1
|
Damodar T, Lodha L, Suran S, Prabhu N, Jose M, Kinhal U, Basavaraja G, Gowda VK, Mani RS. Diagnostic Markers of Severe COVID-19 and Community-Acquired Pneumonia in Children From Southern India. Microbiol Immunol 2025; 69:174-181. [PMID: 39812381 PMCID: PMC7617320 DOI: 10.1111/1348-0421.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
COVID-19 severely impacts children in India, with many developing severe pneumonia or multisystem inflammatory syndrome (MIS-C). Concurrently, non-COVID-19 respiratory viruses causing community-acquired pneumonia (CAP) have resurged. These conditions present similarly, challenging accurate diagnosis. This study aims to compare inflammatory markers and clinical parameters in children with severe COVID-19 pneumonia, non-COVID-19 CAP, and COVID-associated MIS-C. We assessed 12 mediators in serum from 14 children with severe COVID-19 pneumonia, 16 with severe non-COVID-19 CAP, and 9 with MIS-C. Clinical characteristics and routine laboratory findings at admission were recorded. Children with MIS-C had significantly higher levels of IL-1RA, IL-8, and TNF compared with those with severe COVID-19 pneumonia; and higher levels of CCL2, HGF, M-CSF, and IL-8 compared with severe non-COVID-19 CAP. GROα levels tended to be higher in severe COVID-19 pneumonia. Clinical presentations were similar, but MIS-C patients had distinct laboratory findings, including lower platelet counts and albumin levels, and higher creatinine and liver enzyme levels. MIS-C exhibited a unique inflammatory profile. IL-8 emerged as a potential biomarker for MIS-C, while increased GROα levels in severe COVID-19 pneumonia merit further exploration. Combining inflammatory markers with routine laboratory parameters may improve the diagnosis and differentiation of these conditions, enhancing patient management.
Collapse
Affiliation(s)
- Tina Damodar
- Department of Neurovirology, NIMHANS, Bangalore, India
| | - Lonika Lodha
- Department of Neurovirology, NIMHANS, Bangalore, India
| | - Sourabh Suran
- Department of Neurovirology, NIMHANS, Bangalore, India
| | | | - Maria Jose
- Department of Neurovirology, NIMHANS, Bangalore, India
| | - Uddhav Kinhal
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - G.V. Basavaraja
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Reeta S. Mani
- Department of Neurovirology, NIMHANS, Bangalore, India
| |
Collapse
|
2
|
Sobh A, Elnagdy MH, Mosa DM, Korkor MS, Alawfi AD, Alshengeti AM, Al-Mazroea AH, Bafail R, Samman WA, El-Agamy DS, Abo-Haded HM. Longitudinal cytokine profile in severe COVID-19 and multisystem inflammatory syndrome in children: A single centre study from Egypt. J Paediatr Child Health 2025; 61:249-261. [PMID: 39679634 DOI: 10.1111/jpc.16746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/22/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
AIM The severity of COVID-19 is influenced by uncontrolled hyper-inflammatory response with excessive release of many cytokines and chemokines. The understanding of the temporal change in the cytokine levels that underlies the diverse clinical presentations of COVID-19 can help in the prediction of the disease outcome and in the design of proper treatment strategies. METHOD Data were collected from children (<18 years old) hospitalised with severe COVID-19 or severe MIS-C who were compared to a group of healthy control children. Patient demographics, clinical, laboratory data and cytokines profiles were evaluated. Blood samples were collected within 24 h of admission for all enrolled children and on Day 14. RESULTS Twenty-five children with severe COVID-19 and 23 cases with severe MIS-C were included in the study. The biochemical and inflammatory markers tend to be elevated in MIS-C group. There was a significant difference between studied cases and the control group in the following cytokines: G-CSF, IL-10, HMGB1, TNF-α, IL-6, IL-8 and INF-gamma (P < 0.05). While there was a significant difference between severe COVID-19 and MIS-C groups in the following cytokines at Day 1 of admission; IL-10, IL-6, IL-8 and INF-gamma; while at Day 14, there was a significant difference only for G-CSF, IL-10 and IL-6, all other cytokines were comparable. CONCLUSION Our study underpinned patterns of cytokine response in severe COVID-19 and MIS-C. There is a significant upregulation in pro-inflammatory cytokines (mainly G-CSF, IL-10, HMGB1, TNF-α, IL-6, IL-8 and INF-gamma). These biomarkers that could imply on the severity rating and treatment strategies, should be preferentially assessed in SARS-CoV-2 associated immunological events.
Collapse
Affiliation(s)
- Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa H Elnagdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Mosad Mosa
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mai S Korkor
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdulsalam D Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Amer M Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | - Rawan Bafail
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Waad A Samman
- Department of Pharmacology & Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Dina S El-Agamy
- Department of Pharmacology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hany M Abo-Haded
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Drago E, Fioredda F, Penco F, Prigione I, Bertoni A, Del Zotto G, Bocca P, Massaccesi E, Lanciotti M, Moratto D, Thurner L, Caorsi R, Gattorno M, Volpi S. Inborn Error of WAS Presenting with SARS-CoV-2-Related Multisystem Inflammatory Syndrome in Children. J Clin Immunol 2024; 45:49. [PMID: 39581942 DOI: 10.1007/s10875-024-01840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has been reported in patients with inborn errors of immunity (IEI), providing insights into disease pathogenesis. Here, we present the first case of MIS-C in a child affected by Wiskott-Aldrich syndrome (WAS) gene mutation, elucidating underlying predisposing factors and the involved inflammatory pathways. Genetic analysis revealed a frameshift truncating variant in the WAS gene, resulting in WAS protein expression between mild and severe forms, despite a clinical phenotype resembling X-linked thrombocytopenia (XLT). IL-1β secretion by LPS-stimulated peripheral blood mononuclear cells from patient during MIS-C was lower compared to healthy subjects but increased during follow-up. Conversely, the percentage of ASC (apoptosis-associated speck-like protein containing a CARD) specks in the patient's circulating monocytes during the acute phase was higher than in healthy subjects. The type I interferon (IFN) signature during MIS-C was normal, in contrast to the raised IFN signature measured far from the acute event. This case supports the association of IEI with MIS-C, potentially linked to delayed immune responses to SARS-CoV-2. The XLT phenotype underlies a subclinical immunodysregulation involving the NLRP3 inflammasome and the type-I IFN response.
Collapse
Affiliation(s)
- Enrico Drago
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, Genova, Italy.
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy.
| | | | - Federica Penco
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ignazia Prigione
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Arinna Bertoni
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Genny Del Zotto
- Core Facilities Laboratory, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Paola Bocca
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lorenz Thurner
- José Carreras Center for Immuno and Gene Therapy, Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Roberta Caorsi
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Stefano Volpi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Università degli Studi di Genova, Genova, Italy
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
4
|
AbdelAziz RA, Abd-Allah ST, Moness HM, Anwar AM, Mohamed ZH. Role of interleukin 6 polymorphism and inflammatory markers in outcome of pediatric Covid- 19 patients. BMC Pediatr 2024; 24:625. [PMID: 39354444 PMCID: PMC11443869 DOI: 10.1186/s12887-024-05071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND IL-6 polymorphisms were associated to viral infection outcomes through affection of IL-6 production and it is an early indicator of tissue injury and systemic inflammatory response. The study aimed to determine whether genetic IL-6 polymorphisms, serum interleukin-6 level and inflammatory markers (Presepsin, CXCL-10, C3, and C4) are associated with the prediction of disease severity in pediatric COVID-19 patients and its possible use as a prognostic tool in pediatric patients admitted to hospital. METHODS This prospective cohort study was conducted on 150 children with COVID-19. Patients were divided according to the severity of infection into four groups: group I (mild) 67 cases; group II (moderate) 53 cases, group III (severe) 17 cases and group IV (critical) 14 cases. Serum Interleukin 6, CXCL-10, Presepsin, renal and liver functions, electrolytes, C3, C4, ferritin, and D dimer serum levels were assessed in all patients. The Kruskal Wallis test used to compare parametric quantitative data between studied groups and Mann Whitney test for each pair of groups. Non-parametric quantitative data was compared between studied groups using a one-way ANOVA test and post-hoc Bonferroni analysis for each pair of groups. RESULTS Group I: 35 males and 32 females with a median age of 16 months. Group II: 17 males and 35 females with a median age of 13 months. Group III: 6 males and 11 females with a median age of 12 months and group IV: 3 males and 11 females with a median age of 12 months. There was no statistical difference between the studied groups regarding gender and age. Serum levels of IL- 6, serum ferritin; D-dimer, Presepsin and CXCL 10 were significantly higher in both severe and critical groups than the other 2 groups (mild and moderate). ROC curve analysis showed that interleukin-6 and Presepsin were good markers for prediction of severity of COVID-19 among the diseased children. For severe cases, the sensitivity of interleukin-6 was 76.47% and specificity was 92.31%. For critical cases, the sensitivity of interleukin-6 was 71.43% and specificity was 82.35%. The sensitivity of Presepsin was 76.47% and specificity was 88.46% in severe cases. For critical cases, the sensitivity of Presepsin was 78.57% and specificity of 91.2%. There was significant difference in IL-6 572 allelic among moderate cases with the most frequent 42.3% for genotype (GC) and allelic among severe cases with the most frequent 47.1% for genotype (GC). Significant difference in IL-6 174 allelic among critical cases with the most frequent 78.6% for genotype (CC). CONCLUSIONS Children whom expressed GC genotypes of IL6 (-572G > C) polymorphism are at a considerably higher risk of developing a severe disease. This risk is significantly larger in the severe group of children than in children in critical condition who have GC genotypes of IL6 (-174 G > C) polymorphism. While IL6 (-597G > A) polymorphism has no role in COVID 19 severity in children.
Collapse
Affiliation(s)
- Reem A AbdelAziz
- Pediatric Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Hend M Moness
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ahmed M Anwar
- Pediatric Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | |
Collapse
|
5
|
Liu J, Liu D, Sun Q, Su Y, Tang L, Liang H, Ye F, Chen Y, Zhang Q. Plasma proteomic signature of neonates in the context of placental histological chorioamnionitis. BMJ Paediatr Open 2024; 8:e002708. [PMID: 39237269 PMCID: PMC11381644 DOI: 10.1136/bmjpo-2024-002708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Placental histological chorioamnionitis (HCA) is recognised as a significant risk factor for various adverse neonatal outcomes. This study aims to explore if the inflammatory protein levels in neonates were associated with HCA. METHODS All women with singleton births from February 2020 to November 2022 were selected and divided into three groups based on maternal placental pathology results: the HCA-stage 1 group (n=24), the HCA-stage 2 group (n=16) and the control group (n=17). Olink Target 96 Inflammation Panel was used to detect the levels of 92 inflammation-related proteins in the plasma of newborns from all three groups within 24 hours after birth. We compared the protein profiles through differential protein expression analysis. RESULTS A total of six inflammation-related proteins exhibited significant differences between the HCA-stage 1 and the control group. Specifically, TRANCE and CST5 were significantly upregulated (p=0.006, p=0.025, respectively), whereas the expression of IFN-gamma, CXCL9, CXCL10 and CCL19 was significantly downregulated (p=0.040, p=0.046, p=0.007, p=0.006, respectively). HCA-stage 2 newborns had significantly elevated levels of CD5 and CD6 and decreased IFN-gamma, CXCL10 and CCL19 in comparison to controls. These differential proteins were significantly enriched in positive regulation of cytokine activity, leucocyte chemotaxis and positive regulation of T-cell activation pathway-related Gene Ontology terms. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that viral protein interaction with cytokine and cytokine receptor, interleukin-17/NF-kappa B/toll-like receptor/chemokine signalling pathway, and cytokine-cytokine receptor interaction exhibited significant differences. Spearman analysis demonstrated a significant positive connection between the levels of CD6 and CD5 proteins, not only in neonatal leucocytes but also in maternal leucocytes. Additionally, CD6 was found to be associated with neonatal birth weight. CONCLUSIONS In conclusion, placental histological changes associated with chorioamnionitis appear to influence the expression of inflammatory proteins in offspring. Notably, CD6 and CD5 proteins may potentially contribute to the pathogenesis of HCA-related neonatal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Die Liu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Sun
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yunchao Su
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Lijuan Tang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Haixiao Liang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Yuanmei Chen
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Guo J, Wang L. The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19. LIFE MEDICINE 2024; 3:lnae034. [PMID: 39872865 PMCID: PMC11749780 DOI: 10.1093/lifemedi/lnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 01/30/2025]
Abstract
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs. This review aims to explore the complex landscape of immune dysregulation in MIS-C, focusing on innate, T cell-, and B cell-mediated immunity, and discusses the role of SARS-CoV-2 spike protein as a superantigen in MIS-C pathophysiology. Understanding these mechanisms is crucial for improving the management and outcomes for affected children.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China
| |
Collapse
|
7
|
Pan T, Gallo ME, Donald KA, Webb K, Bath KG. Elevated risk for psychiatric outcomes in pediatric patients with Multisystem Inflammatory Syndrome (MIS-C): A review of neuroinflammatory and psychosocial stressors. Brain Behav Immun Health 2024; 38:100760. [PMID: 38586284 PMCID: PMC10992702 DOI: 10.1016/j.bbih.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is a secondary immune manifestation of COVID-19 involving multiple organ systems in the body, resulting in fever, skin rash, abdominal pain, nausea, shock, and cardiac dysfunction that often lead to hospitalization. Although many of these symptoms resolve following anti-inflammatory treatment, the long-term neurological and psychiatric sequelae of MIS-C are unknown. In this review, we will summarize two domains of the MIS-C disease course, 1) Neuroinflammation in the MIS-C brain and 2) Psychosocial disruptions resulting from stress and hospitalization. In both domains, we present existing clinical findings and hypothesize potential connections to psychiatric outcomes. This is the first review to conceptualize a holistic framework of psychiatric risk in MIS-C patients that includes neuroinflammatory and psychosocial risk factors. As cases of severe COVID-19 and MIS-C subside, it is important for clinicians to monitor outcomes in this vulnerable patient population.
Collapse
Affiliation(s)
- Tracy Pan
- Stanford University School of Medicine, Stanford, CA, USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- The Neuroscience Institute, University of Cape Town, South Africa
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Meghan E. Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 029112, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- The Neuroscience Institute, University of Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, 7700, South Africa
- Crick African Network, Francis Crick Institute, London, UK
| | - Kevin G. Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, 10032, USA
| |
Collapse
|
8
|
Okarska-Napierała M, Woźniak W, Mańdziuk J, Ludwikowska KM, Feleszko W, Grzybowski J, Panczyk M, Berdej-Szczot E, Zaryczański J, Górnicka B, Szenborn L, Kuchar E. Pathologic Analysis of Twenty-one Appendices From Children With Multisystem Inflammatory Syndrome Compared to Specimens of Acute Appendicitis: A Cross-sectional Study. Pediatr Infect Dis J 2024; 43:525-531. [PMID: 38753993 DOI: 10.1097/inf.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a rare, severe complication of coronavirus disease 2019, commonly involving the gastrointestinal tract. Some children with MIS-C undergo appendectomy before the final diagnosis. There are several hypotheses explaining the pathomechanism of MIS-C, including the central role of the viral antigen persistence in the gut, associated with lymphocyte exhaustion. We aimed to examine appendectomy specimens from MIS-C patients and assess their pathologic features, as well as the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. METHODS In this cross-sectional study we included 21 children with MIS-C who underwent appendectomy. The control group included 21 sex- and age-matched children with acute appendicitis (AA) unrelated to SARS-CoV-2 infection. Histologic evaluation of appendiceal specimens included hematoxylin and eosin staining and immunohistochemical identification of lymphocyte subpopulations, programmed cell death protein-1 (PD-1) and SARS-CoV-2 nucleocapsid antigen. RESULTS Appendices of MIS-C patients lacked neutrophilic infiltrate of muscularis propria typical for AA (14% vs. 95%, P < 0.001). The proportion of CD20+ to CD5+ cells was higher in patients with MIS-C (P = 0.04), as was the proportion of CD4+ to CD8+ (P < 0.001). We found no proof of SARS-CoV-2 antigen presence, nor lymphocyte exhaustion, in the appendices of MIS-C patients. CONCLUSIONS The appendiceal muscularis of patients with MIS-C lack edema and neutrophilic infiltration typical for AA. SARS-CoV-2 antigens and PD-1 are absent in the appendices of children with MIS-C. These findings argue against the central role of SARS-CoV-2 persistence in the gut and lymphocyte exhaustion as the major triggers of MIS-C.
Collapse
Affiliation(s)
- Magdalena Okarska-Napierała
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Woźniak
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Mańdziuk
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Mariusz Panczyk
- Department of Education and Research in Health Sciences, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Elżbieta Berdej-Szczot
- Department of Paediatrics and Paediatric Endocrinology, Upper-Silesian Paediatric Health Center School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Janusz Zaryczański
- Department of Pediatrics, University Clinical Hospital in Opole, Opole, Poland
| | | | - Leszek Szenborn
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Wrocław, Poland
| | - Ernest Kuchar
- From the Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Yeoh S, Estrada-Rivadeneyra D, Jackson H, Keren I, Galassini R, Cooray S, Shah P, Agyeman P, Basmaci R, Carrol E, Emonts M, Fink C, Kuijpers T, Martinon-Torres F, Mommert-Tripon M, Paulus S, Pokorn M, Rojo P, Romani L, Schlapbach L, Schweintzger N, Shen CF, Tsolia M, Usuf E, van der Flier M, Vermont C, von Both U, Yeung S, Zavadska D, Coin L, Cunnington A, Herberg J, Levin M, Kaforou M, Hamilton S. Plasma Protein Biomarkers Distinguish Multisystem Inflammatory Syndrome in Children From Other Pediatric Infectious and Inflammatory Diseases. Pediatr Infect Dis J 2024; 43:444-453. [PMID: 38359342 PMCID: PMC11003410 DOI: 10.1097/inf.0000000000004267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a rare but serious hyperinflammatory complication following infection with severe acute respiratory syndrome coronavirus 2. The mechanisms underpinning the pathophysiology of MIS-C are poorly understood. Moreover, clinically distinguishing MIS-C from other childhood infectious and inflammatory conditions, such as Kawasaki disease or severe bacterial and viral infections, is challenging due to overlapping clinical and laboratory features. We aimed to determine a set of plasma protein biomarkers that could discriminate MIS-C from those other diseases. METHODS Seven candidate protein biomarkers for MIS-C were selected based on literature and from whole blood RNA sequencing data from patients with MIS-C and other diseases. Plasma concentrations of ARG1, CCL20, CD163, CORIN, CXCL9, PCSK9 and ADAMTS2 were quantified in MIS-C (n = 22), Kawasaki disease (n = 23), definite bacterial (n = 28) and viral (n = 27) disease and healthy controls (n = 8). Logistic regression models were used to determine the discriminatory ability of individual proteins and protein combinations to identify MIS-C and association with severity of illness. RESULTS Plasma levels of CD163, CXCL9 and PCSK9 were significantly elevated in MIS-C with a combined area under the receiver operating characteristic curve of 85.7% (95% confidence interval: 76.6%-94.8%) for discriminating MIS-C from other childhood diseases. Lower ARG1 and CORIN plasma levels were significantly associated with severe MIS-C cases requiring inotropes, pediatric intensive care unit admission or with shock. CONCLUSION Our findings demonstrate the feasibility of a host protein biomarker signature for MIS-C and may provide new insight into its pathophysiology.
Collapse
Affiliation(s)
- Sophya Yeoh
- From the Department of Infectious Disease, Faculty of Medicine
| | - Diego Estrada-Rivadeneyra
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Heather Jackson
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Ilana Keren
- From the Department of Infectious Disease, Faculty of Medicine
| | | | - Samantha Cooray
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Priyen Shah
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Philipp Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Romain Basmaci
- Service de Pédiatrie-Urgences, AP-HP, Hôpital Louis-Mourier, Colombes, France
- Infection, Antimicrobials, Modelling, Evolution, Université Paris Cité, Inserm, IAME, Paris, France
| | - Enitan Carrol
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, United Kingdom
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University
- Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children’s Hospital
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Taco Kuijpers
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre
- Sanquin Research, Department of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Federico Martinon-Torres
- Translational Paediatrics and Infectious Diseases, Hospital Clínico Universitario, Universidad de Santiago de Compostela
- Genetics, Vaccines and Paediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), Galicia, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Stephane Paulus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marko Pokorn
- Division of Pediatrics, University Medical Centre Ljubljana, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Pablo Rojo
- Pediatric Infectious Diseases Unit, Pediatric Department, Hospital Doce de Octubre, Madrid, Spain
| | - Lorenza Romani
- Infectious Disease Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luregn Schlapbach
- Department of Intensive Care and Neonatology, Children’s Research Center, University Children`s Hospital, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Nina Schweintzger
- Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Maria Tsolia
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athina, Athens, Greece
| | - Effua Usuf
- Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Michiel van der Flier
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Clementien Vermont
- Department of Paediatric Infectious Diseases and Immunology, Erasmus MC Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Ulrich von Both
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Dr von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shunmay Yeung
- Clinical Research Department, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dace Zavadska
- Children’s Clinical University Hospital, Rīga, Latvia
| | - Lachlan Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aubrey Cunnington
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Jethro Herberg
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Michael Levin
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Myrsini Kaforou
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Shea Hamilton
- From the Department of Infectious Disease, Faculty of Medicine
- Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Patel MA, Fraser DD, Daley M, Cepinskas G, Veraldi N, Grazioli S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol Med 2024; 30:51. [PMID: 38632526 PMCID: PMC11022403 DOI: 10.1186/s10020-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada.
- Children's Health Research Institute, N6C 4V3, London, ON, Canada.
- Pediatrics, Western University, N6A 3K7, London, ON, Canada.
- Clinical Neurological Sciences, Western University, N6A 3K7, London, ON, Canada.
- Physiology & Pharmacology, Western University, N6A 3K7, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, N6A 5W9, London, ON, Canada.
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, N6A 3K7, London, ON, Canada
- Computer Science, Western University, N6A 3K7, London, ON, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, N6C 2R5, London, ON, Canada
- Medical Biophysics, Western University, N6A 3K7, London, ON, Canada
| | - Noemi Veraldi
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Grazioli
- Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neonatal and Pediatric Intensive Care, Department of Child, Woman, and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Ren W, Ma Z, Li Q, Liu R, Ma L, Yao C, Shang Y, Zhang X, Gao M, Li S, Pang Y. Antigen-specific chemokine profiles as biomarkers for detecting Mycobacterium tuberculosis infection. Front Immunol 2024; 15:1359555. [PMID: 38510248 PMCID: PMC10950995 DOI: 10.3389/fimmu.2024.1359555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Background Latent tuberculosis (TB) infection can progress to active TB, which perpetuates community transmission that undermines global TB control efforts. Clinically, interferon-γ release assays (IGRAs) are commonly used for active TB case detection. However, low IGRA sensitivity rates lead to false-negative results for a high proportion of active TB cases, thus highlighting IGRA ineffectiveness in differentiating MTB-infected individuals from healthy individuals. Methods Participants enrolled at Beijing Chest Hospital from May 2020-April 2022 were assigned to healthy control (HC), LTBI, IGRA-positive TB, and IGRA-negative TB groups. Screening cohort MTB antigen-specific blood plasma chemokine concentrations were measured using Luminex xMAP assays then were verified via testing of validation cohort samples. Results A total of 302 individuals meeting study inclusion criteria were assigned to screening and validation cohorts. Testing revealed significant differences in blood plasma levels of CXCL9, CXCL10, CXCL16, CXCL21, CCL1, CCL19, CCL27, TNF-α, and IL-4 between IGRA-negative TB and HC groups. Levels of CXCL9, CXCL10, IL-2, and CCL8 biomarkers were predictive for active TB, as reflected by AUC values of ≥0.9. CXCL9-based enzyme-linked immunosorbent assay sensitivity and specificity rates were 95.9% (95%CI: 91.7-98.3) and 100.0% (92.7-100.0), respectively. Statistically similar AUC values were obtained for CXCL9 and CXCL9-CXCL10 assays, thus demonstrating that combined analysis of CXCL10 and CXCL9 levels did not improve active TB diagnostic performance. Conclusion The MTB antigen stimulation-based CXCL9 assay may compensate for low IGRA diagnostic accuracy when used to diagnose IGRA-negative active TB cases and thus is an accurate and sensitive alternative to IGRAs for detecting MTB infection.
Collapse
Affiliation(s)
- Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zichun Ma
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qiang Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
12
|
Isaza-Correa J, Ryan L, Kelly L, Allen J, Melo A, Jones J, Huggard D, Ryan E, Ó Maoldomhnaigh C, Geoghehan S, Gavin P, Leahy TR, Butler K, Freyne B, Molloy EJ. Innate immune dysregulation in multisystem inflammatory syndrome in children (MIS-C). Sci Rep 2023; 13:16463. [PMID: 37777557 PMCID: PMC10542373 DOI: 10.1038/s41598-023-43390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
MIS-C is a systemic inflammation disorder with poorly characterised immunopathological mechanisms. We compared changes in the systemic immune response in children with MIS-C (n = 12, 5-13 years) to healthy controls (n = 14, 5-15 years). Analysis was done in whole blood treated with LPS. Expression of CD11b and Toll-like receptor-4 (TLR4) in neutrophils and monocytes were analysed by flow cytometry. Serum cytokines (IL-1β, IL-2, IL-6, IL-8, IL-10, IL-Ira, TNF-α, TNF-β, IFN-Υ, VEGF, EPO and GM-CSF) and mRNA levels of inflammasome molecules (NLRP3, ASC and IL-1β) were evaluated. Subpopulations of lymphocytes (CD3+, CD19+, CD56+, CD4+, CD8+, TCR Vδ1+, TCR Vδ2+) were assessed at basal levels. Absolute counts of neutrophils and NLR were high in children with MIS-C while absolute counts of lymphocytes were low. Children with MIS-C had increased levels of IL-6, IL-10, TNF-β and VEGF serum cytokines at the basal level, and significantly increased TNF-β post-LPS, compared to controls. IL-1RA and EPO decreased at baseline and post-LPS in MIS-C patients compared to controls. The percentage of CD3+ cells, NK cells and Vδ1 was lower while B cells were higher in children with MIS-C than in controls. Dysregulated immune response in children with MIS-C was evident and may be amenable to immunomodulation.
Collapse
Affiliation(s)
- Johana Isaza-Correa
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Laura Ryan
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Lynne Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - John Allen
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Ashanty Melo
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Jennifer Jones
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Dean Huggard
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | - Emer Ryan
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland
| | | | - Sarah Geoghehan
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Patrick Gavin
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Timothy Ronan Leahy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Karina Butler
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Bridget Freyne
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
- Trinity Research in Childhood Centre (TRiCC), Trinity College Dublin, Dublin, Ireland.
- Infectious Diseases/Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Neonatology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Neurodisability, Children's Health Ireland at Tallaght, Dublin, Ireland.
- Neonatology, The Coombe Hospital, Dublin, Ireland.
- Discipline of Paediatrics, Trinity Centre for Health Sciences, Children's Hospital Ireland (CHI) at Tallaght, Tallaght University Hospital, Dublin 24, Ireland.
| |
Collapse
|
13
|
Cai X, Deng J, Shi W, Cai Y, Ma Z. Mining the potential therapeutic targets for COVID-19 infection in patients with severe burn injuries via bioinformatics analysis. Int Wound J 2023; 20:2742-2752. [PMID: 36924127 PMCID: PMC10410338 DOI: 10.1111/iwj.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The Coronavirus Disease-19 (COVID-19) pandemic is posing a serious challenge to human health. Burn victims are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to delayed recovery and even profound debilitation. Nevertheless, the molecular mechanisms underlying COVID-19 and severe burn are yet to be elucidated. In our work, the differentially expressed genes (DEGs) were identified from GSE157852 and GSE19743, and the common DEGs between COVID-19 and severe burn were extracted. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interactions (PPI), gene coexpression network, and multifactor regulatory network analysis of hub genes were carried out. A total of 44 common DEGs were found between COVID-19 and severe burn. Functional analyses indicated that the pathways of immune regulation and cytokine response participated collectively in the development of severe burn and progression of COVID-19. Ten significant hub genes were identified, including MERTK, SIRPA, TLR3, ITGB1, DPP4, PTPRC, LY75, IFIT1, IL4R, and CD2. In addition, the gene coexpression network and regulatory network were constructed containing 42 microRNAs (miRNAs) and 2 transcription factors (TFs). Our study showed the shared pathogenic link between COVID-19 and severe burn. The identified common genes and pivotal pathways pave a new road for future mechanistic researches in severe burn injuries complicated with COVID-19.
Collapse
Affiliation(s)
- Xueyao Cai
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| | - Jing Deng
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| | - Wenjun Shi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuchen Cai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhengzheng Ma
- Department of Burn and Plastic SurgeryDongguan Tungwah HospitalDongguanChina
| |
Collapse
|
14
|
Krasic S, Vukomanovic V, Ninic S, Pasic S, Samardzija G, Mitrovic N, Cehic M, Nesic D, Bajcetic M. Mechanisms of redox balance and inflammatory response after the use of methylprednisolone in children with multisystem inflammatory syndrome associated with COVID-19. Front Immunol 2023; 14:1249582. [PMID: 37646033 PMCID: PMC10461094 DOI: 10.3389/fimmu.2023.1249582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background Multisystem inflammatory syndrome in children (MIS-C) associated with being infected with coronavirus-19 (COVID-19) is a life-threatening condition resulting from cytokine storm, increased synthesis of reactive oxygen species (ROSs), and hyperinflammation occurring in genetically predisposed children following an infection with SARS-CoV-2. Aim The primary aims of our study were to identify changes in the activity of antioxidant enzymes in erythrocytes and total oxidative status in plasma after being treated with methylprednisolone (MP). Methods A prospective cohort study of 67 children (56.7% male) under 18 with MIS-C being treated with MP was conducted at the Mother and Child Health Institute from January 2021 to April 2022. The impact of the therapy was assessed on the basis of the clinical condition, haematological and biochemical blood parameters, and echocardiographic findings. Results 59.7% of patients presented cardiovascular (CV) manifestations, while myocardial dysfunction was observed in half of all patients (50.7%). A severe clinical course was observed in 22/67 patients. Children with CV involvement had a significantly higher relative concentration of B lymphocytes and lower relative concentration of NK cells than patients without CV issues (p < 0.001 and p = 0.004, respectively). Patients with severe MIS-C had a lower relative count of NK cells than those with moderate MIS-C (p = 0.015). Patients with myocardial dysfunction had a higher total oxidative plasma status (TOPS) than children without (p = 0.05), which implicates pronounced oxidative stress in the former cohort. In patients with shock, lower erythrocytes superoxide dismutase (SOD) activity was observed on admission compared to patients without shock (p = 0.04). After MP was administered, TOPS was significantly reduced, while catalase (CAT) and SOD activity increased significantly. Treatment failure (TF) was observed in 6 patients, only females (p=0.005). These patients were younger (p=0.05) and had lower CAT activity on admission (p=0.04) than patients with favorable treatment responses. In the group of patients with TF, TOPS increased after treatment (before 176.2 ± 10.3 mV, after 199.0 ± 36.7 mV). Conclusion MP leads to rapid modulation of TOPS and increases the activity of antioxidant enzymes in erythrocytes resulting in clinical and echocardiographic improvement. Based on the observed changes in the activity of the antioxidant enzymes, we can conclude that s hydrogen peroxide is the dominant ROS in patients with MIS-C. Patients with TF showed reduced CAT activity, whereas the treatment with MP led to pronounced oxidation. This implies that low CAT activity may be a contraindication for using MP.
Collapse
Affiliation(s)
- Stasa Krasic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Vladislav Vukomanovic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Ninic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Srdjan Pasic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Immunology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Gordana Samardzija
- Pathology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Nemanja Mitrovic
- Pathology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Maja Cehic
- Cardiology Department, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - Dejan Nesic
- Faculty of Medicine, Institute of Medical Physiology, University of Belgrade, Belgrade, Serbia
| | - Milica Bajcetic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Dotta L, Moratto D, Cattalini M, Brambilla S, Giustini V, Meini A, Girelli MF, Cortesi M, Timpano S, Galvagni A, Viola A, Crotti B, Manerba A, Pierelli G, Verzura G, Serana F, Brugnoni D, Garrafa E, Ricci F, Tomasi C, Chiarini M, Badolato R. Longitudinal Characterization of Immune Response in a Cohort of Children Hospitalized with Multisystem Inflammatory Syndrome. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1069. [PMID: 37371300 DOI: 10.3390/children10061069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection caused by hyperactivation of the immune system. METHODS this is a retrospective analysis of clinical data, biochemical parameters, and immune cell subsets in 40 MIS-C patients from hospital admission to outpatient long-term follow-up. RESULTS MIS-C patients had elevated inflammatory markers, associated with T- and NK-cell lymphopenia, a profound depletion of dendritic cells, and altered monocyte phenotype at disease onset, while the subacute phase of the disease was characterized by a significant increase in T- and B-cell counts and a rapid decline in activated T cells and terminally differentiated B cells. Most of the immunological parameters returned to values close to the normal range during the remission phase (20-60 days after hospital admission). Nevertheless, we observed a significantly reduced ratio between recently generated and more differentiated CD8+ T- and B-cell subsets, which partially settled at longer-term follow-up determinations. CONCLUSIONS The characterization of lymphocyte distribution in different phases of MIS-C may help to understand the course of diseases that are associated with dysregulated immune responses and to calibrate prompt and targeted treatments.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Marco Cattalini
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Sara Brambilla
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Viviana Giustini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Antonella Meini
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Maria Federica Girelli
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Manuela Cortesi
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Silviana Timpano
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Anna Galvagni
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Anna Viola
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Beatrice Crotti
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Alessandra Manerba
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgia Pierelli
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giulia Verzura
- Pdiatric Cardiology Unit, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Federico Serana
- Hematology Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Duilio Brugnoni
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Emirena Garrafa
- Laboratory of Clinical Chemistry, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Ricci
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Raffaele Badolato
- Department of Pediatrics, ASST Spedali Civili of Brescia, University of Brescia, 25123 Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
16
|
Lin J, Harahsheh AS, Raghuveer G, Jain S, Choueiter NF, Garrido-Garcia LM, Dahdah N, Portman MA, Misra N, Khoury M, Fabi M, Elias MD, Dionne A, Lee S, Tierney ESS, Ballweg JA, Manlhiot C, McCrindle BW. Emerging Insights Into the Pathophysiology of Multisystem Inflammatory Syndrome Associated With COVID-19 in Children. Can J Cardiol 2023; 39:793-802. [PMID: 36626979 PMCID: PMC9824951 DOI: 10.1016/j.cjca.2023.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has emerged as a rare delayed hyperinflammatory response to SARS-CoV-2 infection and causes severe morbidity in the pediatric age group. Although MIS-C shares many clinical similarities to Kawasaki disease (KD), important differences in epidemiologic, clinical, immunologic, and potentially genetic factors exist and suggest potential differences in pathophysiology and points to be explored and explained. Epidemiologic features include male predominance, peak age of 6 to12 years, and specific racial or ethnicity predilections. MIS-C is characterized by fever, prominent gastrointestinal symptoms, mucocutaneous manifestations, respiratory symptoms, and neurologic complaints, and patients often present with shock. Cardiac complications are frequent and include ventricular dysfunction, valvular regurgitation, pericardial effusion, coronary artery dilation and aneurysms, conduction abnormalities, and arrhythmias. Emerging evidence regarding potential immunologic mechanisms suggest that an exaggerated T-cell response to a superantigen on the SARS-CoV-2 spike glycoprotein-as well as the formation of autoantibodies against cardiovascular, gastrointestinal, and endothelial antigens-are major contributors to the inflammatory milieu of MIS-C. Further studies are needed to determine both shared and distinct immunologic pathway(s) that underlie the pathogenesis of MIS-C vs both acute SARS-CoV-2 infection and KD. There is evidence to suggest that the rare risk of more benign mRNA vaccine-associated myopericarditis is outweighed by a reduced risk of more severe MIS-C. In the current review, we synthesize the published literature to describe associated factors and potential mechanisms regarding an increased risk of MIS-C and cardiac complications, provide insights into the underlying immunologic pathophysiology, and define similarities and differences with KD.
Collapse
Affiliation(s)
- Justin Lin
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ashraf S Harahsheh
- Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Supriya Jain
- Division of Pediatric Cardiology, Maria Fareri Children's Hospital of Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Nadine F Choueiter
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Nagib Dahdah
- Division of Pediatric Cardiology, Sainte Justine University Hospital Center, University of Montreal, Montréal, Québec, Canada
| | | | - Nilanjana Misra
- Cohen Children's Medical Center of New York, Northwell Health, New York, New York, USA
| | - Michael Khoury
- Stollery Children's Hospital, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matthew D Elias
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Lee
- Children's Nationwide Hospital, Columbus, Ohio, USA
| | - Elif Seda Selamet Tierney
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jean A Ballweg
- Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Cedric Manlhiot
- Johns Hopkins University School of Medicine, Division of Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W McCrindle
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
De Rose DU, Pace PG, Ceccherini-Silberstein F, Dotta A, Andreoni M, Sarmati L, Iannetta M. T Lymphocyte Subset Counts and Interferon-Gamma Production in Adults and Children with COVID-19: A Narrative Review. J Pers Med 2023; 13:jpm13050755. [PMID: 37240926 DOI: 10.3390/jpm13050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Adults and children exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with minimal to mild symptoms, especially in the pediatric age. However, some children present with a severe hyperinflammatory post-infectious complication named multisystem inflammatory syndrome in children (MIS-C), mainly affecting previously healthy subjects. Understanding these differences is still an ongoing challenge, that can lead to new therapeutic strategies and avoid unfavorable outcomes. In this review, we discuss the different roles of T lymphocyte subsets and interferon-γ (IFN-γ) in the immune responses of adults and children. Lymphopenia can influence these responses and represent a good predictor for the outcome, as reported by most authors. The increased IFN-γ response exhibited by children could be the starting point for the activation of a broad response that leads to MIS-C, with a significantly higher risk than in adults, although a single IFN signature has not been identified. Multicenter studies with large cohorts in both age groups are still needed to study SARS-CoV-2 pathogenesis with new tools and to understand how is possible to better modulate immune responses.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
- PhD Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Faculty of Medicine and Surgery, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pier Giorgio Pace
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | | | - Andrea Dotta
- Neonatal Intensive Care Unit, "Bambino Gesù" Children's Hospital IRCCS, 00165 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, "Tor Vergata" University and Hospital, 00133 Rome, Italy
| |
Collapse
|
18
|
Abdulaziz-Opiela G, Sobieraj A, Sibrecht G, Bajdor J, Mroziński B, Kozłowska Z, Iciek R, Wróblewska-Seniuk K, Wender-Ożegowska E, Szczapa T. Prenatal and Neonatal Pulmonary Thrombosis as a Potential Complication of SARS-CoV-2 Infection in Late Pregnancy. Int J Mol Sci 2023; 24:ijms24087629. [PMID: 37108791 PMCID: PMC10146603 DOI: 10.3390/ijms24087629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Neonatal venous thrombosis is a rare condition that can be iatrogenic or occur due to viral infections or genetic mutations. Thromboembolic complications are also commonly observed as a result of SARS-CoV-2 infections. They can affect pediatric patients, especially the ones suffering from multisystem inflammatory syndrome in children (MIS-C) or multisystem inflammatory syndrome in neonates (MIS-N). The question remains whether the maternal SARS-CoV-2 infection during pregnancy can lead to thromboembolic complications in fetuses and neonates. We report on a patient born with an embolism in the arterial duct, left pulmonary artery, and pulmonary trunk, who presented several characteristic features of MIS-N, suspecting that the cause might have been the maternal SARS-CoV2 infection in late pregnancy. Multiple genetic and laboratory tests were performed. The neonate presented only with a positive result of IgG antibodies against SARS-CoV-2. He was treated with low molecular weight heparin. Subsequent echocardiographic tests showed that the embolism dissolved. More research is necessary to evaluate the possible neonatal complications of maternal SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Anna Sobieraj
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Greta Sibrecht
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Julia Bajdor
- Department of Radiology, Nicolaus Copernicus Hospital, 80-803 Gdansk, Poland
| | - Bartłomiej Mroziński
- Department of Pediatric Cardiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zuzanna Kozłowska
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Rafał Iciek
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Ewa Wender-Ożegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Tomasz Szczapa
- II Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
19
|
Wang X, Guan F, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Lei J, Filatov A, Liu C. The role of dendritic cells in COVID-19 infection. Emerg Microbes Infect 2023; 12:2195019. [PMID: 36946172 PMCID: PMC10171120 DOI: 10.1080/22221751.2023.2195019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The persistent pandemic of coronavirus disease in 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently poses a major infectious threat to public health around the world. COVID-19 is an infectious disease characterized by strong induction of inflammatory cytokines, progressive lung inflammation, and potential multiple organ dysfunction. SARS-CoV-2 infection is closely related to the innate immune system and adaptive immune system. Dendritic cells (DCs), as a "bridge" connecting innate immunity and adaptive immunity, play many important roles in viral diseases. In this review, we will pay special attention to the possible mechanism of dendritic cells in human viral transmission and clinical progression of diseases, as well as the reduction and dysfunction of DCs in severe SARS-CoV-2 infection, so as to understand the mechanism and immunological characteristics of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
- Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Maria G Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo - SP, Brazil
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science Technology, Wuhan, Hubei, China
| |
Collapse
|
20
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
21
|
Filippatos F, Tatsi EB, Michos A. Immunology of Multisystem Inflammatory Syndrome after COVID-19 in Children: A Review of the Current Evidence. Int J Mol Sci 2023; 24:ijms24065711. [PMID: 36982783 PMCID: PMC10057510 DOI: 10.3390/ijms24065711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Immune responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children are still under investigation. Even though coronavirus disease 2019 (COVID-19) is usually mild in the pediatric population, some children exhibit severe clinical manifestations, require hospitalization, or develop the most severe condition: a multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2 infection. The activated innate, humoral and T-cell-mediated immunological pathways that lead certain pediatric populations to present with MIS-C or remain asymptomatic after SARS-CoV-2 infection are yet to be established. This review focuses on the immunological aspects of MIS-C with respect to innate, humoral, and cellular immunity. In addition, presents the role of the SARS-CoV-2 Spike protein as a superantigen in the pathophysiological mechanisms, discusses the great heterogeneity among the immunological studies in the pediatric population, and highlights possible reasons why some children with a certain genetic background present with MIS-C.
Collapse
|
22
|
Kopitar AN, Repas J, Janžič L, Bizjak M, Vesel TT, Emeršič N, Avramovič MZ, Ihan A, Avčin T, Pavlin M. Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Front Immunol 2023; 14:1157702. [PMID: 37153551 PMCID: PMC10157053 DOI: 10.3389/fimmu.2023.1157702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Collapse
Affiliation(s)
- Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Janžič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Bizjak
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tina Tajnšek Vesel
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Emeršič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Department of Pediatrics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| |
Collapse
|
23
|
Estrada-Luna D, Carreón-Torres E, González-Reyes S, Martínez-Salazar MF, Ortiz-Rodríguez MA, Ramírez-Moreno E, Arias-Rico J, Jiménez-Osorio AS. Nutraceuticals for Complementary Treatment of Multisystem Inflammatory Syndrome in Children: A Perspective from Their Use in COVID-19. Life (Basel) 2022; 12:life12101652. [PMID: 36295088 PMCID: PMC9605437 DOI: 10.3390/life12101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has been widely reported in some children diagnosed with SARS-CoV-2. Clinical signs of MIS-C are manifested at 2 to 4 weeks after SARS-CoV-2 infection, where elevated biomarkers of inflammation and cardiac dysfunction are the hallmark of this syndrome when infection or exposure to SARS-CoV-2 has been confirmed. However, after two years of acknowledgment, MIS-C treatment is still under research to reach safety and effectiveness in the acute phase in children. Therefore, in this review, we discuss the potential use of natural compounds with antioxidant and anti-inflammatory effects to reduce collateral damage caused by hyperinflammation in MIS-C pathology for new research in treatment and interventions.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Susana González-Reyes
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
| | - María Fernanda Martínez-Salazar
- Facultad de Ciencias del Deporte, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001 Col. Chamilpa, Cuernavaca 62209, Mexico
| | - María Araceli Ortiz-Rodríguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Iztaccíhuatl 100 Col. Los Volcanes, Cuernavaca 62350, Mexico
| | - Esther Ramírez-Moreno
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - José Arias-Rico
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
| | - Angélica Saraí Jiménez-Osorio
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado Hidalgo, Circuito Ex Hacienda La Concepción S/N, Carretera Pachuca-Actopan, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: ; Tel.: +52-771-717-2000 (ext. 4323)
| |
Collapse
|
24
|
Clinical and Laboratory Characteristics of Pediatric COVID-19 Population—A Bibliometric Analysis. J Clin Med 2022; 11:jcm11205987. [PMID: 36294306 PMCID: PMC9605229 DOI: 10.3390/jcm11205987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
The literature on the COVID-19 landscape has rapidly expanded in the pandemic period. The current study undertakes a bibliometric analysis of research in the topic of the clinical and laboratory characteristics of pediatric COVID-19 cases. Our aim is to perform a comprehensive bibliometric review of current research trends and patterns of this research domain. Publications retrieved from the Web of Science Core Collection and VOSviewer were used for analysis and network visualization. We analyzed geographical distribution and temporal trends, collaboration and citation patterns of authors, institutions, and countries, and core research themes from co-occurrence of keywords and terms. The analysis showed that contributions in the research field were from 302 publications, 1104 institutions, 62 countries, and 172 journals. Many publications were authored by American and Chinese authors, and many were published in the Pediatric Infectious Disease Journal, Pediatric Pulmonology, and Frontiers in Pediatrics. The top cited and co-cited journals were the New England Journal of Medicine, Nature, JAMA, Lancet Infectious Diseases, and BMJ. The network visualization maps of keywords and terms offered a global overview of the clinical and laboratory characteristics of pediatric COVID-19 patients. The bibliometric profile of the researched domain, based on analyzing a large collection of publications/data, could (i) enrich the researchers and non-researchers understanding of the field existing patterns and trends, and (ii) be useful in clinical practice (diagnostic and management) and public health policy.
Collapse
|
25
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
26
|
Luo H, Zhou X. Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren’s syndrome. Front Immunol 2022; 13:938837. [PMID: 35958619 PMCID: PMC9360424 DOI: 10.3389/fimmu.2022.938837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundAccumulating evidence has revealed that the prevalence of Coronavirus 2019 (COVID-19) was significantly higher in patients with primary Sjogren’s syndrome (pSS) compared to the general population. However, the mechanism remains incompletely elucidated. This study aimed to further investigate the molecular mechanisms underlying the development of this complication.MethodsThe gene expression profiles of COVID-19 (GSE157103) and pSS (GSE40611) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for pSS and COVID-19, functional annotation, protein-protein interaction (PPI) network, module construction and hub gene identification were performed. Finally, we constructed transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network for hub genes.ResultsA total of 40 common DEGs were selected for subsequent analyses. Functional analyses showed that cellular components and metabolic pathways collectively participated in the development and progression of pSS and COVID-19. Finally, 12 significant hub genes were identified using the cytoHubba plugin, including CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3, MX1, CDCA2 and TOP2A, which had preferable values as diagnostic markers for COVID-19 and pSS.ConclusionsOur study reveals common pathogenesis of pSS and COVID-19. These common pathways and pivotal genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xia Zhou,
| |
Collapse
|
27
|
Biomarkers of Endothelial Damage in Distinct Phases of Multisystem Inflammatory Syndrome in Children. Metabolites 2022; 12:metabo12080680. [PMID: 35893247 PMCID: PMC9332590 DOI: 10.3390/metabo12080680] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Endothelial hyperinflammation and vasculitis are known hallmarks of acute COVID-19 and multisystem inflammatory syndrome in children (MIS-C). They are due to the direct effect of the virus on endothelial cells enhanced by pro-inflammatory modulators and may cause venous/arterial thrombosis. Therefore, it is essential to identify patients with endothelial damage early in order to establish specific therapies. We studied the monocyte chemoattractant protein 1 (MCP-1), the perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), and the vascular endothelial growth factor A (VEGF-A) in serum from 45 MIS-C patients at hospital admission and 24 healthy controls (HC). For 13/45 MIS-C patients, we measured the three serum biomarkers also after one week from hospitalization. At admission, MIS-C patients had significantly higher levels of MCP-1 and VEGF-A than the HC, but no significant differences were observed for pANCA. While after one week, MCP-1 was significantly lower, pANCA was higher and VEGF-A levels were not significantly different from the admission values. These findings suggest an involvement of epithelium in MIS-C with an acute phase, showing high MCP-1 and VEGF-A, followed by an increase in pANCA that suggests a vasculitis development. The serum biomarker levels may help to drive personalized therapies in these phases with anticoagulant prophylaxis, immunomodulators, and/or anti-angiogenic drugs.
Collapse
|
28
|
Kheshtchin N, Bakhshi P, Arab S, Nourizadeh M. Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. Int Immunopharmacol 2022; 105:108531. [PMID: 35074569 PMCID: PMC8743495 DOI: 10.1016/j.intimp.2022.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Immunoediting is a well-known concept that occurs in cancer through three steps of elimination, equilibrium, and escape (3Es), where the immune system first suppresses the growth of tumor cells and then promotes them towards the malignancy. This phenomenon has been conceptualized in some chronic viral infections such as HTLV-1 and HIV by obtaining the resistance to elimination and making a persistent form of infected cells especially in untreated patients. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a heterogeneous disease characterizing from mild/asymptomatic to severe/critical courses with some behavioral aspects in an immunoediting setting. In this context, a coordinated effort between innate and adaptive immune system leads to detection and destruction of early infection followed by equilibrium between virus-specific responses and infected cells, which eventually ends up with an uncontrolled inflammatory response in severe/critical patients. Although the SARS-CoV-2 applies several escape strategies such as mutations in viral epitopes, modulating the interferon response and inhibiting the MHC I molecules similar to the cancer cells, the 3Es hallmark may not occur in all clinical conditions. Here, we discuss how the lesson learnt from cancer immunoediting and accurate understanding of these pathophysiological mechanisms helps to develop more effective therapeutic strategies for COVID-19.
Collapse
|
29
|
Başar EZ, Sönmez HE, Uzuner H, Karadenizli A, Güngör HS, Akgün G, Yetimakman AF, Öncel S, Babaoğlu K. CXCL10/IP10 as a Biomarker Linking Multisystem Inflammatory Syndrome and Left Ventricular Dysfunction in Children with SARS-CoV-2. J Clin Med 2022; 11:jcm11051416. [PMID: 35268506 PMCID: PMC8911504 DOI: 10.3390/jcm11051416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background: To investigate the diagnostic accuracy of CXCL10/IP10 for left ventricular (LV) dysfunction in multisystemic inflammatory syndrome (MIS-C). Methods: This cross-sectional, longitudinal study included 36 patients with MIS-C. Patients were classified as follows: (1) patients presenting with Kawasaki-like features (group I = 11); (2) patients presenting with LV systolic dysfunction (group II = 9); and (3) other presentations (group III = 3). CXCL10/IP10 levels were measured upon admission and on days 3 and 7 of treatment. Results: Twenty patients were male and 16 were female. The median age of patients at diagnosis was 7.5 (1.5–17) years. All patients had a fever lasting for a median of 4 (2–7) days. Ten patients had LV systolic dysfunction. The duration of hospitalization was longer in group II. Lymphocyte and platelet counts were lower, whereas NT-pro-BNP, troponin-I, D-dimer, and CXCL10/IP10 levels were higher in group II. Baseline levels of CXCL10/IP10 were weakly negatively correlated with ejection fraction (r = −0.387, p = 0.022). Receiver operator characteristic curve analysis yielded a cutoff value of CXCL10/IP10 to discriminate patients with LV dysfunction was 1839 pg/mL with sensitivity 88% and specificity 68% (Area under curve (AUC) = 0.827, 95% CI 0.682–0.972, p = 0.003). Conclusion: Having a good correlation with cardiac function, CXCL10/IP10 is a potential biomarker to predict LV dysfunction in MIS-C patients.
Collapse
Affiliation(s)
- Eviç Zeynep Başar
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey; (H.S.G.); (K.B.)
- Correspondence: ; Tel.: +90-507-463-0082
| | - Hafize Emine Sönmez
- Division of Pediatric Rheumatology, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Hüseyin Uzuner
- Medical Laboratory Techniques Program, Section of Medical Services and Techniques, Kocaeli Vocational School of Health Services, Kocaeli University, Kocaeli 41001, Turkey;
- Antibody Research and Production Laboratory, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Aynur Karadenizli
- Antibody Research and Production Laboratory, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
- Department of Medical Microbiology, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey
| | - Hüseyin Salih Güngör
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey; (H.S.G.); (K.B.)
| | - Gökmen Akgün
- Pediatric Cardiology Unit, Darıca Farabi Training and Research Hospital, Kocaeli 41700, Turkey;
| | - Ayşe Filiz Yetimakman
- Division of Pediatric Intensive Care, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Selim Öncel
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Kadir Babaoğlu
- Division of Pediatric Cardiology, Department of Pediatrics and Child Health, Section of Internal Medical Sciences, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey; (H.S.G.); (K.B.)
| |
Collapse
|
30
|
Morita A, Hosaka S, Imagawa K, Ishiodori T, Nozaki Y, Murakami T, Takada H. Time course of peripheral immunophenotypes of multisystem inflammatory syndrome in children. Clin Immunol 2022; 236:108955. [PMID: 35150919 PMCID: PMC8828386 DOI: 10.1016/j.clim.2022.108955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
The etiology of multiple inflammatory syndrome in children (MIS-C) remains poorly understood. As clues to elucidate the pathogenic condition, several characteristic peripheral immunophenotypes have been reported in MIS-C. However, no report has demonstrated the time course of the peripheral immunophenotype along with the clinical course in the same patient. Herein, we clarified the immunological characteristics of a Japanese patient with MIS-C. There was an initial cytokine storm followed by T-cell activation, especially of CD8+ T cells, with the expansion of T-cell receptor Vβ 21.3-expressing cells, which suggests superantigen-mediated T-cell activation. In addition, we also found an increase in IgG-producing cells (plasmablasts and switched memory B cells), which were accompanied by elevated serum levels of anti-SARS-CoV-2 spike antigen-specific IgG antibodies. These time course of peripheral immunophenotypes support that immunological activation against SARS-CoV-2 spike protein plays a central role in the etiology of MIS-C.
Collapse
Affiliation(s)
- Atsushi Morita
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan.
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takumi Ishiodori
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Yoshihiro Nozaki
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Takashi Murakami
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan; Department of Child Health, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
31
|
Hoste L, Roels L, Naesens L, Bosteels V, Vanhee S, Dupont S, Bosteels C, Browaeys R, Vandamme N, Verstaen K, Roels J, Van Damme KF, Maes B, De Leeuw E, Declercq J, Aegerter H, Seys L, Smole U, De Prijck S, Vanheerswynghels M, Claes K, Debacker V, Van Isterdael G, Backers L, Claes KB, Bastard P, Jouanguy E, Zhang SY, Mets G, Dehoorne J, Vandekerckhove K, Schelstraete P, Willems J, MIS-C Clinicians, Stordeur P, Janssens S, Beyaert R, Saeys Y, Casanova JL, Lambrecht BN, Haerynck F, Tavernier SJ. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J Exp Med 2022; 219:e20211381. [PMID: 34914824 PMCID: PMC8685281 DOI: 10.1084/jem.20211381] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRβ repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.
Collapse
Affiliation(s)
- Levi Hoste
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Lisa Roels
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Leslie Naesens
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Victor Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Stijn Vanhee
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sam Dupont
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Cedric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kevin Verstaen
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jana Roels
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Karel F.A. Van Damme
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Helena Aegerter
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Leen Seys
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Ursula Smole
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Sofie De Prijck
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Manon Vanheerswynghels
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Karlien Claes
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Veronique Debacker
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | | | - Lynn Backers
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kathleen B.M. Claes
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Gilles Mets
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Joke Dehoorne
- Department of Internal Medicine and Pediatrics, Division of Pediatric Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Kristof Vandekerckhove
- Department of Internal Medicine and Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Jef Willems
- Department of Critical Care, Division of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | | | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Janssens
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory for Endoplasmic Reticulum Stress and Inflammation, VIB, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands
| | - Filomeen Haerynck
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Pulmonology, Infectious Diseases and Inborn Errors of Immunity, Ghent University Hospital, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
- Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS‐CoV‐2 infection: Perspectives for immune‐based vaccines. Allergy 2022. [DOI: 10.1111/all.15004
expr 869230256 + 930548950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation Unit Department of Hematology and Developmental Therapeutics Istituto Nazionale Tumori‐ IRCCS‐ Fondazione G. Pascale Napoli Italy
| | - Ludovica Capitelli
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery Università degli Studi di Napoli Federico II Napoli Italy
| |
Collapse
|
33
|
Galati D, Zanotta S, Capitelli L, Bocchino M. A bird's eye view on the role of dendritic cells in SARS-CoV-2 infection: Perspectives for immune-based vaccines. Allergy 2022; 77:100-110. [PMID: 34245591 PMCID: PMC8441836 DOI: 10.1111/all.15004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a complex disorder caused by the pandemic diffusion of a novel coronavirus named SARS-CoV-2. Clinical manifestations vary from silent infection to severe pneumonia, disseminated thrombosis, multi-organ failure, and death. COVID-19 pathogenesis is still not fully elucidated, while increasing evidence suggests that disease phenotypes are strongly related to the virus-induced immune system's dysregulation. Indeed, when the virus-host cross talk is out of control, the occurrence of an aberrant systemic inflammatory reaction, named "cytokine storm," leads to a detrimental impairment of the adaptive immune response. Dendritic cells (DCs) are the most potent antigen-presenting cells able to support innate immune and promote adaptive responses. Besides, DCs play a key role in the anti-viral defense. The aim of this review is to focus on DC involvement in SARS-CoV-2 infection to better understand pathogenesis and clinical behavior of COVID-19 and explore potential implications for immune-based therapy strategies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Serena Zanotta
- Hematology‐Oncology and Stem Cell Transplantation UnitDepartment of Hematology and Developmental TherapeuticsIstituto Nazionale Tumori‐ IRCCS‐ Fondazione G. PascaleNapoliItaly
| | - Ludovica Capitelli
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| | - Marialuisa Bocchino
- Department of Clinical Medicine and SurgeryUniversità degli Studi di Napoli Federico IINapoliItaly
| |
Collapse
|
34
|
Gurlevik SL, Ozsurekci Y, Sağ E, Derin Oygar P, Kesici S, Akca ÜK, Cuceoglu MK, Basaran O, Göncü S, Karakaya J, Cengiz AB, Özen S. The difference of the inflammatory milieu in MIS-C and severe COVID-19. Pediatr Res 2022; 92:1805-1814. [PMID: 35352005 PMCID: PMC8963396 DOI: 10.1038/s41390-022-02029-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Coronavirus disease 19 (COVID-19) may have a severe course in children. Multisystem inflammatory syndrome in children (MIS-C) is the post-COVID complication characterized by an exaggerated inflammation, observed in children. However, data on the underlying pathophysiology are sparse. We therefore aimed to assess the cytokine and chemokine profiles of children with MIS-C and compare these to life-threatening severe SARS-CoV-2 and healthy controls (HCs) to shed light on disease pathophysiology. METHODS Samples of 31 children with MIS-C, 10 with severe/critical COVID-19 and 11 HCs were included. Cytokine and chemokine profiles were studied and compared in between groups. RESULTS Most cytokines and chemokines related to IL-1 family and IFN-γ pathway (including IL-18 and MIG/CXCL9) and IL-17A were significantly higher in the MIS-C group when compared to the severe/critical COVID-19 group and HCs. IP-10/CXCL10 and IL-10 were higher in both MIS-C patients and severe/critical COVID-19 compared to HCs. CONCLUSION Our results suggest that IL-1 and IFN-γ pathways play an important role in the pathophysiology of MIS-C. IMPACT This study defines a pattern of distinctive immune responses in children with MIS-C and in patients with severe/critical COVID-19. As the COVID-19 pandemic continues, biomarkers to identify MIS-C risk are needed to guide our management that study results may shed light on it.
Collapse
Affiliation(s)
- Sibel Lacinel Gurlevik
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Ozsurekci
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdal Sağ
- grid.413783.a0000 0004 0642 6432Pediatric Rheumatology Unit, Ankara Training and Research Hospital, Ankara, Turkey ,grid.14442.370000 0001 2342 7339Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey
| | - P. Derin Oygar
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Selman Kesici
- grid.14442.370000 0001 2342 7339Department of Pediatric Intensive Care Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümmüşen Kaya Akca
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Muserref Kasap Cuceoglu
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ozge Basaran
- grid.14442.370000 0001 2342 7339Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sultan Göncü
- grid.14442.370000 0001 2342 7339Department of Pediatric Intensive Care Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jale Karakaya
- grid.14442.370000 0001 2342 7339Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Bülent Cengiz
- grid.14442.370000 0001 2342 7339Department of Pediatric Infectious Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Seza Özen
- Pediatric Rheumatology Unit, Translational Medicine Laboratories, Hacettepe University, Ankara, Turkey. .,Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
35
|
Suzuki T, Suenaga T, Sakai A, Sugiyama M, Mizokami M, Mizukami A, Takasago S, Hamada H, Kakimoto N, Takeuchi T, Ueda M, Komori Y, Tokuhara D, Suzuki H. Case Report: Ciclosporin A for Refractory Multisystem Inflammatory Syndrome in Children. Front Pediatr 2022; 10:890755. [PMID: 35712624 PMCID: PMC9194446 DOI: 10.3389/fped.2022.890755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a new syndrome involving the development of severe dysfunction in multiple organs after severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. Because the pathophysiology of MIS-C remains unclear, a treatment strategy has not yet been established. We experienced a 12-year-old boy who developed MIS-C at 56 days after SARS-CoV-2 infection and for whom ciclosporin A (CsA) was effective as a third-line treatment. He had a high fever on day 1, and developed a rash on the trunk, swelling in the cervical region, and palmar erythema on day 2. On days 3, he developed conjunctivitis and lip redness, and fulfilled the criteria for classical Kawasaki disease (KD). Although intravenous immunoglobulin infusion (IVIG) was started on day 4, fever persisted and respiratory distress and severe abdominal pain developed. On day 5, because he fulfilled the criteria for MIS-C, methylprednisolone pulse was started for 3 days as a second-line treatment. However, he did not exhibit defervescence and the symptoms continued. Therefore, we selected CsA as a third-line treatment. CsA was so effective that he became defervescent and his symptoms disappeared. In order to clarify the relationship with treatment and the change of clinical conditions, we examined the kinetics of 71 serum cytokines to determine their relationships with his clinical course during the three successive treatments. We found that CsA suppressed macrophage-activating cytokines such as, IL-12(p40), and IL-18 with improvement of his clinical symptoms. CsA may be a useful option for additional treatment of patients with MIS-C refractory to IVIG + methylprednisolone pulse.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Tomohiro Suenaga
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Aiko Sakai
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayumi Mizukami
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Takasago
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuyuki Kakimoto
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Takeuchi
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Mina Ueda
- Department of Pediatrics, Wakayama Rousai Hospital, Wakayama, Japan
| | - Yuki Komori
- Department of Pediatrics, Wakayama Rousai Hospital, Wakayama, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Suzuki
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan.,Department of Pediatrics, Tsukushi Medical and Welfare Center, Iwade, Japan
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Multisystem Inflammatory Syndrome in Children (MIS-C) is a novel syndrome that has appeared in the wake of the severe acute respiratory syndrome coronavirus -2 pandemic, with features that overlap with Kawasaki disease (KD). As a result, new interest and focus have arisen in KD, and specifically mechanisms of the disease. RECENT FINDINGS A major question in the literature on the nature of MIS-C is if, and how, it may be related to KD. This has been explored using component analysis type studies, as well as other unsupervised analysis, as well as direct comparisons. At present, the answer to this question remains opaque, and several studies have interpreted their findings in opposing ways. Studies seem to suggest some relationship, but that MIS-C and KD are not the same syndrome. SUMMARY Study of MIS-C strengthens the likelihood that KD is a postinfectious immune response, and that perhaps multiple infectious agents or viruses underlie the disease. MIS-C and KD, while not the same disease, could plausibly be sibling disorders that fall under a larger syndrome of postacute autoimmune febrile responses to infection, along with Kawasaki shock syndrome.
Collapse
Affiliation(s)
- Mark Gorelik
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
37
|
Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison. Nat Rev Rheumatol 2021; 17:731-748. [PMID: 34716418 PMCID: PMC8554518 DOI: 10.1038/s41584-021-00709-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Children and adolescents infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are predominantly asymptomatic or have mild symptoms compared with the more severe coronavirus disease 2019 (COVID-19) described in adults. However, SARS-CoV-2 is also associated with a widely reported but poorly understood paediatric systemic vasculitis. This multisystem inflammatory syndrome in children (MIS-C) has features that overlap with myocarditis, toxic-shock syndrome and Kawasaki disease. Current evidence indicates that MIS-C is the result of an exaggerated innate and adaptive immune response, characterized by a cytokine storm, and that it is triggered by prior SARS-CoV-2 exposure. Epidemiological, clinical and immunological differences classify MIS-C as being distinct from Kawasaki disease. Differences include the age range, and the geographical and ethnic distribution of patients. MIS-C is associated with prominent gastrointestinal and cardiovascular system involvement, admission to intensive care unit, neutrophilia, lymphopenia, high levels of IFNγ and low counts of naive CD4+ T cells, with a high proportion of activated memory T cells. Further investigation of MIS-C will continue to enhance our understanding of similar conditions associated with a cytokine storm.
Collapse
|
38
|
Panaro S, Cattalini M. The Spectrum of Manifestations of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2) Infection in Children: What We Can Learn From Multisystem Inflammatory Syndrome in Children (MIS-C). Front Med (Lausanne) 2021; 8:747190. [PMID: 34778310 PMCID: PMC8581204 DOI: 10.3389/fmed.2021.747190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/19/2023] Open
Abstract
Multisystem Inflammatory Syndrome in Children (MIS-C) is defined as a clinically serious condition requiring hospitalization with fever, multi-system organ disfunction, inflammatory biomarkers increase. The syndrome develops in the context of a probable or ascertained Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV2) infection, but other possible etiologies should be ruled out for definitive diagnosis. On the clinical side, along with the multi-system involvement, myocarditis with heart failure and shock is the most striking feature. Capillary leak is another fundamental feature of MIS-C. In fact, shock and hemodynamic compromise in MIS-C can occur also in the absence of laboratory evidence of myocardial inflammation, with preserved cardiac function and rapid reversibility. Since the first observations of MIS-C patients, it was evident that there is a delay between the peak of adult cases of Coronavirus disease 19 (COVID-19) and the MIS-C peak. Moreover, SARS-Cov2 isolation in children with MIS-C is not always possible, due to low viral load, while positive serology is far more commonly observed. These observations lead to the interpretation of MIS-C as a post-infectious disease. Although the exact pathogenesis of MIS-C is far from being elucidated, it is clear that it is a hyperinflammatory disease with a different inflammatory response as compared to what is seen in acute SARS-CoV-2 infection and that the disease shares some, but not all, immunological features with Macrophage Activation Syndrome (MAS), Kawasaki Disease (KD), Hemophagocytic Lymphohistiocytosis (HLH), and Toxic Shock Syndrome (TSS). Different mechanisms have been hypothesized as being responsible, from molecular mimicry to antibody dependent enhancement (ADE). Some evidence has also been collected on the immunological profile of patients with MIS-C and their difference from COVID-19. This review is focused on critical aspects of MIS-C clinical presentation and pathogenesis, and different immunological profiles. We propose a model where this hyperinflammatory disease represents one manifestation of the SARS-CoV2 spectrum in children, going from asymptomatic carriers to the post-infectious MIS-C, through symptomatic children, a low number of which may suffer from a severe infection with hyperinflammation (pediatric Hyper-COVID).
Collapse
Affiliation(s)
- Salvatore Panaro
- Rheumatology and Clinical Immunology Unit, University of Brescia and Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| | - Marco Cattalini
- Pediatric Clinic, University of Brescia and Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
39
|
Blanchard-Rohner G, Didierlaurent A, Tilmanne A, Smeesters P, Marchant A. Pediatric COVID-19: Immunopathogenesis, Transmission and Prevention. Vaccines (Basel) 2021; 9:1002. [PMID: 34579240 PMCID: PMC8473426 DOI: 10.3390/vaccines9091002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Children are unique in the context of the COVID-19 pandemic. Overall, SARS-CoV-2 has a lower medical impact in children as compared to adults. A higher proportion of children than adults remain asymptomatic following SARS-CoV-2 infection and severe disease and death are also less common. This relative resistance contrasts with the high susceptibility of children to other respiratory tract infections. The mechanisms involved remain incompletely understood but could include the rapid development of a robust innate immune response. On the other hand, children develop a unique and severe complication, named multisystem inflammatory syndrome in children, several weeks after the onset of symptoms. Although children play an important role in the transmission of many pathogens, their contribution to the transmission of SARS-CoV-2 appears lower than that of adults. These unique aspects of COVID-19 in children must be considered in the benefit-risk analysis of vaccination. Several COVID-19 vaccines have been authorized for emergency use in adolescents and clinical studies are ongoing in children. As the vaccination of adolescents is rolled out in several countries, we shall learn about the impact of this strategy on the health of children and on transmission within communities.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
- Children’s Hospital of Geneva, 6, Rue Willy-Donzé, 1211 Geneva, Switzerland
| | - Arnaud Didierlaurent
- Pediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, 1205 Geneva, Switzerland;
| | - Anne Tilmanne
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Pierre Smeesters
- Children’s Hospital Queen Fabiola, Université libre de Bruxelles, 1020 Brussels, Belgium; (A.T.); (P.S.)
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, 1050 Charleroi, Belgium;
| |
Collapse
|
40
|
Takasago S, Sakai A, Sugiyama M, Mizokami M, Hamada H, Ishizaka Y, Miyoshi-Akiyama T, Matsunaga A, Ueno M, Shichino H, Mizukami A. Case Report: Changes in Cytokine Kinetics During the Course of Disease in a Japanese Patient With Multisystem Inflammatory Syndrome in Children. Front Pediatr 2021; 9:702318. [PMID: 34368030 PMCID: PMC8335158 DOI: 10.3389/fped.2021.702318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe disease that is reportedly linked to coronavirus disease 2019. Affected patients present with gastrointestinal symptoms and cardiovascular dysfunction, in addition to Kawasaki disease-like features, suggesting the potential for overlapping disease mechanisms. Kawasaki disease has been reported among individuals of East Asian ethnicities, whereas there is minimal clinical literature regarding the occurrence of MIS-C among individuals of Asian ethnicities. A few reports thus far have described changes in cytokine kinetics during the course of disease in patients with MIS-C. We followed the temporal cytokine kinetics in a 9-year-old Japanese girl who exhibited a classical trajectory of MIS-C. The patient exhibited right cervical swelling and pain, abdominal pain, vomiting, and lip reddening, which developed 31 days after she was diagnosed with severe acute respiratory syndrome coronavirus-2 infection. The patient was diagnosed with Kawasaki disease on her fifth day of illness; because she fulfilled the criteria for MIS-C, she was also diagnosed with this disease on her fifth day of illness. Her fever rapidly resolved upon administration of intravenous immunoglobulin, aspirin, and prednisolone. On the patient's sixth day of illness, she developed acute myocarditis, which was treated with two diuretics and one vasodilator; the myocarditis ameliorated within a few days. Analyses of temporal kinetics for 71 serum cytokines revealed several patterns of cytokine changes that were consistent with the patient's clinical course of disease. Importantly, there was a clear distinction between cytokines that did and did not decrease rapidly following post-treatment fever resolution. These findings may be useful for the assessment of disease status and selection of therapy in patients with similar symptoms; they may also provide insights for basic and clinical research regarding MIS-C.
Collapse
Affiliation(s)
- Satoshi Takasago
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Aiko Sakai
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akihiro Matsunaga
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Shichino
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Ayumi Mizukami
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|