1
|
Zhang Q, Wang SS, Zhang Z, Chu SF. PKM2-mediated metabolic reprogramming of microglia in neuroinflammation. Cell Death Discov 2025; 11:149. [PMID: 40189596 PMCID: PMC11973174 DOI: 10.1038/s41420-025-02453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Microglia, the resident immune cells of the central nervous system, undergo metabolic reprogramming during neuroinflammation, playing a crucial role in the pathogenesis of neurological disorders such as Parkinson's disease. This review focuses on Pyruvate Kinase M2 (PKM2), a key glycolytic enzyme, and its impact on microglial metabolic reprogramming and subsequent neuroinflammation. We explore the regulatory mechanisms governing PKM2 activity, its influence on microglial activation and immune responses, and its contribution to the progression of various neurological diseases. Finally, we highlight the therapeutic potential of targeting PKM2 as a novel strategy for treating neuroinflammation-driven neurological disorders. This review provides insights into the molecular mechanisms of PKM2 in neuroinflammation, aiming to inform the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Qi Zhang
- Basic medicine college, China Three Gorges University, Yichang, China
| | - Sha-Sha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shi-Feng Chu
- Basic medicine college, China Three Gorges University, Yichang, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Luo YY, Guan YP, Zhan HF, Sun CY, Cai LY, Tao KG, Lin Y, Zeng X. Circ_0098181 binds PKM2 to attenuate liver fibrosis. Front Pharmacol 2025; 16:1517250. [PMID: 40248098 PMCID: PMC12003362 DOI: 10.3389/fphar.2025.1517250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Background Liver cirrhosis seriously harms human health and fibrosis is the essential pathological process of cirrhosis. Recently, circular RNAs (circRNAs) were found to play critical roles in liver fibrosis, but the key circRNAs and precise mechanisms remained unclear. This study aimed to investigate the effect of circ_0098181 in fibrogenesis and explore its mechanism. Methods RNA sequencing was conducted to identify circRNA signatures in human liver cirrhotic tissues. Hepatic stellate cells (HSCs) (including primary rat HSCs, LX2, HSC-T6) and carbon tetrachloride (CCl4) induced liver cirrhosis model were used to explore the role of circ_0098181 on HSC activation and liver fibrogenesis in vitro and in vivo. RNA sequencing, RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) experiments were performed to elucidate the mechanism. Results Circ_0098181 was obviously reduced in human fibrotic liver tissues and activated HSCs. Exogenous administration of circ_0098181 blocked the activation, proliferation, and migration of HSCs in vitro and mitigated the progression of CCl4-induced liver fibrosis in vivo. Mechanistically, adenosine deaminase acting on RNA1 (ADAR1) combined with the intronic complementary sequences (ICSs) in the flanking regions, thereby regulating the biogenesis of circ_0098181. RNA sequencing and qRT-PCR revealed the suppression of circ_0098181 on pro-inflammation cytokines expression (TNFα, Fas, Cxcl11, etc.). RNA pull-down, mass spectrometry, and RIP experiments indicated that pyruvate kinase M2 (PKM2) was the direct target of circ_0098181. Circ_0098181 bound to PKM2, restrained its nuclear translocation and phosphorylation. Conclusion In conclusion, circ_0098181 exerts a significant anti-fibrotic effect by binding PKM2 to repress its nuclear translocation and inhibiting hepatic inflammation, suggesting the promising therapeutic merit in liver cirrhosis.
Collapse
Affiliation(s)
- Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Fei Zhan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun-Yan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ling-Yan Cai
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke-Gong Tao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Lin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, China
| | - Xin Zeng
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Cao M, Yan J, Ding Y, Zhang Y, Sun Y, Jiang G, Zhang Y, Li B. The potential impact of RNA splicing abnormalities on immune regulation in endometrial cancer. Cell Death Dis 2025; 16:148. [PMID: 40032844 PMCID: PMC11876696 DOI: 10.1038/s41419-025-07458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
RNA splicing controls the post-transcriptional level of gene expression, allowing for the synthesis of many transcripts with various configurations and roles. Variations in RNA splicing regulatory factors, including splicing factors, signaling pathways, epigenetic modifications, and environmental factors, are typically the origin of tumor-associated splicing anomalies. Furthermore, thorough literature assessments on the intricate connection between tumor-related splicing dysregulation and tumor immunity are currently lacking. Therefore, we also thoroughly discuss putative targets associated with RNA splicing in endometrial cancer (EC) and the possible impacts of aberrant RNA splicing on the immune control of tumor cells and tumor microenvironment (TME), which contributes to enhancing the utilization of immunotherapy in the management of EC and offers an alternative viewpoint for the exploration of cancer therapies and plausible prognostic indicators.
Collapse
Affiliation(s)
- Minyue Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiayu Yan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiqin Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yanli Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Ueno M, Iwata S, Yamagata K, Todoroki Y, Sonomoto K, Nagayasu A, Miyagawa I, Kubo S, Miyazaki Y, Miyata H, Kanda R, Aritomi T, Nakayamada S, Tanaka Y. Induction of interleukin 21 receptor expression via enhanced intracellular metabolism in B cells and its relevance to the disease activity in systemic lupus erythematosus. RMD Open 2024; 10:e004567. [PMID: 39740932 PMCID: PMC11749818 DOI: 10.1136/rmdopen-2024-004567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis. METHODS CD19+ or CD19+CD27- (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated. RESULTS Stimulation with CpG (Toll-like receptor 9 (TLR9) ligand) in vitro induced enhanced interleukin 21 (IL-21) receptor expression in CD19+CD27- cells after 24 hours. The addition of IL-21 to the CpG stimulation enhanced the extracellular acidification rate, which indicates glycolysis, within 30 min. IL-21 receptor (IL-21R) expression induced by CpG stimulation was selectively inhibited by 2-deoxy-D-glucose (hexokinase 2 (HK2) inhibitor) and heptelidic acid (glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibitor). RNA immunoprecipitation with anti-GAPDH antibody revealed that CpG stimulation dissociated the binding between IL-21R messenger RNA (mRNA) and GAPDH under no stimulation. HK2 and GAPDH expression were higher in CD19+CD27- cells of lupus patients than in those of healthy controls, and GAPDH expression was correlated with the plasmocyte count and disease activity score. CONCLUSION IL-21R mRNA-GAPDH binding dissociation associated with rapid glycolytic enhancement by the TLR9 ligand in B cells may induce plasmocyte differentiation through IL-21 signals and be involved in exacerbating SLE.
Collapse
Affiliation(s)
- Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Molecular Targeted Therapies, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Koshiro Sonomoto
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Clinical Nursing, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Atsushi Nagayasu
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Ippei Miyagawa
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Molecular Targeted Therapies, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yusuke Miyazaki
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Hiroko Miyata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Ryuichiro Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Takafumi Aritomi
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| |
Collapse
|
6
|
Liang W, Bai Y, Zhang H, Mo Y, Li X, Huang J, Lei Y, Gao F, Dong M, Li S, Liang J. Identification and Analysis of Potential Biomarkers Associated with Neutrophil Extracellular Traps in Cervicitis. Biochem Genet 2024:10.1007/s10528-024-10919-x. [PMID: 39419909 DOI: 10.1007/s10528-024-10919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/19/2024]
Abstract
Early diagnosis of cervicitis is important. Previous studies have found that neutrophil extracellular traps (NETs) play pro-inflammatory and anti-inflammatory roles in many diseases, suggesting that they may be involved in the inflammation of the uterine cervix and NETs-related genes may serve as biomarkers of cervicitis. However, what NETs-related genes are associated with cervicitis remains to be determined. Transcriptome analysis was performed using samples of exfoliated cervical cells from 15 patients with cervicitis and 15 patients without cervicitis as the control group. First, the intersection of differentially expressed genes (DEGs) and neutrophil extracellular trap-related genes (NETRGs) were taken to obtain genes, followed by functional enrichment analysis. We obtained hub genes through two machine learning algorithms. We then performed Artificial Neural Network (ANN) and nomogram construction, confusion matrix, receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and immune cell infiltration analysis. Moreover, we constructed ceRNA network, mRNA-transcription factor (TF) network, and hub genes-drug network. We obtained 19 intersecting genes by intersecting 1398 DEGs and 136 NETRGs. 5 hub genes were obtained through 2 machine learning algorithms, namely PKM, ATG7, CTSG, RIPK3, and ENO1. Confusion matrix and ROC curve evaluation ANN model showed high accuracy and stability. A nomogram containing the 5 hub genes was established to assess the disease rate in patients. The correlation analysis revealed that the expression of ATG7 was synergistic with RIPK3. The GSEA showed that most of the hub genes were related to ECM receptor interactions. It was predicted that the ceRNA network contained 2 hub genes, 3 targeted miRNAs, and 27 targeted lnRNAs, and that 5 mRNAs were regulated by 28 TFs. In addition, 36 small molecule drugs that target hub genes may improve the treatment of cervicitis. In this study, five hub genes (PKM, ATG7, CTSG, RIPK3, ENO1) provided new directions for the diagnosis and treatment of patients with cervicitis.
Collapse
Affiliation(s)
- Wantao Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yanyuan Bai
- Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, China
| | - Hua Zhang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yan Mo
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Xiufang Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Junming Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Yangliu Lei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Fangping Gao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Mengmeng Dong
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Shan Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China
| | - Juan Liang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530023, Guangxi, China.
| |
Collapse
|
7
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
8
|
Xiang Y, Jiang Z, Yang Z, Gong S, Niu W. Ephedrine attenuates LPS-induced M1 polarization of alveolar macrophages via the PKM2-mediated glycolysis. Toxicol Res (Camb) 2024; 13:tfae166. [PMID: 39399212 PMCID: PMC11465183 DOI: 10.1093/toxres/tfae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Background Asthma is one of chronic inflammatory lung diseases in world. The important role of macrophage polarization and glycolysis in lung inflammation has attracted considerable attention. Ephedrine (EP) is a compound isolated from Ephedra and plays a regulatory role in inflammatory response, but its role in asthma and mechanism involved are not clear. Therefore, the purpose of this study was to investigate the molecular mechanism and effect of EP on lipopolysaccharide (LPS)-induced alveolar macrophage polarization and glycolysis. Methods We investigated the expression of Tnf-a, Nos2, Il10, and Arg1 using RT-PCR, as well as PKM2 and LDHA protein expression with Western blot. A CCK-8 assay was performed to determine the viability of the cells. The extracellular acidification rate (ECAR), ATP and lactate level were detected using commercial kits. Results The results revealed that EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. Further studies found that EP enhanced the effect of 2-DG on NR8383 cell glycolysis and M1 polarization. More importantly, PKM2 inhibitor alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. In addition, EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization by targeting PKM2. Conclusion It is suggested that EP alleviates LPS-induced glycolysis and M1 polarization in NR8383 cells by regulating PKM2, thereby alleviating lung injury, suggesting the involvment of alveolar macrophage polarization and glycolysis in the role of EP in asthma.
Collapse
Affiliation(s)
- Yijin Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zaifeng Jiang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Zhangjiang Hi-TechPark, Pudong New Area, Shanghai, China
| | - Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Shaomin Gong
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Weiran Niu
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
9
|
Xiao Y, Hu Y, Gao Y, Wang L, Zhang L, Ma Q, Ning Z, Yu L, Li H, Liu J, Wang J, Yang Y, Xiong H, Dong G. IL-17B alleviates the pathogenesis of systemic lupus erythematosus by inhibiting FASN-mediated differentiation of B cells. JCI Insight 2024; 9:e181906. [PMID: 39115936 PMCID: PMC11457847 DOI: 10.1172/jci.insight.181906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
The interleukin 17 (IL-17) family of cytokines has emerged as a critical player in autoimmune disease, including systemic lupus erythematosus (SLE). However, the role of IL-17B, a poorly understood cytokine, in the pathogenesis of SLE is still not known. In this study, we investigated the role of IL-17B in the activation and differentiation of B cells, and the pathogenesis of SLE. Intriguingly, IL-17B deficiency aggravated disease in lupus-prone mice and promoted the activation of B cells and the differentiation of germinal center B cells and plasma cells, while recombinant mouse IL-17B (rmIL-17B) significantly alleviated disease in lupus-prone mice. Mechanistically, rmIL-17B inhibited the activation of the Toll-like receptor and interferon pathways in B cells by downregulating fatty acid synthase-mediated (FASN-mediated) lipid metabolism. Loss of FASN significantly alleviated the disease in lupus-prone mice and inhibited the activation and differentiation of B cells. In addition, B cells had greater FASN expression and lower IL-17RB levels in patients with SLE than in healthy controls. Our study describes the role of IL-17B in regulating B cell activation and differentiation, and alleviating the onset of SLE. These findings will lay a theoretical foundation for further understanding of the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuxin Hu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Yangzhe Gao
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Qun Ma
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Lu Yu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Haochen Li
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Jiakun Liu
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Junyu Wang
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| | - Guanjun Dong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Institute of Immunology and Molecular Medicine, and
- Jining Key Laboratory of Immunology, Jining Medical University, Shandong, China
| |
Collapse
|
10
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
11
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
12
|
Li F, Zhao P, Wang S, Luo W, Xia Y, Li D, He L, Zhao J. Babesia duncani Pyruvate Kinase Inhibitor Screening and Identification of Key Active Amino Acid Residues. Microorganisms 2024; 12:1141. [PMID: 38930523 PMCID: PMC11205445 DOI: 10.3390/microorganisms12061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Babesia duncani (B. duncani), a protozoan parasite prevalent in North America, is a significant threat for human health. Given the regulatory role of pyruvate kinase I (PyK I) in glycolytic metabolism flux and ATP generation, PyK I has been considered the target for drug intervention for a long time. In this study, B. duncani PyK I (BdPyK I) was successfully cloned, expressed, and purified. Polyclonal antibodies were confirmed to recognize the native BdPyK I protein (56 kDa) using Western blotting. AlphaFold software predicted the three-dimensional structure of BdPyK I, and molecular docking with small molecules was conducted to identify potential binding sites of inhibitor on BdPyK I. Moreover, inhibitory effects of six inhibitors (tannic acid, apigenin, shikonin, PKM2 inhibitor, rosiglitazone, and pioglitazone) on BdPyK I were examined under the optimal enzymatic conditions of 3 mM PEP and 3 mM ADP, and significant activity reduction was found. Enzyme kinetics and growth inhibition assays further confirmed the reliability of these inhibitors, with PKM2 inhibitor, tannic acid, and apigenin exhibiting the highest selectivity index as specific inhibitors for B. duncani. Subsequently, key amino acid residues were mutated in both BdPyK I and Homo sapiens pyruvate kinase I (HPyK I), and two differential amino acid residues (isoleucine and phenylalanine) were identified between HPyK I and BdPyK I through PyK activity detection experiments. These findings lay foundation for understanding the role of PyK I in the growth and development of B. duncani, providing insights for babesiosis prevention and drug development.
Collapse
Affiliation(s)
- Fangjie Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Wanxin Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Dongfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.L.); (P.Z.); (S.W.); (W.L.); (Y.X.); (D.L.); (L.H.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
| |
Collapse
|
13
|
Ning Z, Liu K, Zhang H, Dong G, Wang X, Xiong H. Platelets induce CD39 expression in tumor cells to facilitate tumor metastasis. Br J Cancer 2024; 130:1542-1551. [PMID: 38461171 PMCID: PMC11058827 DOI: 10.1038/s41416-024-02640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Tumor cells continue to evolve the metastatic potential in response to signals provided by the external microenvironment during metastasis. Platelets closely interact with tumor cells during hematogenous metastasis and facilitate tumor development. However, the molecular mechanisms underlying this process are not fully understood. METHODS RNA-sequencing was performed to screen differentially expressed genes mediated by platelets. The effects of platelet and CD39 on tumor metastasis were determined by experimental metastasis models with WT, NCG and CD39-/- mice. RESULTS RNA-sequencing results showed that platelets significantly up-regulated CD39 expression in tumor cells. CD39 is a novel immune checkpoint molecule and a key driver of immunosuppression. Our data provided evidence that the expression of CD39 was enhanced by platelets in a platelet-tumor cell contact dependent manner. Although the role of CD39 expressed by immune cells is well established, the effect of CD39 expressed by tumor cells on tumor cell behavior, anti-tumor immunity and tumor metastasis is unclear. We found that CD39 promoted tumor cell invasion, but had no effect on proliferation and migration. Notably, we showed that the ability of platelets to prime tumor cells for metastasis depends on CD39 in the experimental tumor metastasis model. CD39 silencing resulted in fewer experimental metastasis formation, and this anti-metastasis effect was significantly reduced in platelet-depleted mice. Furthermore, overexpression of CD39 in tumor cells promoted metastasis. In order to eliminate the effect of CD39 expressed in cells other than tumor cells, we detected tumor metastasis in CD39-/- mice and obtained similar results. Moreover, overexpression of CD39 in tumor cells inhibited antitumor immunity. Finally, the data from human samples also supported our findings. CONCLUSIONS Our study shows that direct contact with platelets induces CD39 expression in tumor cells, leading to immune suppression and promotion of metastasis.
Collapse
Affiliation(s)
- Zhaochen Ning
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, 272067, China
| | - Hui Zhang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Guanjun Dong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Xiaotong Wang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Huabao Xiong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
14
|
Bai Q, Sun D, Zeng Y, Zhu J, Zhang C, Zhang X, Chen L, Zhou X, Ye L, Tang Y, Liu Y, Morozova-Roche LA. Effect of Proinflammatory S100A9 Protein on Migration and Proliferation of Microglial Cells. J Mol Neurosci 2023; 73:983-995. [PMID: 37947991 DOI: 10.1007/s12031-023-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial disease affecting aging population worldwide. Neuroinflammation became a focus of research as one of the major pathologic processes relating to the disease onset and progression. Proinflammatory S100A9 is the central culprit in the amyloid-neuroinflammatory cascade implicated in AD and other neurodegenerative diseases. We studied the effect of S100A9 on microglial BV-2 cell proliferation and migration. The responses of BV-2 cells to S100A9 stimulation were monitored in real-time using live cell microscopy, transcriptome sequencing, immunofluorescence staining, western blot analysis, and ELISA. We observed that a low dose of S100A9 promotes migration and proliferation of BV-2 cells. However, acute inflammatory condition (i.e., high S100A9 doses) causes diminished cell viability; it is uncovered that S100A9 activates TLR-4 and TLR-7 signaling pathways, leading to TNF-α and IL-6 expression, which affect BV-2 cell migration and proliferation in a concentration-dependent manner. Interestingly, the effects of S100A9 are not only inhibited by TNF-α and IL-6 antibodies. The addition of amyloid-β (Aβ) 1-40 peptide resumes the capacities of BV-2 cells to the level of low S100A9 concentrations. Based on these results, we conclude that in contrast to the beneficial effects of low S100A9 dose, high S100A9 concentration leads to impaired mobility and proliferation of immune cells, reflecting neurotoxicity at acute inflammatory conditions. However, the formation of Aβ plaques may be a natural mechanism that rescues cells from the proinflammatory and cytotoxic effects of S100A9, especially considering that inflammation is one of the primary causes of AD.
Collapse
Affiliation(s)
- Qiao Bai
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jie Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyin Zhang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Li Chen
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Xin Zhou
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Liu Ye
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yong Tang
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China
| | - Yonggang Liu
- Chongqing Medical University, 1 Medical College Road, Yu Zhong District, Chongqing, China.
| | | |
Collapse
|
15
|
Li Q, Chen Y, Liu H, Tian Y, Yin G, Xie Q. Targeting glycolytic pathway in fibroblast-like synoviocytes for rheumatoid arthritis therapy: challenges and opportunities. Inflamm Res 2023; 72:2155-2167. [PMID: 37940690 DOI: 10.1007/s00011-023-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by hyperplastic synovium, pannus formation, immune cell infiltration, and potential articular cartilage damage. Notably, fibroblast-like synoviocytes (FLS), especially rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), exhibit specific overexpression of glycolytic enzymes, resulting in heightened glycolysis. This elevated glycolysis serves to generate ATP and plays a pivotal role in immune regulation, angiogenesis, and adaptation to hypoxia. Key glycolytic enzymes, such as hexokinase 2 (HK2), phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and pyruvate kinase M2 (PKM2), significantly contribute to the pathogenic behavior of RAFLS. This increased glycolysis activity is regulated by various signaling pathways. MATERIALS AND METHODS A comprehensive literature search was conducted to retrieve relevant studies published from January 1, 2010, to the present, focusing on RAFLS glycolysis, RA pathogenesis, glycolytic regulation pathways, and small-molecule drugs targeting glycolysis. CONCLUSION This review provides a thorough exploration of the pathological and physiological characteristics of three crucial glycolytic enzymes in RA. It delves into their putative regulatory mechanisms, shedding light on their significance in RAFLS. Furthermore, the review offers an up-to-date overview of emerging small-molecule candidate drugs designed to target these glycolytic enzymes and the upstream signaling pathways that regulate them. By enhancing our understanding of the pathogenic mechanisms of RA and highlighting the pivotal role of glycolytic enzymes, this study contributes to the development of innovative anti-rheumatic therapies.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Weng W, Zhang Y, Gui L, Chen J, Zhu W, Liang Z, Wu Z, Liang Y, Xie J, Wei Q, Liao Z, Gu J, Pan Y, Jiang Y. PKM2 promotes proinflammatory macrophage activation in ankylosing spondylitis. J Leukoc Biol 2023; 114:595-603. [PMID: 37192369 DOI: 10.1093/jleuko/qiad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Macrophages play a critical role in ankylosing spondylitis by promoting autoimmune tissue inflammation through various effector functions. The inflammatory potential of macrophages is highly influenced by their metabolic environment. Here, we demonstrate that glycolysis is linked to the proinflammatory activation of human blood monocyte-derived macrophages in ankylosing spondylitis. Specifically, ankylosing spondylitis macrophages produced excessive inflammation, including TNFα, IL1β, and IL23, and displayed an overactive status by exhibiting stronger costimulatory signals, such as CD80, CD86, and HLA-DR. Moreover, we found that patient-derived monocyte-derived M1-type macrophages (M1 macrophages) exhibited intensified glycolysis, as evidenced by a higher extracellular acidification rate. Upregulation of PKM2 and GLUT1 was observed in ankylosing spondylitis-derived monocytes and monocyte-derived macrophages, especially in M1 macrophages, indicating glucose metabolic alteration in ankylosing spondylitis macrophages. To investigate the impact of glycolysis on macrophage inflammatory ability, we treated ankylosing spondylitis M1 macrophages with 2 inhibitors: 2-deoxy-D-glucose, a glycolysis inhibitor, and shikonin, a PKM2 inhibitor. Both inhibitors reduced proinflammatory function and reversed the overactive status of ankylosing spondylitis macrophages, suggesting their potential utility in treating the disease. These data place PKM2 at the crosstalk between glucose metabolic changes and the activation of inflammatory macrophages in patients with ankylosing spondylitis.
Collapse
Affiliation(s)
- Weizhen Weng
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Lian Gui
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jingrong Chen
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Weihang Zhu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhenguo Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhongming Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yao Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jiewen Xie
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yunfeng Pan
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| |
Collapse
|
17
|
Hsu CH, Yu YL. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjögren's syndrome, cancers, and cancer metabolism. Cancer Cell Int 2023; 23:289. [PMID: 37993883 PMCID: PMC10664372 DOI: 10.1186/s12935-023-03143-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Protein tripartite motif-containing 21 (TRIM21/Ro52), an E3 ubiquitin ligase, is an essential regulator of innate immunity, and its dysregulation is closely associated with the development of autoimmune diseases, predominantly systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS). TRIM21 /Ro52 also features anti-cancer and carcinogenic functions according to different malignancies. The interconnected role of TRIM21/Ro52 in regulating autoimmunity and cell metabolism in autoimmune diseases and malignancies is implicated. In this review, we summarize current findings on how TRIM21/Ro52 affects inflammation and tumorigenesis, and investigate the relationship between TRIM21/Ro52 expression and the formation of lymphoma and breast cancer in SLE and pSS populations.
Collapse
Affiliation(s)
- Chueh-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
- Institute of Translational Medicine and New Drug Development, Taichung, 40402, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
18
|
Ni L, Lin B, Shen M, Li C, Hu L, Fu F, Chen L, Yang J, Shi D. PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Discov 2022; 8:496. [PMID: 36564378 PMCID: PMC9789059 DOI: 10.1038/s41420-022-01287-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening syndrome with multi-organ dysfunction in critical care medicine. With the occurrence of sepsis-induced cardiomyopathy (SIC), characterized by reduced ventricular contractility, the mortality of sepsis is boosted to 70-90%. Pyruvate kinase M2 (PKM2) functions in a variety of biological processes and diseases other than glycolysis, and has been documented as a cardioprotective factor in several heart diseases. It is currently unknown whether PKM2 influences the development of SIC. Here, we found that PKM2 was upregulated in cardiomyocytes treated with LPS both in vitro and in vivo. Pkm2 inhibition exacerbated the LPS-induced cardiac damage to neonatal rat cardiomyocytes (NRCMs). Furthermore, cardiomyocytes lacking PKM2 aggravated LPS-induced cardiomyopathy, including myocardial damage and impaired contractility, whereas PKM2 overexpression and activation mitigated SIC. Mechanism investigation revealed that PKM2 interacted with sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), a key regulator of the excitation-contraction coupling, to maintain calcium homeostasis, and PKM2 deficiency exacerbated LPS-induced cardiac systolic dysfunction by impairing SERCA2a expression. In conclusion, these findings highlight that PKM2 plays an essential role in gram-negative sepsis-induced cardiomyopathy, which provides an attractive target for the prevention and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Meiting Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Can Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fengmei Fu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Jinzhou Medical University, Liaoning, 121000, China
| | - Lei Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
19
|
Shen MY, Wang X, Di YX, Zhang MF, Tian FX, Qian FY, Jiang BP, Zhou LL. Triptolide inhibits Th17 differentiation via controlling PKM2-mediated glycolysis in rheumatoid arthritis. Immunopharmacol Immunotoxicol 2022; 44:838-849. [PMID: 35657277 DOI: 10.1080/08923973.2022.2086139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Rheumatoid arthritis (RA) is an autoimmune disease with the aberrant differentiation of T helper 17 (Th17) cells. Pyruvate kinase M2 (PKM2), a key enzyme of glycolysis, was associated with Th17 cell differentiation. AIM To investigate the potential therapeutic effects of triptolide (TP) in collagen-induced arthritis (CIA) and Th17 cell differentiation, and elucidated the underlying mechanisms. METHODS PKM2 expression and IL-17A production in peripheral blood of RA patients were detected by RT-qPCR or ELISA. Flow cytometry and ELISA were employed to assess the effect of Th17 cell differentiation by TP. PKM2 expression and other glycolysis-related factors were detected using RT-qPCR and Western Blot. PKM2 specific inhibitor Compound 3 K was used to verify the mechanisms. Male DBA/1J mice were divided into control, model, and TP (60 μg/kg) groups to assess the anti-arthritis effect, Th17 cell differentiation and PKM2 expression. RESULTS PKM2 expression positively correlated with IL-17A production in RA patients. PKM2 expression was increased upon Th17 cell differentiation. Down-regulating PKM2 expression could strongly reduce Th17 cell differentiation. Molecular docking analysis predicted that TP targeted PKM2. TP treatment significantly reduced Th17 cell differentiation, PKM2 expression, pyruvate, and lactate production. In addition, compared with down-regulating PKM2 alone (Compound 3 K treatment), co-treatment with TP and Compound 3 K further significantly decreased PKM2-mediated glycolysis and Th17 cell differentiation. In CIA mice, TP repressed the PKM2-mediated glycolysis and attenuated joint inflammation. CONCLUSION TP inhibited Th17 cell differentiation through the inhibition of PKM2-mediated glycolysis. We highlight a novel strategy for the use of TP in RA treatment.
Collapse
Affiliation(s)
- Mei-Yu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yu-Xi Di
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ming-Fei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Feng-Xiang Tian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Fei-Ya Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Bao-Ping Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ling-Ling Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
20
|
Yan J, Zhang Y, Du S, Hou X, Li W, Zeng C, Zhang C, Cheng J, Deng B, McComb DW, Zhao W, Xue Y, Kang DD, Cheng X, Dong Y. Nanomaterials-Mediated Co-Stimulation of Toll-Like Receptors and CD40 for Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207486. [PMID: 36121735 PMCID: PMC9691606 DOI: 10.1002/adma.202207486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/12/1912] [Indexed: 05/15/2023]
Abstract
Toll-like receptors (TLRs) and CD40-related signaling pathways represent critical bridges between innate and adaptive immune responses. Here, an immunotherapy regimen that enables co-stimulation of TLR7/8- and CD40-mediated pathways is developed. TLR7/8 agonist resiquimod (R848) derived amino lipids, RAL1 and RAL2, are synthesized and formulated into RAL-derived lipid nanoparticles (RAL-LNPs). The RAL2-LNPs show efficient CD40 mRNA delivery to DCs both in vitro (90.8 ± 2.7%) and in vivo (61.3 ± 16.4%). When combined with agonistic anti-CD40 antibody, this approach can produce effective antitumor activities in mouse melanoma tumor models, thereby suppressing tumor growth, prolonging mouse survival, and establishing antitumor memory immunity. Overall, RAL2-LNPs provide a novel platform toward cancer immunotherapy by integrating innate and adaptive immunity.
Collapse
Affiliation(s)
- Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jeffrey Cheng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
21
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW New insight into altered B cell distribution including newly identified subsets and abnormalities in systemic lupus erythematosus (SLE) as well as their role in immune protection are summarized in this review. RECENT FINDINGS SLE carries characteristic B cell abnormalities, which offer new insights into B cell differentiation and their disturbances including discoveries of pathogenic B cell subsets and intrinsic B cell abnormalities. A recent study in SLE found that antigen-experienced B cell subsets lacking expression of CD27 and IgD defined by their lack of CXCR5 and CD19low expression are expanded in SLE and represent plasmablasts likely escaping proper selection. In terms of therapeutic targeting with broader coverage than rituximab, second-generation anti-CD20, anti-CD38 and CD19-CART treatment experiences have advanced our understanding recently. However, the key role of qualitative and quantitative B cell requirements in connection with T cells became apparent during SARS-Cov2 infection and vaccination, especially in patients with gradual B cell impairments by rituximab, mycophenolate mofetil and cyclophosphamide. SUMMARY Identification and characterization relevant B cell subsets together with altered regulatory mechanisms in SLE facilitates new approaches in targeting pathogenic B cells but require consideration of preservation of protection.
Collapse
Affiliation(s)
- Franziska Szelinski
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin
- Freie Universität Berlin, Humboldt-Universität zu Berlin, the Berlin Institute of Health
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Andreia C Lino
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin
- Freie Universität Berlin, Humboldt-Universität zu Berlin, the Berlin Institute of Health
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin
- Freie Universität Berlin, Humboldt-Universität zu Berlin, the Berlin Institute of Health
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| |
Collapse
|
23
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|