1
|
Lin J, He XL, Zhang WW, Mo CF. Metabolic reprogramming of tumor-associated neutrophils in tumor treatment and therapeutic resistance. Front Cell Dev Biol 2025; 13:1584987. [PMID: 40342932 PMCID: PMC12058717 DOI: 10.3389/fcell.2025.1584987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Tumor-associated neutrophils (TANs), pivotal immune cells within the tumor microenvironment (TME), exhibit dual potential in both pro- and anti-tumorigenic effects. These cells display remarkable heterogeneity and plasticity within the TME, adapting to hypoxic and nutrient-deprived conditions through metabolic reprogramming while critically influencing tumor progression, metastasis, and immune evasion. The metabolic reprogramming of TANs not only modulates their functional phenotypes but also reshapes tumor biological behaviors and therapeutic responses by regulating metabolic intermediates and cellular interactions within the TME. Therefore, elucidating the mechanisms underlying TANs metabolic reprogramming has significant implications for deciphering the molecular basis of tumorigenesis, identifying novel therapeutic targets, and optimizing immunotherapeutic strategies. This review systematically summarizes current knowledge regarding metabolic reprogramming mechanisms of TANs in the TME and their impact on tumor progression. We particularly focus on: 1) TAN-specific alterations in glucose, lipid, and amino acid metabolism within the TME; 2) Emerging immunotherapeutic strategies targeting TANs metabolic pathways; 3) Recent advances in understanding TAN-mediated immune evasion and therapy resistance. Furthermore, this review discusses potential challenges and corresponding solutions in targeting TANs metabolic reprogramming for therapeutic intervention, aiming to provide novel insights for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Lin
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xian-Lu He
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Wei-Wei Zhang
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Chun-Fen Mo
- Department of General Surgery, Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Fu Y, Wen Z, Fan J. Interaction of low-density neutrophils with other immune cells in the mechanism of inflammation. Mol Med 2025; 31:133. [PMID: 40205584 PMCID: PMC11983930 DOI: 10.1186/s10020-025-01187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Low-density neutrophils (LDNs) are a unique subpopulation of neutrophils, play a significant role in regulating innate and adaptive immunity in various inflammation-related diseases. Emerging evidence suggests that LDNs play a significant role in the pathogenesis and progression of various diseases, including infections, autoimmune disorders, and cancer. In this review, we address the origin, development, and heterogeneity of LDNs, and the roles of LDNs in system homeostasis and diseases. We will focus on the findings of the interaction between LDNs and other immune cells. We will then discuss potential novel therapeutic strategies of intervention in diseases by targeting LDNs.
Collapse
Affiliation(s)
- Yu Fu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Fan
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
3
|
Charoensappakit A, Sae-Khow K, Vutthikraivit N, Maneesow P, Sriprasart T, Pachinburavan M, Leelahavanichkul A. Immune suppressive activities of low-density neutrophils in sepsis and potential use as a novel biomarker of sepsis-induced immune suppression. Sci Rep 2025; 15:9458. [PMID: 40108283 PMCID: PMC11923122 DOI: 10.1038/s41598-025-92417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025] Open
Abstract
Data of low-density neutrophils (LDN), the neutrophils in the peripheral blood mononuclear cells (PBMC) fraction, in sepsis is still less. As such, LDN (CD66b-positive cells in PBMC) was highest in intensive care unit (ICU) patients with sepsis (n=24) compared with non-sepsis (n=10) and healthy control (n=20), with a negative correlation with lymphocyte count and could predict secondary infection and mortality with the area under the curve (AUC) at 0.79 and 0.84, respectively. Compared with sepsis normal-density neutrophils (NDN), sepsis-LDN demonstrated higher expression of CD66b, CD63, CD11b, and CD184, but lower expression of CD62L and CD182 and defects of effector functions, including phagocytosis and apoptosis. The t-distributed stochastic neighbor embedding (t-SNEs) demonstrated high program cell death ligand-1 (PD-L1) in sepsis-LDN. In sepsis samples, the T cell proliferation in PBMC (T cells with LDNs) was lower than that in the isolated T cells (T cells alone) and incubation of anti-PD-L1 neutralizing antibody, but not a reactive oxygen species (ROS) scavenger (N-acetyl cysteine), improved the T cell suppression. Additionally, 30 min lipopolysaccharide (LPS) activation altered healthy control NDN into LPS-LDN (reduced density) and LPS-NDN (maintain density) with similarly elevated CD66b, CD11B, and CD62L. However, LPS-LDN (in vitro LDN) showed lower expression of CD63, CD184, and PD-L1 compared with LDN from patients (sepsis-LDN), suggesting a partial LPS impact on LDN generation. From the microscopic-based method (Wright's staining in PBMC), sepsis-LDN demonstrated a mixed population of mature and immature cells with a good correlation with the flow-based analysis (Bland-Altman analysis and AUC). In conclusion, LDN in sepsis, partly generated by LPS activation, was associated with secondary infection and T cell suppression, mainly through the expression of PD-L1, which might be an immune suppression biomarker, especially with a less expensive microscopic-based method.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence On Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence On Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nuntanuj Vutthikraivit
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Patinya Maneesow
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thitiwat Sriprasart
- Division of Respiratory Diseases and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Monvasi Pachinburavan
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence On Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, 1873 King Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
5
|
Balestra C, Leveque C, Mrakic-Sposta S, Coulon M, Tumbarello R, Vezzoli A, Bosco G, Imtiyaz Z, Thom SR. Inert Gas Mild Pressure Action on Healthy Humans: The "IPA" Study. Int J Mol Sci 2024; 25:12067. [PMID: 39596136 PMCID: PMC11593890 DOI: 10.3390/ijms252212067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The goal of this study was to evaluate inflammatory and oxidative stress responses in human subjects (9 females and 15 males) (age [29.6 ± 11.5 years old (mean ± SD)], height [172.0 ± 10.05 cm], and weight [67.8 ± 12.4 kg]) exposed to 1.45 ATA of helium (He) or nitrogen (N2) without concurrent hyperoxia. We hypothesized that elevated gas pressures would elicit an inflammatory response concurrent with oxidative stress. Consistent with ex vivo studies, both gasses elicited neutrophil activation, small elevations in microparticles (MPs) and increases in intra-MP interleukin (IL)-1β and inflammatory nitric oxide synthase, and an increase in urinary IL-6 concurrent with a marked reduction in plasma gelsolin. Mixed responses indictive of oxidative stress, with some biomarker elevations but little change in others and a decrease in some, were observed. Overall, these results demonstrate that exposure to typical diving gasses at a mildly elevated partial pressure will initiate inflammatory responses, which may play a significant role in decompression sickness (DCS). The complex pattern of oxidative stress responses may be indicative of competing systemic reactions and sampling different body fluids.
Collapse
Affiliation(s)
- Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy; (S.M.-S.); (A.V.)
| | - Mathias Coulon
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Romain Tumbarello
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium; (C.L.); (M.C.); (R.T.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy; (S.M.-S.); (A.V.)
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Zuha Imtiyaz
- Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA; (Z.I.); (S.R.T.)
| | - Stephen R. Thom
- Department of Emergency Medicine, School of Medicine, University of Maryland, Baltimore, MD 21250, USA; (Z.I.); (S.R.T.)
| |
Collapse
|
6
|
Imtiyaz Z, O'Neill OJ, Sward D, Le PJ, Arya AK, Bhopale VM, Bhat AR, Thom SR. Influence of exposure duration on human pressure-induced inflammatory responses: Comparison between tunnel workers and underwater divers. Physiol Rep 2024; 12:e70130. [PMID: 39567182 PMCID: PMC11578652 DOI: 10.14814/phy2.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Information is scarce on human responses to high pressure exposures out of water, such as related to tunnel construction workers. We hypothesized that differences in the longer durations of exposures for tunnel workers versus underwater divers results in greater inflammatory responses linked to the pathophysiology of decompression sickness (DCS). Blood was analyzed from 15 tunnel workers (36.1 ± 10.5 (SD) years old, 6 women) exposed to 142-156 kPa pressure for 4.1-4.9 h compared to 8 SCUBA divers (39.3 ± 13.3 (SD) years old, 6 women) exposed to 149 kPa for 0.61 hours. Despite differences in pressure duration between groups, elevations were the same for blood microparticles (MPs) (128 ± 28% MPs/μl) and intra-MPs interleukin (IL-1β) (376 ± 212% pg/million MPs), and for decreases of plasma gelsolin (pGSN, 31 ± 27% μg/mL). The number of circulating CD66b + neutrophils and evidence of cell activation, insignificant for divers, increased in tunnel workers. Across 3 exposures, the mean neutrophil count increased 150 ± 11%. Neutrophil activation increased by 1 to 2% of cells expressing cell surface CD18, myeloperoxidase, platelet-specific CD41, and decrease of cell bound pGSN. We conclude that MPs elevations occur rapidly in humans and reach steady state in minutes with pressure exposures and neutrophil activation requires significantly longer exposure times.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Owen J. O'Neill
- US Hyperbaric Inc.TarrytownNew YorkUSA
- Zucker School of MedicineHofstra University NorthwellNorthwellNew YorkUSA
| | - Douglas Sward
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | | | - Awadhesh K. Arya
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Veena M. Bhopale
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Abid R. Bhat
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Stephen R. Thom
- Department of Emergency MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Andrews JT, Zhang Z, Prasad GVRK, Huey F, Nazarova EV, Wang J, Ranaraja A, Weinkopff T, Li LX, Mu S, Birrer MJ, Huang SCC, Zhang N, Argüello RJ, Philips JA, Mattila JT, Huang L. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol 2024; 17:825-842. [PMID: 38844208 PMCID: PMC11493682 DOI: 10.1016/j.mucimm.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Mycobacterium tuberculosis (Mtb)-infected neutrophils are often found in the airways of patients with active tuberculosis (TB), and excessive recruitment of neutrophils to the lung is linked to increased bacterial burden and aggravated pathology in TB. The basis for the permissiveness of neutrophils for Mtb and the ability to be pathogenic in TB has been elusive. Here, we identified metabolic and functional features of neutrophils that contribute to their permissiveness in Mtb infection. Using single-cell metabolic and transcriptional analyses, we found that neutrophils in the Mtb-infected lung displayed elevated mitochondrial metabolism, which was largely attributed to the induction of activated neutrophils with enhanced metabolic activities. The activated neutrophil subpopulation was also identified in the lung granulomas from Mtb-infected non-human primates. Functionally, activated neutrophils harbored more viable bacteria and displayed enhanced lipid uptake and accumulation. Surprisingly, we found that interferon-γ promoted the activation of lung neutrophils during Mtb infection. Lastly, perturbation of lipid uptake pathways selectively compromised Mtb survival in activated neutrophils. These findings suggest that neutrophil heterogeneity and metabolic diversity are key to their permissiveness for Mtb and that metabolic pathways in neutrophils represent potential host-directed therapeutics in TB.
Collapse
Affiliation(s)
- J Tucker Andrews
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zijing Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - G V R Krishna Prasad
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Fischer Huey
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ananya Ranaraja
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lin-Xi Li
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael J Birrer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stanley Ching-Cheng Huang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nan Zhang
- Immunology, Metastasis & Microenvironment Program, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Jennifer A Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA; Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lu Huang
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
8
|
Maretti-Mira AC, Salomon MP, Chopra S, Yuan L, Golden-Mason L. Circulating Neutrophil Profiles Undergo a Dynamic Shift during Metabolic Dysfunction-Associated Steatohepatitis (MASH) Progression. Biomedicines 2024; 12:1105. [PMID: 38791066 PMCID: PMC11117983 DOI: 10.3390/biomedicines12051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils play a crucial role in host defense against infection. Aberrant neutrophil activation may induce tissue damage via sterile inflammation. Neutrophil accumulation has been identified as a feature of the inflammatory response observed in metabolic dysfunction-associated steatohepatitis (MASH) and has been associated with liver fibrosis and cirrhosis. Here, we performed the transcriptomic analysis of circulating neutrophils from mild and advanced MASH patients to identify the potential mechanism behind neutrophil contribution to MASH progression. Our findings demonstrated that circulating neutrophils from mild and advanced MASH display an increased activated transcriptional program, with the expression of pro-inflammatory factors and an amplified lifespan compared to cells from non-diseased controls. Our results also suggest that MASH progression is associated with a dynamic shift in the profile of circulating neutrophils. In the early stages of MASH, mature neutrophils predominate in the bloodstream. As hepatic inflammation and fibrosis progress, the premature release of immature neutrophils into the circulation occurs. These immature neutrophils exhibit a pro-inflammatory profile that may exacerbate inflammation and promote fibrosis in MASH.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Matthew P. Salomon
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Liyun Yuan
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Lucy Golden-Mason
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| |
Collapse
|
9
|
Horvath L, Puschmann C, Scheiber A, Martowicz A, Sturm G, Trajanoski Z, Wolf D, Pircher A, Salcher S. Beyond binary: bridging neutrophil diversity to new therapeutic approaches in NSCLC. Trends Cancer 2024; 10:457-474. [PMID: 38360439 DOI: 10.1016/j.trecan.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Neutrophils represent the most abundant myeloid cell subtype in the non-small-cell lung cancer (NSCLC) tumor microenvironment (TME). By anti- or protumor polarization, they impact multiple aspects of tumor biology and affect sensitivity to conventional therapies and immunotherapies. Single-cell RNA sequencing (scRNA-seq) analyses have unraveled an extensive neutrophil heterogeneity, helping our understanding of their pleiotropic role. In this review we summarize recent data and models on tumor-associated neutrophil (TAN) biology, focusing on the diversity that evolves in response to tumor-intrinsic cues. We categorize available transcriptomic profiles from different cancer entities into a defined set of neutrophil subclusters with distinct phenotypic properties, to step beyond the traditional binary N1/2 classification. Finally, we discuss potential ways to exploit these neutrophil states in the setting of anticancer therapy.
Collapse
Affiliation(s)
- Lena Horvath
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Constanze Puschmann
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Alexandra Scheiber
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria; Boehringer Ingelheim International Pharma GmbH & Co KG, Biberach, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Stefan Salcher
- Department of Hematology and Oncology, Internal Medicine V, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria.
| |
Collapse
|
10
|
Yang F, Hua Q, Zhu X, Xu P. Surgical stress induced tumor immune suppressive environment. Carcinogenesis 2024; 45:185-198. [PMID: 38366618 DOI: 10.1093/carcin/bgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Despite significant advances in cancer treatment over the decades, surgical resection remains a prominent management approach for solid neoplasms. Unfortunately, accumulating evidence suggests that surgical stress caused by tumor resection may potentially trigger postoperative metastatic niche formation. Surgical stress not only activates the sympathetic-adrenomedullary axis and hypothalamic-pituitary-adrenocortical axis but also induces hypoxia and hypercoagulable state. These adverse factors can negatively impact the immune system by downregulating immune effector cells and upregulating immune suppressor cells, which contribute to the colonization and progression of postoperative tumor metastatic niche. This review summarizes the effects of surgical stress on four types of immune effector cells (neutrophils, macrophages, natural killer cells and cytotoxic T lymphocytes) and two types of immunosuppressive cells (regulatory T cells and myeloid-derived suppressor cells), and discusses the immune mechanisms of postoperative tumor relapse and progression. Additionally, relevant therapeutic strategies to minimize the pro-tumorigenic effects of surgical stress are elucidated.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qing Hua
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Pingbo Xu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Research Center for Neuro-Oncology Interaction, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
11
|
Pettinella F, Mariotti B, Lattanzi C, Bruderek K, Donini M, Costa S, Marini O, Iannoto G, Gasperini S, Caveggion E, Castellucci M, Calzetti F, Bianchetto-Aguilera F, Gardiman E, Giani M, Dusi S, Cantini M, Vassanelli A, Pavone D, Milella M, Pilotto S, Biondani P, Höing B, Schleupner MC, Hussain T, Hadaschik B, Kaspar C, Visco C, Tecchio C, Koenderman L, Bazzoni F, Tamassia N, Brandau S, Cassatella MA, Scapini P. Surface CD52, CD84, and PTGER2 mark mature PMN-MDSCs from cancer patients and G-CSF-treated donors. Cell Rep Med 2024; 5:101380. [PMID: 38242120 PMCID: PMC10897522 DOI: 10.1016/j.xcrm.2023.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66b+CD10+CD16+CD11b+ PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments. Analysis of such a gene signature uncovers a specific transcriptional program associated with mPMN-MDSC differentiation and allows us to identify that, in patients with either solid or hematologic tumors and in GDs, CD52, CD84, and prostaglandin E receptor 2 (PTGER2) represent potential mPMN-MDSC-associated markers. Altogether, our findings indicate that mature PMN-MDSCs distinctively undergo specific reprogramming during differentiation and lay the groundwork for selective immunomonitoring, and eventually targeting, of mature PMN-MDSCs.
Collapse
Affiliation(s)
- Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Barbara Mariotti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Chiara Lattanzi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany
| | - Marta Donini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Costa
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Olivia Marini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Giulia Iannoto
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sara Gasperini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Elena Caveggion
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Federica Calzetti
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | | | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Giani
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Stefano Dusi
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Maurizio Cantini
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Aurora Vassanelli
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Denise Pavone
- Transfusion Medicine Department, University and Hospital Trust (AOUI), Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Pamela Biondani
- Section of Oncology, University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | | | - Timon Hussain
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Cordelia Kaspar
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Carlo Visco
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Cristina Tecchio
- Section of Hematology and Bone Marrow Transplant Unit, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Leo Koenderman
- Department of Respiratory Medicine and Center for Translational Immunology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Flavia Bazzoni
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, 45122 Essen, Germany; German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| | - Marco A Cassatella
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
12
|
Raskova Kafkova L, Mierzwicka JM, Chakraborty P, Jakubec P, Fischer O, Skarda J, Maly P, Raska M. NSCLC: from tumorigenesis, immune checkpoint misuse to current and future targeted therapy. Front Immunol 2024; 15:1342086. [PMID: 38384472 PMCID: PMC10879685 DOI: 10.3389/fimmu.2024.1342086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is largely promoted by a multistep tumorigenesis process involving various genetic and epigenetic alterations, which essentially contribute to the high incidence of mortality among patients with NSCLC. Clinical observations revealed that NSCLC also co-opts a multifaceted immune checkpoint dysregulation as an important driving factor in NSCLC progression and development. For example, a deregulated PI3K/AKT/mTOR pathway has been noticed in 50-70% of NSCLC cases, primarily modulated by mutations in key oncogenes such as ALK, EGFR, KRAS, and others. Additionally, genetic association studies containing patient-specific factors and local reimbursement criteria expose/reveal mutations in EGFR/ALK/ROS/BRAF/KRAS/PD-L1 proteins to determine the suitability of available immunotherapy or tyrosine kinase inhibitor therapy. Thus, the expression of such checkpoints on tumors and immune cells is pivotal in understanding the therapeutic efficacy and has been extensively studied for NSCLC treatments. Therefore, this review summarizes current knowledge in NSCLC tumorigenesis, focusing on its genetic and epigenetic intricacies, immune checkpoint dysregulation, and the evolving landscape of targeted therapies. In the context of current and future therapies, we emphasize the significance of antibodies targeting PD-1/PD-L1 and CTLA-4 interactions as the primary therapeutic strategy for immune system reactivation in NSCLC. Other approaches involving the promising potential of nanobodies, probodies, affibodies, and DARPINs targeting immune checkpoints are also described; these are under active research or clinical trials to mediate immune regulation and reduce cancer progression. This comprehensive review underscores the multifaceted nature, current state and future directions of NSCLC research and treatment.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| | - Joanna M. Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Prosenjit Chakraborty
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Ondrej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czechia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
- Department of Immunology, University Hospital Olomouc, Olomouc, Czechia
| |
Collapse
|
13
|
Liu Y, Xiang C, Que Z, Li C, Wang W, Yin L, Chu C, Zhou Y. Neutrophil heterogeneity and aging: implications for COVID-19 and wound healing. Front Immunol 2023; 14:1201651. [PMID: 38090596 PMCID: PMC10715311 DOI: 10.3389/fimmu.2023.1201651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophils play a critical role in the immune response to infection and tissue injury. However, recent studies have shown that neutrophils are a heterogeneous population with distinct subtypes that differ in their functional properties. Moreover, aging can alter neutrophil function and exacerbate immune dysregulation. In this review, we discuss the concept of neutrophil heterogeneity and how it may be affected by aging. We then examine the implications of neutrophil heterogeneity and aging for COVID-19 pathogenesis and wound healing. Specifically, we summarize the evidence for neutrophil involvement in COVID-19 and the potential mechanisms underlying neutrophil recruitment and activation in this disease. We also review the literature on the role of neutrophils in the wound healing process and how aging and neutrophil heterogeneity may impact wound healing outcomes. Finally, we discuss the potential for neutrophil-targeted therapies to improve clinical outcomes in COVID-19 and wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Wen Wang
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Lijuan Yin
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Chenyu Chu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| | - Yin Zhou
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China; Medical Cosmetic Center, Chengdu Second People's Hospital; Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
15
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Gibellini L, Borella R, Santacroce E, Serattini E, Boraldi F, Quaglino D, Aramini B, De Biasi S, Cossarizza A. Circulating and Tumor-Associated Neutrophils in the Era of Immune Checkpoint Inhibitors: Dynamics, Phenotypes, Metabolism, and Functions. Cancers (Basel) 2023; 15:3327. [PMID: 37444436 DOI: 10.3390/cancers15133327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophils are the most abundant myeloid cells in the blood and are a considerable immunological component of the tumor microenvironment. However, their functional importance has often been ignored, as they have always been considered a mono-dimensional population of terminally differentiated, short-living cells. During the last decade, the use of cutting-edge, single-cell technologies has revolutionized the classical view of these cells, unmasking their phenotypic and functional heterogeneity. In this review, we summarize the emerging concepts in the field of neutrophils in cancer, by reviewing the recent literature on the heterogeneity of both circulating neutrophils and tumor-associated neutrophils, as well as their possible significance in tumor prognosis and resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Eugenia Serattini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences (DIMEC), University Hospital GB Morgagni-L Pierantoni, 47121 Forlì, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
17
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Arasanz H, Bocanegra AI, Morilla I, Fernández-Irigoyen J, Martínez-Aguillo M, Teijeira L, Garnica M, Blanco E, Chocarro L, Ausin K, Zuazo M, Fernández-Hinojal G, Echaide M, Fernández-Rubio L, Piñeiro-Hermida S, Ramos P, Mezquita L, Escors D, Vera R, Kochan G. Circulating Low Density Neutrophils Are Associated with Resistance to First Line Anti-PD1/PDL1 Immunotherapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14163846. [PMID: 36010840 PMCID: PMC9406164 DOI: 10.3390/cancers14163846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Immunotherapy has been positioned as frontline therapy for advanced non-small cell lung cancer (NSCLC), alone when PD-L1 tumor expression is high, or combined with chemotherapy otherwise. However, 50% of the patients do not respond to the treatment and the mechanisms of resistance are not well defined. Moreover, it is not clear whether chemo-immunotherapy could be advantageous in high PD-L1 tumor expression. We have found that baseline circulating low-density neutrophils (LDN) identify a subset of patients intrinsically refractory to immunotherapy. Interestingly, responses can be achieved with CT+IT, detecting a progressive depletion of LDN. Besides the potential role as predictive biomarker we observed that resistance was mediated by soluble molecules related with the HGF/c-MET pathway. Our findings establish circulating myeloid cells as one of the main mediators of resistance to immunotherapy in NSCLC, and give a rationale for potential drug combinations that might improve the outcomes. Abstract Single-agent immunotherapy has been widely accepted as frontline treatment for advanced non-small cell lung cancer (NSCLC) with high tumor PD-L1 expression, but most patients do not respond and the mechanisms of resistance are not well known. Several works have highlighted the immunosuppressive activities of myeloid subpopulations, including low-density neutrophils (LDNs), although the context in which these cells play their role is not well defined. We prospectively monitored LDNs in peripheral blood from patients with NSCLC treated with anti-PD-1 immune checkpoint inhibitors (ICIs) as frontline therapy, in a cohort of patients treated with anti-PD1 immunotherapy combined with chemotherapy (CT+IT), and correlated values with outcomes. We explored the underlying mechanisms through ex vivo experiments. Elevated baseline LDNs predict primary resistance to ICI monotherapy in patients with NSCLC, and are not associated with response to CT+IT. Circulating LDNs mediate resistance in NSCLC receiving ICI as frontline therapy through humoral immunosuppression. A depletion of this population with CT+IT might overcome resistance, suggesting that patients with high PD-L1 tumor expression and high baseline LDNs might benefit from this combination. The activation of the HGF/c-MET pathway in patients with elevated LDNs revealed by quantitative proteomics supports potential drug combinations targeting this pathway.
Collapse
Affiliation(s)
- Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Correspondence: (H.A.); (D.E.)
| | - Ana Isabel Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Idoia Morilla
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Maite Martínez-Aguillo
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
- Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Karina Ausin
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | | | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clínic i Provincial de Barcelona, IDIBAPS, 08036 Barcelona, Spain
- Medical Oncology Department, Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
- Correspondence: (H.A.); (D.E.)
| | - Ruth Vera
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea St., 3, 31008 Pamplona, Spain
| |
Collapse
|
19
|
Wang J, Wang J. Neutrophils, functions beyond host defense. Cell Immunol 2022; 379:104579. [PMID: 35901576 DOI: 10.1016/j.cellimm.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant, ephemeral cell type in human blood. As the first line of defense in the host immune system, neutrophils mature in the bone marrow after undergoing multiple stages of development and then are released into the peripheral blood and conduct a surveillance function. Recent advances in cutting-edge techniques such as single-cell sequencing have uncovered the complexity and plasticity of neutrophils under homeostatic and inflammatory conditions. The exploration of neutrophil heterogeneity and function under disease and homeostasis settings has revealed many unexpected roles of neutrophils beyond a phagocyte. Furthermore, neutrophils are known to actively communicate with innate and adaptive immunocytes via direct or indirect interactions, allowing the modulation of various immune cells. In this review, we will discuss the versatile identities of neutrophils that have been discovered in recent decades, as well as the interplay between neutrophils and other cells.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Rankin AN, Hendrix SV, Naik SK, Stallings CL. Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2022; 12:901590. [PMID: 35800386 PMCID: PMC9253571 DOI: 10.3389/fcimb.2022.901590] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis (Mtb), which primarily infects the lungs but can also cause extrapulmonary disease. Both the disease outcome and the pathology of TB are driven by the immune response mounted by the host. Infection with Mtb elicits inflammatory host responses that are necessary to control infection, but can also cause extensive tissue damage when in excess, and thus must be precisely balanced. In particular, excessive recruitment of neutrophils to the site of infection has been associated with poor control of Mtb infection, prompting investigations into the roles of neutrophils in TB disease outcomes. Recent studies have revealed that neutrophils can be divided into subpopulations that are differentially abundant in TB disease states, highlighting the potential complexities in determining the roles of neutrophils in Mtb infection. Specifically, neutrophils can be separated into normal (NDN) and low-density neutrophils (LDNs) based on their separation during density gradient centrifugation and surface marker expression. LDNs are present in higher numbers during active TB disease and increase in frequency with disease progression, although their direct contribution to TB is still unknown. In addition, the abundance of LDNs has also been associated with the severity of other lung infections, including COVID-19. In this review, we discuss recent findings regarding the roles of LDNs during lung inflammation, emphasizing their association with TB disease outcomes. This review highlights the importance of future investigations into the relationship between neutrophil diversity and TB disease severity.
Collapse
|
21
|
Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. Int J Mol Sci 2022; 23:3218. [PMID: 35328639 PMCID: PMC8951452 DOI: 10.3390/ijms23063218] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-associated neutrophils display many roles during cancer progression. Several tumor microenvironment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment and functional polarization, while simultaneously neutrophils are active stimulators of the TME by secreting factors that affect immune interactions and subsequently tumor progression. Successful immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lymphocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade therapies, by displaying lymphocyte suppressive properties. The identification and characterization of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and the identification of the major TME-derived factors of neutrophil polarization would allow us to harness the full potential of neutrophils as complementary targets in anticancer precision therapies.
Collapse
Affiliation(s)
| | | | | | | | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.R.); (P.V.-C.); (Z.N.M.); (R.S.)
| |
Collapse
|