1
|
Imsonpang S, Pudgerd A, Chotwiwatthanakun C, Srisala J, Sanguanrut P, Kasamechotchung C, Sritunyalucksana K, Taengchaiyaphum S, Vanichviriyakit R. Confirmatory test of active IHHNV infection in shrimp by immunohistochemistry and IHHNV-LongAmp PCR. JOURNAL OF FISH DISEASES 2024; 47:e13905. [PMID: 38073005 DOI: 10.1111/jfd.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024]
Abstract
The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.
Collapse
Affiliation(s)
- Supapong Imsonpang
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand
| | - Jiraporn Srisala
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Piyachat Sanguanrut
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Chanadda Kasamechotchung
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Dhar AK, Cruz-Flores R, Mai HN, Warg J. Comparison of Polymerase Chain Reaction (PCR) assay performance in detecting Decapod penstylhamaparvovirus 1 in penaeid shrimp. J Virol Methods 2024; 323:114840. [PMID: 37989459 DOI: 10.1016/j.jviromet.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Decapod Penstylhamaparvovirus 1, commonly known as infectious hypodermal and hematopoietic necrosis virus (IHHNV), remains an economically important viral pathogen for penaeid shrimp aquaculture due to its effects on growth performance. The World Organization for Animal Health (WOAH, Paris, France) recommended methods for the detection of IHHNV include both conventional and real-time PCR. However, published reports and anecdotal evidence suggest the occurrence of non-specific amplifications when testing for IHHNV using the WOAH protocols. Studies were designed to develop a sensitive, robust TaqMan PCR method for detection of IHHNV in the three commercially important penaeid shrimp: Penaeus vannamei, P. monodon and P. stylirostris. We compared the performance of the WOAH-recommended real-time PCR method to several published as well as in-house designed primer/probe sets spanning the entire genome of IHHNV. Our results show that (1) more than one primer/ probe set is needed when testing for the infectious form of IHHNV in all three species of shrimp and (2) primer pairs qIH-Fw/qIH-Rv and 3144F/ 3232R have diagnostic characteristics that would enable IHHNV detection in all three shrimp species. These findings are valuable for a large-scale screening of shrimp using a TaqMan real-time PCR assay.
Collapse
Affiliation(s)
- Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, Building 90, The University of Arizona, Tucson, AZ, USA.
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, Building 90, The University of Arizona, Tucson, AZ, USA
| | - Hung N Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, Building 90, The University of Arizona, Tucson, AZ, USA
| | - Janet Warg
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Ames, IA, USA
| |
Collapse
|
3
|
Zhang L, Liu K, Liu M, Hu J, Bao Z, Wang M. Development of a real-time enzymatic recombinase amplification assay for rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimp Penaeus vannamei. J Invertebr Pathol 2023; 201:108024. [PMID: 37992986 DOI: 10.1016/j.jip.2023.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is classified as a reportable crustacean disease by the World Organisation for Animal Health (WOAH), which causes poor growth in Penaeus vannamei. According to genome sequence alignment analysis, enzymatic recombinase amplification (ERA) primers and probe were designed based on the ORF1 region of IHHNV, and a real-time ERA assay for IHHNV detection (IHHNV-ERA) was established. The experimental results show that IHHNV-F2/IHHNV-R2 and IHHNV-Probe can effectively amplify the target gene, and the sensitivity is 1.4 × 101 copies/μL within 14.97 ± 0.19 min, while the qPCR using primers 309F/309R could reach the detection limit of 1.4 × 101 copies/μL within 21.76 ± 0.63 min, and the sensitivity results of one-step PCR could be as low as 1.4 copies/μL with expense of time and false positives. The IHHNV-ERA system can effectively amplify the target gene at 42 ℃ within 20 min, and has no cross-reaction with white spot syndrome virus (WSSV), Ecytonucleospora hepatopenaei (EHP), Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (VpAHPND), and healthy shrimp genomic DNA. Test results of practical samples showed that the detection rate of IHHNV-ERA (18/20) was better than the industrial standard qPCR assay (17/20). Compared with the existing technology, the useful results of this detection assay are: (1) get rid of the dependence on the thermal cycle instrument in the PCR process; (2) the experimental procedure is simple, time-consuming and fast; (3) the detection sensitivity is high. This study provides an ERA based detection assay for IHHNV, which can be used not only for the rapid detection of IHHNV infection, but also for the field screening of pathogens. This assay can also be applied to clinical inspection, customs detection, enterprise quality inspection and other fields, and has obvious practical application value.
Collapse
Affiliation(s)
- Lu Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Kexin Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China
| | - Mengran Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
4
|
López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The Structures and Functions of Parvovirus Capsids and Missing Pieces: the Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J Virol 2023; 97:e0016123. [PMID: 37367301 PMCID: PMC10373561 DOI: 10.1128/jvi.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Gangnonngiw W, Kanthong N. Failed shrimp vaccination attempt with yellow head virus (YHV) attenuated in an immortal insect cell line. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100084. [PMID: 36686577 PMCID: PMC9852278 DOI: 10.1016/j.fsirep.2023.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
This short paper on yellow head virus Type-1 (YHV-1) of shrimp describes preliminary research on the potential for using YHV-1 attenuated in insect cells to protect shrimp against yellow head disease (YHD). YHV-1 can cause severe mortality in the cultivated shrimp Penaeus (Penaeus) monodon and Penaeus (Litopenaeus) vannamei. No practical vaccination has been reported. The C6/36 mosquito cell cultures inoculated with YHV-1 become positive by PCR and by immunocytochemistry (immunopositive) for up to 30 split-cell passages. Shrimp injected with homogenates from low-passage cultures die from typical YHV-1 disease while shrimp injected with homogenates from high passage cultures do not, even though they become PCR positive and immunopositive for YHV-1. This suggested that viral attenuation had occurred during insect-cell passaging, and it opened the possibility of using homogenates from high-passage insect cultures as a vaccine against YHV-1. To test this hypothesis, homogenates from 30th-passage, YHV-positive cultures were injected into shrimp followed by challenge with virulent YHV-1. Controls were injected with homogenate from 30th-passage, naive (normal stock) insect-cell cultures. No shrimp mortality occurred following injection of either homogenate, but shrimp injected with the YHV-1 homogenate became both RT-PCR positive and immunopositive. Upon challenge 10 days later with YHV-1, mortality in shrimp injected with naive insect-cell homogenate was 100% within 7 days post-challenge while 100% mortality in the YHV-1 homogenate group did not occur until day 9 post-challenge. Kaplan-Meier log-rank survival analysis revealed that survival curves for the two groups were significantly different (p < 0.001). The cause of delay in mortality may be worthy of further investigation.
Collapse
Affiliation(s)
- Warachin Gangnonngiw
- Centex Shrimp, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand,National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong 1, Klong Luang, Pratum Thani 12120, Thailand
| | - Nipaporn Kanthong
- Department of Biotechnology, Faculty of Science and Technology, Rajamangala University of Technology Tawan-ok, Sriracha, Chonburi 20110, Thailand,Corresponding author.
| |
Collapse
|
6
|
Maralit BA, Genavia SF. Prevalence and phylogenetics of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in market-sold Litopenaeus vannamei in Luzon, Philippines. DISEASES OF AQUATIC ORGANISMS 2022; 150:145-151. [PMID: 35979988 DOI: 10.3354/dao03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a World Organization for Animal Health (OIE)-classified notifiable crustacean disease. There is limited information on the current status of IHHNV in the Philippines. Thus, this research focuses on collecting samples from various municipality markets of known shrimp producers in Central Luzon to provide an update on the status of IHHNV. These samples were subjected to IHHNV detection using PCR. Results showed that 56 out of the 276 (~20%) samples were positive for IHHNV. This indicates that IHHNV persists in Philippine shrimps despite preventive measures such as testing of broodstock. Furthermore, the sequences of the isolates acquired from different municipalities reveal a high degree of similarity, suggesting transboundary movement of the infection. Our findings also support research that demonstrated a strong link between IHHNV strains in the western hemisphere and those in the Philippines. Our data suggest that farm-monitoring processes must be tightened and strictly implemented to prevent the spread of IHHNV.
Collapse
Affiliation(s)
- Benedict A Maralit
- DNA Sequencing Core Facility, Philippine Genome Center, Quezon City 1101, Philippines
| | | |
Collapse
|
7
|
Aranguren Caro LF, Gomez-Sanchez MM, Piedrahita Y, Mai HN, Cruz-Flores R, Alenton RRR, Dhar AK. Current status of infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) in the Peruvian and Ecuadorian shrimp industry. PLoS One 2022; 17:e0272456. [PMID: 35947538 PMCID: PMC9365166 DOI: 10.1371/journal.pone.0272456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Infection with infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a crustacean disease that caused large-scale mortality in Penaeus stylirostris, deformity and growth retardation in Penaeus vannamei and Penaeus monodon. We surveyed the presence of IHHNV in three major shrimp-producing regions in Ecuador, namely Guayas, El Oro, and Esmeralda. The data show that IHHNV is endemic (3.3–100% prevalence) to shrimp farms in these regions. The whole genome sequences of representative circulating IHHNV genotypes in Ecuador and Peru showed that these genotypes formed a separate cluster within the Type II genotypes and were divergent from other geographical isolates of IHHNV originating in Asia, Africa, Australia, and Brazil. In experimental bioassays using specific pathogen-free (SPF) P. vannamei, P. monodon, and P. stylirostris and representative IHHNV isolates from Ecuador and Peru, the virus did not cause any mortality or induce clinical signs in any of the three penaeid species. Although IHHNV-specific Cowdry type A inclusion bodies were histologically detected in experimentally challenged P. vannamei and P. monodon and confirmed by in situ hybridization, no such inclusions were observed in P. stylirostris. Moreover, P. vannamei had the highest viral load, followed by P. monodon and P. stylirostris. Based on IHHNV surveillance data, we conclude that the currently farmed P. vannamei lines in Ecuador are tolerant to circulating IHHNV genotypes. The genome sequence and experimental bioassay data showed that, although the currently circulating genotypes are infectious, they do not induce clinical lesions in the three commercially important penaeid species. These findings suggest a potentially evolving virus-host relationship where circulating genotypes of IHHNV co-exist in equilibrium with P. vannamei raised in Peru and Ecuador.
Collapse
Affiliation(s)
- Luis Fernando Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Muriel Maria Gomez-Sanchez
- Subdireccion de Sanidad, Dirección de Sanidad e inocuidad, National Fisheries Health Agency in Peru (SANIPES), San Isidro, Lima, Perú
| | - Yahira Piedrahita
- Camara Nacional de Acuacultura, CNA, Avenida Francisco de Orellana y Miguel H Alcivar, Guayaquil, Ecuador
| | - Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| | - Rod Russel R. Alenton
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
8
|
Shrimp genome sequence contains independent clusters of ancient and current Endogenous Viral Elements (EVE) of the parvovirus IHHNV. BMC Genomics 2022; 23:565. [PMID: 35933380 PMCID: PMC9357335 DOI: 10.1186/s12864-022-08802-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Background Shrimp have the ability to accommodate viruses in long term, persistent infections without signs of disease. Endogenous viral elements (EVE) play a role in this process probably via production of negative-sense Piwi-interacting RNA (piRNA)-like fragments. These bind with Piwi proteins to dampen viral replication via the RNA interference (RNAi) pathway. We searched a genome sequence (GenBank record JABERT000000000) of the giant tiger shrimp (Penaeus monodon for the presence of EVE related to a shrimp parvovirus originally named infectious hypodermal and hematopoietic necrosis virus (IHHNV). Results The shrimp genome sequence contained three piRNA-like gene clusters containing scrambled IHHNV EVE. Two clusters were located distant from one another in pseudochromosome 35 (PC35). Both PC35 clusters contained multiple sequences with high homology (99%) to GenBank records DQ228358 and EU675312 that were both called “non-infectious IHHNV Type A” (IHHNV-A) when originally discovered. However, our results and those from a recent Australian P. monodon genome assembly indicate that the relevant GenBank records for IHHNV-A are sequence-assembly artifacts derived from scrambled and fragmental IHHNV-EVE. Although the EVE in the two PC35 clusters showed high homology only to IHHNV-A, the clusters were separate and distinct with respect to the arrangement (i.e., order and reading direction) and proportional content of the IHHNV-A GenBank records. We conjecture that these 2 clusters may constitute independent allele-like clusters on a pair of homologous chromosomes. The third EVE cluster was found in pseudochromosome 7 (PC7). It contained EVE with high homology (99%) only to GenBank record AF218266 with the potential to protect shrimp against current types of infectious IHHNV. One disadvantage was that some EVE in PC7 can give false positive PCR test results for infectious IHHNV. Conclusions Our results suggested the possibility of viral-type specificity in EVE clusters. Specificity is important because whole EVE clusters for one viral type would be transmitted to offspring as collective hereditary units. This would be advantageous if one or more of the EVE within the cluster were protective against the disease caused by the cognate virus. It would also facilitate gene editing for removal of non-protective EVE clusters or for transfer of protective EVE clusters to genetically improve existing shrimp breeding stocks that might lack them. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08802-3.
Collapse
|
9
|
Huerlimann R, Cowley JA, Wade NM, Wang Y, Kasinadhuni N, Chan CKK, Jabbari JS, Siemering K, Gordon L, Tinning M, Montenegro JD, Maes GE, Sellars MJ, Coman GJ, McWilliam S, Zenger KR, Khatkar MS, Raadsma HW, Donovan D, Krishna G, Jerry DR. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3 (BETHESDA, MD.) 2022; 12:6526390. [PMID: 35143647 PMCID: PMC8982415 DOI: 10.1093/g3journal/jkac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeff A Cowley
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Yinan Wang
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Chon-Kit Kenneth Chan
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kirby Siemering
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Matthew Tinning
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Juan D Montenegro
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Laboratory of Biodiversity and Evolutionary Genomics, Biogenomics-consultancy, KU Leuven, Leuven 3000, Belgium.,Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven 3000, Belgium
| | | | - Greg J Coman
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Sean McWilliam
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Kyall R Zenger
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mehar S Khatkar
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Herman W Raadsma
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Dallas Donovan
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Gopala Krishna
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Dean R Jerry
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
10
|
Flegel TW. Viral Induction of Novel Somatic and Germline DNA Functions in Host Arthropods Opens a New Research Frontier in Biology. Front Mol Biosci 2022; 9:847670. [PMID: 35281280 PMCID: PMC8907731 DOI: 10.3389/fmolb.2022.847670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
|