1
|
Tull S, Saviano A, Fatima A, Begum J, Mansour AA, Marigliano N, Schettino A, Blaising J, Trenkle P, Sandrin V, Maione F, Regan-Komito D, Iqbal AJ. Dichotomous effects of Galectin-9 in disease modulation in murine models of inflammatory bowel disease. Biomed Pharmacother 2025; 184:117902. [PMID: 39951917 PMCID: PMC11870847 DOI: 10.1016/j.biopha.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a multifaceted disease characterised by compromised integrity of the epithelial barrier, the gut microbiome, and mucosal inflammation. While leukocyte recruitment and infiltration into intestinal tissue are well-studied and targeted in clinical practice, the role of galectins in modulating mucosal immunity remains underexplored. Galectins, a family of lectin-binding proteins, mediate critical interactions between immune cells and the intestinal epithelium. This study investigated the effect of endogenous Galectin-9 (Gal-9), as well as the combined effects with Galectin-3 (Gal-3), in modulating disease progression in murine models of colitis, using global knockout (KO) models for Gal-3, Gal-9, and Gal-3/Gal-9. Global deficiency in both galectins demonstrated improved disease parameters in Dextran sodium sulfate (DSS)-driven colitis. In contrast, in a model of adoptive T cell driven colitis, the addition of recombinant Gal-9 (rGal-9) was associated with reduced intestinal inflammation and an improvement in disease parameters. Further in vitro studies revealed no change in bone marrow-derived macrophage cytokine production in the absence of endogenous Gal-9, whereas the addition of rGal-9 to human macrophages stimulated pro-inflammatory cytokine production. Collectively, these findings demonstrate that Gal-9 plays distinct, context-dependent effects in intestinal inflammation, with both pro-inflammatory and anti-inflammatory effects. The contrasting functions of endogenous and exogenous Gal-9 underscore its complex involvement in IBD pathogenesis and highlight the need to differentiate its physiological function from therapeutic applications.
Collapse
Affiliation(s)
- Samantha Tull
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Areeba Fatima
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Jenefa Begum
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Julie Blaising
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Patrick Trenkle
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| | - Daniel Regan-Komito
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Asif J Iqbal
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| |
Collapse
|
2
|
Mekes-Adamczyk A, Gausmann N, Öznur Ö, Pfuhlmann K, Dziobaka J, Buer J, Langhorst J, Westendorf AM. Lifestyle Intervention Modulates the CD4+ T Cell Profile in the Blood of Crohn's Disease Patients. Inflamm Bowel Dis 2025; 31:200-209. [PMID: 39102712 DOI: 10.1093/ibd/izae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Crohn's disease (CD) significantly affects patients' well-being and is influenced by stress and lifestyle factors, highlighting the importance of improving quality of life in CD management. An imbalance between pro- and anti-inflammatory CD4+ T cell responses is a key factor in CD, and stress has been shown to alter the function of CD4+ T cells. Therefore, this study aimed to evaluate the effect of a mind-body medicine stress management and lifestyle modification (MBM) program on the CD4+ T cell profile in CD patients. METHODS Circulating CD4+ T cells from CD patients were analyzed by flow cytometry following the MBM program. Patients were randomly assigned to either a guided intervention group (IG) or a self-guided waitlist control group (CG) over a 9-month trial and compared with healthy blood donors. RESULTS Lifestyle intervention reduced regulatory T cell (Treg) frequencies in the blood of CD patients. Notably, we observed a significant correlation between the quality of life improvement and Treg frequencies in the IG but not in the CG. Furthermore, differential activation and expression of the gut-homing molecules G protein-coupled receptor 15 and CCR9 on circulating Tregs and CD4+ effector T cells were detected in both the IG and CG. CONCLUSIONS The MBM program, whether guided or self-directed, has the potential to restore the CD4+ T cell profile of CD patients to levels comparable to healthy blood donors. Lifestyle interventions may benefit CD progression, symptoms, and immunological status, but further analysis is needed to substantiate these findings and to fully understand their clinical implications. (ClinicalTrials.gov: NCT05182645).
Collapse
Affiliation(s)
- Alexandra Mekes-Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nadine Gausmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Özlem Öznur
- Department of Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department of Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Bamberg, Germany
| | - Katrin Pfuhlmann
- Department of Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department of Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Bamberg, Germany
| | - Jan Dziobaka
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jost Langhorst
- Department of Internal and Integrative Medicine, Sozialstiftung Bamberg, Bamberg, Germany
- Department of Integrative Medicine, Medical Faculty, University of Duisburg-Essen, Bamberg, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Nelson RB, Rose KN, Menniti FS, Zorn SH. Hiding in plain sight: Do recruited dendritic cells surround amyloid plaques in Alzheimer's disease? Biochem Pharmacol 2024; 228:116258. [PMID: 38705533 DOI: 10.1016/j.bcp.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Robert B Nelson
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.
| | - Kenneth N Rose
- MindImmune Therapeutics, Inc., Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Stevin H Zorn
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| |
Collapse
|
4
|
Jin L, Macoritto M, Wang J, Bi Y, Wang F, Suarez-Fueyo A, Paez-Cortez J, Hu C, Knight H, Mascanfroni I, Staron MM, Schwartz Sterman A, Houghton JM, Westmoreland S, Tian Y. Multi-Omics Characterization of Colon Mucosa and Submucosa/Wall from Crohn's Disease Patients. Int J Mol Sci 2024; 25:5108. [PMID: 38791146 PMCID: PMC11121447 DOI: 10.3390/ijms25105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Crohn's disease (CD) is a subtype of inflammatory bowel disease (IBD) characterized by transmural disease. The concept of transmural healing (TH) has been proposed as an indicator of deep clinical remission of CD and as a predictor of favorable treatment endpoints. Understanding the pathophysiology involved in transmural disease is critical to achieving these endpoints. However, most studies have focused on the intestinal mucosa, overlooking the contribution of the intestinal wall in Crohn's disease. Multi-omics approaches have provided new avenues for exploring the pathogenesis of Crohn's disease and identifying potential biomarkers. We aimed to use transcriptomic and proteomic technologies to compare immune and mesenchymal cell profiles and pathways in the mucosal and submucosa/wall compartments to better understand chronic refractory disease elements to achieve transmural healing. The results revealed similarities and differences in gene and protein expression profiles, metabolic mechanisms, and immune and non-immune pathways between these two compartments. Additionally, the identification of protein isoforms highlights the complex molecular mechanisms underlying this disease, such as decreased RTN4 isoforms (RTN4B2 and RTN4C) in the submucosa/wall, which may be related to the dysregulation of enteric neural processes. These findings have the potential to inform the development of novel therapeutic strategies to achieve TH.
Collapse
Affiliation(s)
- Liang Jin
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | - Jing Wang
- Immunology Research, AbbVie, Cambridge, MA 02139, USA (A.S.-F.)
| | - Yingtao Bi
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | - Fei Wang
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | | | - Chenqi Hu
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Heather Knight
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| | | | | | | | - Jean Marie Houghton
- Division of Gastroenterology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | | | - Yu Tian
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (L.J.)
| |
Collapse
|
5
|
Schulze LL, Becker E, Dedden M, Liu LJ, van Passen C, Mohamed-Abdou M, Müller TM, Wiendl M, Ullrich KAM, Atreya I, Leppkes M, Ekici AB, Kirchner P, Stürzl M, Sexton D, Palliser D, Atreya R, Siegmund B, Neurath MF, Zundler S. Differential Effects of Ontamalimab Versus Vedolizumab on Immune Cell Trafficking in Intestinal Inflammation and Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:1817-1832. [PMID: 37208197 DOI: 10.1093/ecco-jcc/jjad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS The anti-MAdCAM-1 antibody ontamalimab demonstrated efficacy in a phase II trial in ulcerative colitis and results of early terminated phase III trials are pending, but its precise mechanisms of action are still unclear. Thus, we explored the mechanisms of action of ontamalimab and compared it to the anti-α4β7 antibody vedolizumab. METHODS We studied MAdCAM-1 expression with RNA sequencing and immunohistochemistry. The mechanisms of action of ontamalimab were assessed with fluorescence microscopy, dynamic adhesion and rolling assays. We performed in vivo cell trafficking studies in mice and compared ontamalimab and vedolizumab surrogate [-s] antibodies in experimental models of colitis and wound healing. We analysed immune cell infiltration under anti-MAdCAM-1 and anti-α4β7 treatment by single-cell transcriptomics and studied compensatory trafficking pathways. RESULTS MAdCAM-1 expression was increased in active inflammatory bowel disease. Binding of ontamalimab to MAdCAM-1 induced the internalization of the complex. Functionally, ontamalimab blocked T cell adhesion similar to vedolizumab, but also inhibited L-selectin-dependent rolling of innate and adaptive immune cells. Despite conserved mechanisms in mice, the impact of ontamalimab-s and vedolizumab-s on experimental colitis and wound healing was similar. Single-cell RNA sequencing demonstrated enrichment of ontamalimab-s-treated lamina propria cells in specific clusters, and in vitro experiments indicated that redundant adhesion pathways are active in these cells. CONCLUSIONS Ontamalimab has unique and broader mechanisms of action compared to vedolizumab. However, this seems to be compensated for by redundant cell trafficking circuits and leads to similar preclinical efficacy of anti-α4β7 and anti-MAdCAM-1 treatment. These results will be important for the interpretation of pending phase III data.
Collapse
Affiliation(s)
- Lisa Lou Schulze
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Emily Becker
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Chiara van Passen
- Department of Surgery, Division of Molecular and Experimental Surgery, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Mariam Mohamed-Abdou
- Department of Surgery, Division of Molecular and Experimental Surgery, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Tanja M Müller
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Karen A M Ullrich
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Michael Stürzl
- Department of Surgery, Division of Molecular and Experimental Surgery, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | - Dan Sexton
- Shire HGT, a Takeda company, Cambridge, MA, USA
| | | | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany
| |
Collapse
|
6
|
He R, Zhao S, Cui M, Chen Y, Ma J, Li J, Wang X. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations. Front Immunol 2023; 14:1234535. [PMID: 37954590 PMCID: PMC10637386 DOI: 10.3389/fimmu.2023.1234535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease typically involving the gastrointestinal tract but not limited to it. IBD can be subdivided into Crohn's disease (CD) and ulcerative colitis (UC). Extraintestinal manifestations (EIMs) are observed in up to 47% of patients with IBD, with the most frequent reports of cutaneous manifestations. Among these, pyoderma gangrenosum (PG) and erythema nodosum (EN) are the two most common skin manifestations in IBD, and both are immune-related inflammatory skin diseases. The presence of cutaneous EIMs may either be concordant with intestinal disease activity or have an independent course. Despite some progress in research on EIMs, for instance, ectopic expression of gut-specific mucosal address cell adhesion molecule-1 (MAdCAM-1) and chemokine CCL25 on the vascular endothelium of the portal tract have been demonstrated in IBD-related primary sclerosing cholangitis (PSC), little is understood about the potential pathophysiological associations between IBD and cutaneous EIMs. Whether cutaneous EIMs are inflammatory events with a commonly shared genetic background or environmental risk factors with IBD but independent of IBD or are the result of an extraintestinal extension of intestinal inflammation, remains unclear. The review aims to provide an overview of the two most representative cutaneous manifestations of IBD, describe IBD's epidemiology, clinical characteristics, and histology, and discuss the immunopathophysiology and existing treatment strategies with biologic agents, with a focus on the potential pathophysiological associations between IBD and cutaneous EIMs.
Collapse
Affiliation(s)
- Ronghua He
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Subei Zhao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyu Cui
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhao Chen
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinrong Ma
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jintao Li
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Wang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
8
|
Gut immune cell trafficking: inter-organ communication and immune-mediated inflammation. Nat Rev Gastroenterol Hepatol 2023; 20:50-64. [PMID: 35945456 DOI: 10.1038/s41575-022-00663-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/27/2022]
Abstract
Immune cell trafficking is a complex and tightly regulated process that is indispensable for the body's fight against pathogens. However, it is also increasingly acknowledged that dysregulation of cell trafficking contributes to the pathogenesis of immune-mediated inflammatory diseases (IMIDs) in gastroenterology and hepatology, such as inflammatory bowel disease and primary sclerosing cholangitis. Moreover, altered cell trafficking has also been implicated as a crucial step in the immunopathogenesis of other IMIDs, such as rheumatoid arthritis and multiple sclerosis. Over the past few years, a central role of the gut in mediating these disorders has progressively emerged, and the partly microbiota-driven imprinting of particular cell trafficking phenotypes in the intestine seems to be crucially involved. Therefore, this Review highlights achievements in understanding immune cell trafficking to, within and from the intestine and delineates its consequences for immune-mediated pathology along the gut-liver, gut-joint and gut-brain axes. We also discuss implications for current and future therapeutic approaches that specifically interfere with homing, retention, egress and recirculation of immune cells.
Collapse
|
9
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
10
|
Neutrophils in Intestinal Inflammation: What We Know and What We Could Expect for the Near Future. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4040025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neutrophils are short-lived cells that play a crucial role in inflammation. As in other tissues, these polymorphonuclear phagocytes are involved in the intestinal inflammatory response, on the one hand, contributing to the activation and recruitment of other immune cells, but on the other hand, facilitating intestinal mucosa repair by releasing mediators that aid in the resolution of inflammation. Even though these responses are helpful in physiological conditions, excessive recruitment of activated neutrophils in the gut correlates with increased mucosal damage and severe symptoms in patients with inflammatory bowel disease (IBD) and pre-clinical models of colitis. Thus, there is growing interest in controlling their biology to generate novel therapeutic approaches capable of reducing exacerbated intestinal inflammation. However, the beneficial and harmful effects of neutrophils on intestinal inflammation are still controversial. With this review, we summarise and discuss the most updated literature showing how neutrophils (and neutrophil extracellular traps) contribute to developing and resolving intestinal inflammation and their putative use as therapeutic targets.
Collapse
|
11
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
12
|
Tackling Inflammatory Bowel Diseases: Targeting Proinflammatory Cytokines and Lymphocyte Homing. Pharmaceuticals (Basel) 2022; 15:ph15091080. [PMID: 36145301 PMCID: PMC9502105 DOI: 10.3390/ph15091080] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic inflammatory disorders that are a result of an abnormal immune response mediated by a cytokine storm and immune cell infiltration. Proinflammatory cytokine therapeutic agents, represented by TNF inhibitors, have developed rapidly over recent years and are promising options for treating IBD. Antagonizing interleukins, interferons, and Janus kinases have demonstrated their respective advantages in clinical trials and are candidates for anti-TNF therapeutic failure. Furthermore, the blockade of lymphocyte homing contributes to the excessive immune response in colitis and ameliorates inflammation and tissue damage. Factors such as integrins, selectins, and chemokines jointly coordinate the accumulation of immune cells in inflammatory regions. This review assembles the major targets and agents currently targeting proinflammatory cytokines and lymphatic trafficking to facilitate subsequent drug development.
Collapse
|
13
|
Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2022; 19:351-366. [PMID: 35165437 DOI: 10.1038/s41575-021-00574-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
Immune cell trafficking is a critical element of the intestinal immune response, both in homeostasis and in pathological conditions associated with inflammatory bowel disease (IBD). This process involves adhesion molecules, chemoattractants and receptors expressed on immune cell surfaces, blood vessels and stromal intestinal tissue as well as signalling pathways, including those modulated by sphingosine 1-phosphate (S1P). The complex biological processes of leukocyte recruitment, activation, adhesion and migration have been targeted by various monoclonal antibodies (vedolizumab, etrolizumab, ontamalimab). Promising preclinical and clinical data with several oral S1P modulators suggest that inhibition of lymphocyte egress from the lymph nodes to the bloodstream might be a safe and efficacious alternative mechanism for reducing inflammation in immune-mediated disorders, including Crohn's disease and ulcerative colitis. Although various questions remain, including the potential positioning of S1P modulators in treatment algorithms and their long-term safety, this novel class of compounds holds great promise. This Review summarizes the critical mediators and mechanisms involved in immune cell trafficking in IBD and the available evidence for efficacy, safety and pharmacokinetics of S1P receptor modulators in IBD and other immune-mediated disorders. Further, it discusses potential future approaches to incorporate S1P modulators into the treatment of IBD.
Collapse
|
14
|
Becker E, Schweda A, Ullrich KAM, Voskens C, Atreya R, Müller TM, Atreya I, Neurath MF, Zundler S. Limited Dose-Dependent Effects of Vedolizumab on Various Leukocyte Subsets. Clin Transl Gastroenterol 2022; 13:e00494. [PMID: 35575178 PMCID: PMC9236604 DOI: 10.14309/ctg.0000000000000494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The anti-α4β7 integrin antibody vedolizumab (VDZ) is successfully used for the treatment of inflammatory bowel diseases. However, only a subgroup of patients respond to therapy. VDZ is administered at a fixed dose, leading to a wide range of serum concentrations in patients. Previous work from our group showed a dose-dependent preferential binding of VDZ to effector compared with regulatory CD4 + T cells. Therefore, we aimed to determine the dose-dependent binding profile of VDZ to other leukocyte subsets. METHODS We characterized α4β7 integrin expression on CD8 + T cells, CD19 + B cells, CD14 + monocytes, natural killer cells, and eosinophils from patients with inflammatory bowel disease and healthy controls. We studied the binding of VDZ to these cells at different concentrations and investigated the functional consequences for dynamic adhesion and transmigration in vitro . RESULTS The expression of α4β7 differed between the analyzed leukocyte subsets and was significantly higher on eosinophils from inflammatory bowel disease patients compared with controls. Almost all α4β7-expressing cells from these subsets were bound by VDZ at a concentration of 10 μg/mL. Dynamic cell adhesion was significantly impaired in all subsets, but there were no dose-dependent differences in the inhibition of adhesion. DISCUSSION Our data suggest that α4β7-expressing CD8 + T cells, CD19 + B cells, CD14 + monocytes, natural killer cells, and eosinophils are a target of VDZ. However, there do not seem to be concentration-dependent differences, regarding the effects on these cells in the clinically relevant range. Thus, the reported exposure-efficacy characteristic of VDZ can probably mainly be attributed to CD4 + T-cell subsets.
Collapse
Affiliation(s)
- Emily Becker
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
| | - Anna Schweda
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
| | - Karen A. -M. Ullrich
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
| | - Caroline Voskens
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| | - Raja Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| | - Tanja M. Müller
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| | - Imke Atreya
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany;
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Germany.
| |
Collapse
|
15
|
Cluny NL, Nyuyki KD, Almishri W, Griffin L, Lee BH, Hirota SA, Pittman QJ, Swain MG, Sharkey KA. Recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. J Neuroinflammation 2022; 19:73. [PMID: 35379260 PMCID: PMC8981853 DOI: 10.1186/s12974-022-02431-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Behavioral comorbidities, such as anxiety and depression, are a prominent feature of IBD. The signals from the inflamed gut that cause changes in the brain leading to these behavioral comorbidities remain to be fully elucidated. We tested the hypothesis that enhanced leukocyte–cerebral endothelial cell interactions occur in the brain in experimental colitis, mediated by α4β7 integrin, to initiate neuroimmune activation and anxiety-like behavior. Methods Female mice treated with dextran sodium sulfate were studied at the peak of acute colitis. Circulating leukocyte populations were determined using flow cytometry. Leukocyte–cerebral endothelial cell interactions were examined using intravital microscopy in mice treated with anti-integrin antibodies. Brain cytokine and chemokines were assessed using a multiplex assay in animals treated with anti-α4β7 integrin. Anxiety-like behavior was assessed using an elevated plus maze in animals after treatment with an intracerebroventricular injection of interleukin 1 receptor antagonist. Results The proportion of classical monocytes expressing α4β7 integrin was increased in peripheral blood of mice with colitis. An increase in the number of rolling and adherent leukocytes on cerebral endothelial cells was observed, the majority of which were neutrophils. Treatment with anti-α4β7 integrin significantly reduced the number of rolling leukocytes. After anti-Ly6C treatment to deplete monocytes, the number of rolling and adhering neutrophils was significantly reduced in mice with colitis. Interleukin-1β and CCL2 levels were elevated in the brain and treatment with anti-α4β7 significantly reduced them. Enhanced anxiety-like behavior in mice with colitis was reversed by treatment with interleukin 1 receptor antagonist. Conclusions In experimental colitis, α4β7 integrin-expressing monocytes direct the recruitment of neutrophils to the cerebral vasculature, leading to elevated cytokine levels. Increased interleukin-1β mediates anxiety-like behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02431-z.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kewir D Nyuyki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wagdi Almishri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Benjamin H Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
16
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
17
|
Fiorillo B, Sepe V, Conflitti P, Roselli R, Biagioli M, Marchianò S, De Luca P, Baronissi G, Rapacciuolo P, Cassiano C, Catalanotti B, Zampella A, Limongelli V, Fiorucci S. Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1. J Med Chem 2021; 64:16512-16529. [PMID: 34767347 DOI: 10.1021/acs.jmedchem.1c01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.
Collapse
Affiliation(s)
- Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| | - Pasquale De Luca
- Head─Sequencing and Molecular Analyses Center, RIMAR Stazione Zoologica, Villa Comunale, 80121 Naples, Italy
| | - Giuliana Baronissi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy.,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
18
|
Yu L, Chen Y, Xu X, Dong Q, Xiu W, Chen Q, Wang J, He C, Ye J, Lu F. Alterations in Peripheral B Cell Subsets Correlate with the Disease Severity of Human Glaucoma. J Inflamm Res 2021; 14:4827-4838. [PMID: 34584441 PMCID: PMC8464325 DOI: 10.2147/jir.s329084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a group of retinal neurodegenerative diseases causing irreversible visual impairment. The pathogenesis of this disease is complicated. Studies have shown that the immune system is involved in the neurodegenerative process of glaucoma. There are continuous evidences that autoantibodies play a crucial role in the pathogenesis of glaucoma. However, focuses on B cells, the antibody-producing cells in glaucoma are surprisingly limited. Methods Fresh peripheral blood samples were collected from 44 glaucoma patients (38 with primary angle-closure glaucoma (PACG) and 6 with (primary open-angle glaucoma POAG)) and 36 age-matched healthy donors (HD). Density gradient centrifugation was performed to obtain peripheral blood mononuclear cells (PBMC). Flow cytometry was performed to determine B cell phenotypes. The severity of glaucoma was determined based on the mean deviation (MD) of visual field. Results In this study, we demonstrated that total B cells was significantly increased in glaucoma patients compared to HD. Next, we checked changes of different B cell subsets in glaucoma. Glaucoma patients were found to have a significant increase in the frequencies of antibody-secreting cells (ASC)/plasmablasts, naïve, and CD19+ CD27− IgD− double negative (DN) subpopulations, but a decrease in the CD27+ IgD+ unswitched memory compartment. Notably, we found that the increment of CD27− IgD− DN B cells was significantly magnified according to the clinical severity. Conclusion We demonstrate, for the first time, that peripheral B cell subsets are altered and unveil the correlation of a newly identified pro-inflammatory CD27− IgD− DN subset with clinical features of glaucoma, suggesting that these B cell subsets could serve as potential biomarkers to monitor the disease progression of glaucoma patients.
Collapse
Affiliation(s)
- Ling Yu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People's Republic of China
| | - Yang Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiang Xu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qiwei Dong
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wenbo Xiu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qinyuan Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinxia Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Chong He
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, People's Republic of China
| | - Fang Lu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|