1
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Attardi E, Corey SJ, Wlodarski MW. Clonal hematopoiesis in children with predisposing conditions. Semin Hematol 2024; 61:35-42. [PMID: 38311515 DOI: 10.1053/j.seminhematol.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
Clonal hematopoiesis in children and young adults differs from that occuring in the older adult population. A variety of stressors drive this phenomenon, sometimes independent of age-related processes. For the purposes of this review, we adopt the term clonal hematopoiesis in predisposed individuals (CHIPI) to differentiate it from classical, age-related clonal hematopoiesis of indeterminate potential (CHIP). Stress-induced CHIPI selection can be extrinsic, such as following immunologic, infectious, pharmacologic, or genotoxic exposures, or intrinsic, involving germline predisposition from inherited bone marrow failure syndromes. In these conditions, clonal advantage relates to adaptations allowing improved cell fitness despite intrinsic defects affecting proliferation and differentiation. In certain contexts, CHIPI can improve competitive fitness by compensating for germline defects; however, the downstream effects of clonal expansion are often unpredictable - they may either counteract the underlying pathology or worsen disease outcomes. A more complete understanding of how CHIPI arises in young people can lead to the definition of preleukemic states and strategies to assess risk, surveillance, and prevention to leukemic transformation. Our review summarizes current research on stress-induced clonal dynamics in individuals with germline predisposition syndromes.
Collapse
Affiliation(s)
- Enrico Attardi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Marcin W Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Roncareggi S, Girardi K, Fioredda F, Pedace L, Arcuri L, Badolato R, Bonanomi S, Borlenghi E, Cirillo E, Coliva T, Consonni F, Conti F, Farruggia P, Gambineri E, Guerra F, Locatelli F, Mancuso G, Marzollo A, Masetti R, Micalizzi C, Onofrillo D, Piccini M, Pignata C, Raddi MG, Santini V, Vendemini F, Biondi A, Saettini F. A Nationwide Study of GATA2 Deficiency in Italy Reveals Novel Symptoms and Genotype-phenotype Association. J Clin Immunol 2023; 43:2192-2207. [PMID: 37837580 DOI: 10.1007/s10875-023-01583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 10/16/2023]
Abstract
GATA2 deficiency is a rare disorder encompassing a broadly variable phenotype and its clinical picture is continuously evolving. Since it was first described in 2011, up to 500 patients have been reported. Here, we describe a cohort of 31 Italian patients (26 families) with molecular diagnosis of GATA2 deficiency. Patients were recruited contacting all the Italian Association of Pediatric Hematology and Oncology (AIEOP) centers, the Hematology Department in their institution and Italian societies involved in the field of vascular anomalies, otorhinolaryngology, dermatology, infectious and respiratory diseases. Median age at the time of first manifestation, molecular diagnosis and last follow-up visit was 12.5 (age-range, 2-52 years), 18 (age-range, 7-64 years) and 22 years (age-range, 3-64), respectively. Infections (39%), hematological malignancies (23%) and undefined cytopenia (16%) were the most frequent symptoms at the onset of the disease. The majority of patients (55%) underwent hematopoietic stem cell transplantation. During the follow-up rarer manifestations emerged. The clinical penetrance was highly variable, with the coexistence of severely affected pediatric patients and asymptomatic adults in the same pedigree. Two individuals remained asymptomatic at the last follow-up visit. Our study highlights new (pilonidal cyst/sacrococcygeal fistula, cholangiocarcinoma and gastric adenocarcinoma) phenotypes and show that lymphedema may be associated with null/regulatory mutations. Countrywide studies providing long prospective follow-up are essential to unveil the exact burden of rarer manifestations and the natural history in GATA2 deficiency.
Collapse
Affiliation(s)
- Samuele Roncareggi
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Monza, Italy
| | - Katia Girardi
- Department of Pediatric Onco-Haematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Lucia Pedace
- Department of Pediatric Onco-Haematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Luca Arcuri
- U.O.C. Ematologia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, ASST- Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | | | - Erika Borlenghi
- U.O.C. Ematologia, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Filippo Consonni
- Department of Health Sciences, University of Florence, Florence, Italy
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, Pediatric Department, ARNAS Civico, Di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Eleonora Gambineri
- Centre of Excellence, Division of Pediatric Oncology/Hematology, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Fabiola Guerra
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Onco-Haematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Gaia Mancuso
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128, Padua, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| | - Concetta Micalizzi
- U.O.S.D. Centro Trapianto Di Midollo Osseo, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Onofrillo
- UOSD Oncoematologia Pediatrica, Ospedale Civile Santo Spirito, Pescara, Italia
| | - Matteo Piccini
- Ematologia, DMSC, AOU Careggi, Università Di Firenze, Florence, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Valeria Santini
- Ematologia, DMSC, AOU Careggi, Università Di Firenze, Florence, Italy
| | | | - Andrea Biondi
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Dipartimento Di Medicina E Chirurgia, Università Degli Studi Milano-Bicocca, Monza, Italy
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Via Cadore, Monza, Italy
| | - Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo Dei Tintori, Via Cadore, Monza, Italy.
| |
Collapse
|
4
|
Ner-Gaon H, Peleg R, Gazit R, Reiner-Benaim A, Shay T. Mapping the splicing landscape of the human immune system. Front Immunol 2023; 14:1116392. [PMID: 37711610 PMCID: PMC10499523 DOI: 10.3389/fimmu.2023.1116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronnie Peleg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
5
|
Liquidano-Pérez E, Maza-Ramos G, Yamazaki-Nakashimada MA, Barragán-Arévalo T, Lugo-Reyes SO, Scheffler-Mendoza S, Espinosa-Padilla SE, González-Serrano ME. [Combined immunodeficiency due to DOCK8 deficiency. State of the art]. REVISTA ALERGIA MÉXICO 2022; 69:31-47. [PMID: 36927749 DOI: 10.29262/ram.v69i1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Combinedimmunodeficiency (CID) due to DOCK8 deficiency is an inborn error of immunity (IBD) characterized by dysfunctional T and B lymphocytes; The spectrum of manifestations includes allergy, autoimmunity, inflammation, predisposition to cancer, and recurrent infections. DOCK8 deficiency can be distinguished from other CIDs or within the spectrum of hyper-IgE syndromes by exhibiting profound susceptibility to viral skin infections, associated skin cancers, and severe food allergies. The 9p24.3 subtelomeric locus where DOCK8 is located includes numerous repetitive sequence elements that predispose to the generation of large germline deletions and recombination-mediated somatic DNA repair. Residual production DOCK8 protein contributes to the variable phenotype of the disease. Severe viral skin infections and varicella-zoster virus (VZV)-associated vasculopathy, reflect an essential role of the DOCK8 protein, which is required to maintain lymphocyte integrity as cells migrate through the tissues. Loss of DOCK8 causes immune deficiencies through other mechanisms, including a cell survival defect. In addition, there are alterations in the response of dendritic cells, which explains susceptibility to virus infection and regulatory T lymphocytes that could help explain autoimmunity in patients. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment; it improves eczema, allergies, and susceptibility to infections.
Collapse
Affiliation(s)
- Eduardo Liquidano-Pérez
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | | | - Tania Barragán-Arévalo
- Fundación de Asistencia Privada, Instituto de Oftalmología Conde de Valenciana, Departamento de Genética, Ciudad de México, México
| | - Saúl Oswaldo Lugo-Reyes
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | - Sara Elva Espinosa-Padilla
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | |
Collapse
|
6
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|