known cross-reactivity. SARS-CoV-2 epitopes that cross-react with human gut antigens were explored, and sequence alignment was performed against self-antigens implicated in enteric autoimmune conditions. Experimental SARS-CoV-2 epitopes were aggregated from the Immune Epitope Database (IEDB), while enteric antigens were obtained from the UniProt Knowledgebase. A Pairwise Local Alignment tool, EMBOSS Matcher, was employed for the similarity search. Sequence similarity and targeted cross-reactivity were depicted between 10 pairs of immunoreactive epitopes. Similar pairs were found in four viral proteins and seven enteric antigens related to ulcerative colitis, primary biliary cholangitis, celiac disease, and autoimmune hepatitis. Antibodies made against the viral proteins that were cross-reactive with human gut antigens are involved in several essential cellular functions. The relationship and contribution of those intestinal cross-reactive epitopes to SARS-CoV-2 or its potential contribution to gut auto-immuno-genesis are discussed.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Research Department, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
7
|
Anand S, Littler DR, Mobbs JI, Braun A, Baker DG, Tennant L, Purcell AW, Vivian JP, Rossjohn J. Complimentary electrostatics dominate T Cell Receptor binding to a psoriasis-associated-peptide-antigen presented by Human Leukocyte Antigen (HLA) C*06:02. J Biol Chem 2023:104930. [PMID: 37330172 PMCID: PMC10371836 DOI: 10.1016/j.jbc.2023.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Psoriasis is a chronic skin disease characterised by hyperproliferative epidermal lesions infiltrated by autoreactive T cells. Individuals expressing the Human Leukocyte antigen (HLA) C*06:02 allele are at highest risk for developing psoriasis. An autoreactive T cell clone (termed Vα3S1/Vβ13S1) isolated from psoriatic plaques is selective for HLA-C*06:02-presenting a peptide derived from the melanocyte-specific auto-antigen ADAMTSL5 (VRSRRCLRL). Here we determine the crystal structure of this psoriatic TCR-HLA-C*06:02- ADAMTSL5 complex with a stabilised peptide. Docking of the TCR involves an extensive complementary charge network formed between negatively charged TCR residues interleaving with exposed arginine residues from the self-peptide and the HLA-C*06:02 α1 helix. We probed these interactions through mutagenesis and activation assays. The charged interface spans the polymorphic region of the C1/C2 HLA group. Notably the peptide binding groove of HLA C*06:02 appears exquisitely suited for presenting highly charged Arg-rich epitopes recognised by this acidic psoriatic TCR. Overall, we provide a structural basis for understanding engagement of melanocyte antigen-presenting cells by a TCR implicated in psoriasis, while simultaneously expanding our knowledge of how TCRs engage HLA-C.
Collapse
Affiliation(s)
- Sushma Anand
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Jesse I Mobbs
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Asolina Braun
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Daniel G Baker
- Janssen Research & Development, LLC, Horsham, Philadelphia, Pennsylvania, USA
| | - Luke Tennant
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton Victoria, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
8
|
Mullan KA, Zhang JB, Jones CM, Goh SJ, Revote J, Illing PT, Purcell AW, La Gruta NL, Li C, Mifsud NA. TCR_Explore: A novel webtool for T cell receptor repertoire analysis. Comput Struct Biotechnol J 2023; 21:1272-1282. [PMID: 36814721 PMCID: PMC9939424 DOI: 10.1016/j.csbj.2023.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
T cells expressing either alpha-beta or gamma-delta T cell receptors (TCR) are critical sentinels of the adaptive immune system, with receptor diversity being essential for protective immunity against a broad array of pathogens and agents. Programs available to profile TCR clonotypic signatures can be limiting for users with no coding expertise. Current analytical pipelines can be inefficient due to manual processing steps, open to data entry errors and have multiple analytical tools with unique inputs that require coding expertise. Here we present a bespoke webtool designed for users irrespective of coding expertise, coined 'TCR_Explore', enabling analysis either derived via Sanger sequencing or next generation sequencing (NGS) platforms. Further, TCR_Explore incorporates automated quality control steps for Sanger sequencing. The creation of flexible and publication ready figures are enabled for different sequencing platforms following universal conversion to the TCR_Explore file format. TCR_Explore will enhance a user's capacity to undertake in-depth TCR repertoire analysis of both new and pre-existing datasets for identification of T cell clonotypes associated with health and disease. The web application is located at https://tcr-explore.erc.monash.edu for users to interactively explore TCR repertoire datasets.
Collapse
Affiliation(s)
- Kerry A. Mullan
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia,Corresponding authors.
| | - Justin B. Zhang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Claerwen M. Jones
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Shawn J.R. Goh
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jerico Revote
- Monash eResearch Centre, Monash University, Melbourne, VIC 3800, Australia
| | - Patricia T. Illing
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W. Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole L. La Gruta
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Nicole A. Mifsud
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia,Corresponding authors.
| |
Collapse
|
9
|
Hendawi EK, Khabour OF, Al-Eitan LN, Alzoubi KH. Reduction of Genotoxicity of Carbamazepine to Human Lymphocytes by Pre-treatment with Vitamin B12. Curr Mol Pharmacol 2023; 16:228-233. [PMID: 35450538 DOI: 10.2174/1874467215666220420135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Carbamazepine (CBZ) is widely used as an anti-epileptic drug. Vitamin B12 has been shown to protect against DNA damage caused by several mutagenic agents. OBJECTIVE This study aimed to investigate the effect of vitamin B12 on CBZ-induced genotoxicity in cultured human lymphocytes. METHODS Sister chromatid exchanges (SCEs) and chromosomal aberrations (CAs) genotoxic assays were utilized to achieve the study objective. RESULTS The results showed significantly higher frequencies of CAs and SCEs in the CBZ-treated cultures (12 μg/mL) compared to the control group (P<0.01). The genotoxic effects of CBZ were reduced by pre-treatment of cultures with vitamin B12 (13.5μg/ml, P<0.05). Neither CBZ nor vitamin B-12 showed any effects on mitotic and proliferative indices. CONCLUSION CBZ is genotoxic to lymphocyte cells, and this genotoxicity can be reduced by vitamin B12.
Collapse
Affiliation(s)
- Eman K Hendawi
- Department of Applied Biological Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Laith N Al-Eitan
- Department of Applied Biological Sciences, Faculty of Science, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
12
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|