1
|
Wang J, Meng S, Chen Y, Wang H, Hu W, Liu S, Huang L, Xu J, Li Q, Wu X, Huang W, Huang Y. MSC-mediated mitochondrial transfer promotes metabolic reprograming in endothelial cells and vascular regeneration in ARDS. Redox Rep 2025; 30:2474897. [PMID: 40082392 PMCID: PMC11912292 DOI: 10.1080/13510002.2025.2474897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a potential therapy for acute respiratory distress syndrome (ARDS), but their mechanisms in repairing mitochondrial damage in ARDS endothelial cells remain unclear. METHODS We first examined MSCs' mitochondrial transfer ability and mechanisms to mouse pulmonary microvascular endothelial cells (MPMECs) in ARDS. Then, we investigated how MSC-mediated mitochondrial transfer affects the repair of endothelial damage. Finally, we elucidated the mechanisms by which MSC-mediated mitochondrial transfer promotes vascular regeneration. RESULTS Compared to mitochondrial-damaged MSCs, normal MSCs showed a significantly higher mitochondrial transfer rate to MPMECs, with increases of 41.68% in vitro (P < 0.0001) and 10.50% in vivo (P = 0.0005). Furthermore, MSC-mediated mitochondrial transfer significantly reduced reactive oxygen species (P < 0.05) and promoted proliferation (P < 0.0001) in MPMECs. Finally, MSC-mediated mitochondrial transfer significantly increased the activity of the tricarboxylic acid (TCA) cycle (MD of CS mRNA: 23.76, P = 0.032), and further enhanced fatty acid synthesis (MD of FAS mRNA: 6.67, P = 0.0001), leading to a 6.7-fold increase in vascular endothelial growth factor release from MPMECs and promoted vascular regeneration in ARDS. CONCLUSION MSC-mediated mitochondrial transfer to MPMECs activates the TCA cycle and fatty acid synthesis, promoting endothelial proliferation and pro-angiogenic factor release, thereby enhancing vascular regeneration in ARDS.
Collapse
Affiliation(s)
- Jinlong Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yixuan Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Haofei Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Wenhan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Shuai Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Lili Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Jingyuan Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Qing Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xiaojing Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yingzi Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Xiong J, Zhang L, Xing J, Huang W, Wang N, Lin X, He S, Liao M, He J. Evaluation and Characterization of Acute respiratory distress syndrome in tree shrews through TMT proteomic method. PLoS One 2025; 20:e0319752. [PMID: 40238755 PMCID: PMC12002456 DOI: 10.1371/journal.pone.0319752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/06/2025] [Indexed: 04/18/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS), a common cause of acute fatal respiratory, is characterized by severe inflammatory lung injury as well as hallmarks of increased pulmonary vascular permeability, neutrophil infiltration, and macrophage accumulation. Tree shrew, a squirrel-like small animal model, has been confirmed to have more similar traits to human ARDS with one-hit intratracheal instillation of LPS in our previous study. In this study, we characterized protein profile changes induced by intranasal LPS challenge in the tree shrew model through tandem mass tag (TMT)-based quantitative proteomics and type II alveolar epithelial cells through pathological analysis. In total, 4070 proteins (p < 0.05) were identified from lung tissues of the LPS-induced group and PBS group. Among the differential expression proteins (DEPs) detected by t-test (≥|1.5-fold|), 529 DEPs were identified, of which 304 were upregulated, and 225 were downregulated. The most important pathways involved in the process of ARDS had been identified by enrichment analysis: oxidative stress, apoptosis, inflammatory responses, and vascular endothelial injury. In addition, proteins have been reported in animal models or clinical patients also detail investigated for further analysis, such as ceruloplasmin (CP), hemopexin (HPX), sphingosine kinase 1 (SphK1), lactotransferrin (LTF), and myeloperoxidase (MPO) were upregulated in induced tissues and confirmed by western blot analysis. Overall, this study not only reveals a comprehensive proteomic analysis of the ARDS tree shrew model but also provides novel insights into multi-pathways responses induced by the LPS challenge of tree shrews. We highlight shared and unique proteomic changes in the lungs of ARDS tree shrews and identify novel pathways for acute lung injury, which may promote the model into basic research and translational research.
Collapse
Affiliation(s)
- Junlong Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Liji Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- South China Normal University, Guangzhou, China
| | - Jinchao Xing
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Weijian Huang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ning Wang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Xiaoyan Lin
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Shuhua He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for prevention and control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Zhongkai University of Agriculture and Engineering, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
4
|
Iwatake M, Nagamura-Inoue T, Doi R, Tanoue Y, Ishii M, Yukawa H, Matsumoto K, Tomoshige K, Nagayasu T, Tsuchiya T. Designer umbilical cord-stem cells induce alveolar wall regeneration in pulmonary disease models. Front Immunol 2024; 15:1384718. [PMID: 38745668 PMCID: PMC11091323 DOI: 10.3389/fimmu.2024.1384718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Background Researchers are focusing on cellular therapy for chronic obstructive pulmonary disease (COPD) using mesenchymal stem cells (MSCs), with human bone marrow-derived MSCs (hBM-MSCs) leading the way. However, BM-MSCs may not be as optimal as therapeutic cells owing to their low growth potential, invasive harvesting, and high expression of aging-related genes with poor differentiation potential. Consequently, umbilical cord-derived MSCs (hUC-MSCs), which have many excellent features as allogeneic heterologous stem cells, have received considerable attention. Allogeneic and heterologous hUC-MSCs appear to be promising owing to their excellent therapeutic properties. However, MSCs cannot remain in the lungs for long periods after intravenous infusion. Objective To develop designer hUC-MSCs (dUC-MSCs), which are novel therapeutic cells with modified cell-adhesion properties, to aid COPD treatment. Methods dUC-MSCs were cultured on type-I collagen gels and laminin 411, which are extracellular matrices. Mouse models of elastase-induced COPD were treated with hUC-MSCs. Biochemical analysis of the lungs of treated and control animals was performed. Results Increased efficiency of vascular induction was found with dUC-MSCs transplanted into COPD mouse models compared with that observed with transplanted hUC-MSCs cultured on plates. The transplanted dUC-MSCs inhibited apoptosis by downregulating pro-inflammatory cytokine production, enhancing adhesion of the extracellular matrix to alveolar tissue via integrin β1, promoting the polarity of M2 macrophages, and contributing to the repair of collapsed alveolar walls by forming smooth muscle fibers. dUC-MSCs inhibited osteoclastogenesis in COPD-induced osteoporosis. hUC-MSCs are a promising cell source and have many advantages over BM-MSCs and adipose tissue-derived MSCs. Conclusion We developed novel designer cells that may be involved in anti-inflammatory, homeostatic, injury repair, and disease resistance processes. dUC-MSCs repair and regenerate the alveolar wall by enhancing adhesion to the damaged site. Therefore, they can contribute to the treatment of COPD and systemic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Mayumi Iwatake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryoichiro Doi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukinori Tanoue
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsutoshi Ishii
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Tomoshige
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
5
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Pochon C, Laroye C, Kimmoun A, Reppel L, Dhuyser A, Rousseau H, Gauthier M, Petitpain N, Chabot JF, Valentin S, de Carvalho Bittencourt M, Peres M, Aarnink A, Decot V, Bensoussan D, Gibot S. Efficacy of Wharton Jelly Mesenchymal Stromal Cells infusions in moderate to severe SARS-Cov-2 related acute respiratory distress syndrome: a phase 2a double-blind randomized controlled trial. Front Med (Lausanne) 2023; 10:1224865. [PMID: 37706025 PMCID: PMC10495568 DOI: 10.3389/fmed.2023.1224865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Background The COVID-19 pandemic caused a wave of acute respiratory distress syndrome (ARDS) with a high in-hospital mortality, especially in patients requiring invasive mechanical ventilation. Wharton Jelly-derived Mesenchymal Stromal Cells (WJ-MSCs) may counteract the pulmonary damage induced by the SARS-CoV-2 infection through pro-angiogenic effects, lung epithelial cell protection, and immunomodulation. Methods In this randomized, double-blind, placebo-controlled phase 2a trial, adult patients receiving invasive mechanical ventilation for SARS-CoV-2 induced moderate or severe ARDS were assigned to receive 1 intravenous infusion of 1 × 106 WJ-MSCs/kg or placebo within 48 h of invasive ventilation followed by 2 infusions of 0.5 × 106 WJ-MSCs/kg or placebo over 5 days. The primary endpoint was the percentage of patients with a PaO2/FiO2 > 200 on day 10. Results Thirty patients were included from November 2020 to May 2021, 15 in the WJ-MSC group and 15 in the placebo group. We did not find any significant difference in the PaO2/FiO2 ratio at day 10, with 18 and 15% of WJ-MSCs and placebo-treated patients reaching a ratio >200, respectively. Survival did not differ in the 2 groups with a 20% mortality rate at day 90. While we observed a higher number of ventilation-free days at 28 days in the WJ-MSC arm, this difference was not statistically significant (median of 11 (0-22) vs. 0 (0-18), p = 0.2). The infusions were well tolerated, with a low incidence of anti-HLA alloimmunization after 90 days. Conclusion While treatment with WJ-MSCs appeared safe and feasible in patients with SARS-CoV2 moderate or severe ARDS in this phase 2a trial, the treatment was not associated with an increased percentage of patients with P/F > 200 at 10d, nor did 90 day mortality improve in the treated group. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT04625738, identifier NCT04625738.
Collapse
Affiliation(s)
- Cécile Pochon
- CHRU-Nancy, Pediatric Onco-Hematology Department, Nancy, France
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
| | - Caroline Laroye
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Antoine Kimmoun
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpitaux de Brabois, Nancy, France
- Université de Lorraine, Nancy, France
| | - Loic Reppel
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Adéle Dhuyser
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Hélène Rousseau
- CHRU-Nancy, Département Méthodologie, Promotion, Investigation, Hôpitaux de Brabois, Nancy, France
| | - Mélanie Gauthier
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Nadine Petitpain
- CHRU-Nancy, Département de Pharmacovigilance, Hôpitaux de Brabois, Nancy, France
| | - Jean-François Chabot
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | - Simon Valentin
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | | | - Michael Peres
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Alice Aarnink
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Véronique Decot
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Danièle Bensoussan
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Sébastien Gibot
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpital Central, Nancy, France
| |
Collapse
|
7
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
8
|
Warnecke A, Staecker H, Rohde E, Gimona M, Giesemann A, Szczepek AJ, Di Stadio A, Hochmair I, Lenarz T. Extracellular Vesicles in Inner Ear Therapies-Pathophysiological, Manufacturing, and Clinical Considerations. J Clin Med 2022; 11:jcm11247455. [PMID: 36556073 PMCID: PMC9788356 DOI: 10.3390/jcm11247455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Sensorineural hearing loss is a common and debilitating condition. To date, comprehensive pharmacologic interventions are not available. The complex and diverse molecular pathology that underlies hearing loss may limit our ability to intervene with small molecules. The current review foccusses on the potential for the use of extracellular vesicles in neurotology. (2) Methods: Narrative literature review. (3) Results: Extracellular vesicles provide an opportunity to modulate a wide range of pathologic and physiologic pathways and can be manufactured under GMP conditions allowing for their application in the human inner ear. The role of inflammation in hearing loss with a focus on cochlear implantation is shown. How extracellular vesicles may provide a therapeutic option for complex inflammatory disorders of the inner ear is discussed. Additionally, manufacturing and regulatory issues that need to be addressed to develop EVs as advanced therapy medicinal product for use in the inner ear are outlined. (4) Conclusion: Given the complexities of inner ear injury, novel therapeutics such as extracellular vesicles could provide a means to modulate inflammation, stress pathways and apoptosis in the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
- Correspondence:
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Rainbow Blvd., Kansas City, KS 66160, USA
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK) Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies (EV-TT), 5020 Salzburg, Austria
- Research Program “Nanovesicular Therapies”, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Anja Giesemann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Arianna Di Stadio
- Department GF Ingrassia, University of Catania, 95124 Catania, Italy
| | | | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence of the German Research Foundation (DFG; “Deutsche Forschungsgemeinschaft”) “Hearing4all”, 30625 Hannover, Germany
| |
Collapse
|
9
|
Wang H, Jiang C, Cai J, Lu Q, Qiu Y, Wang Y, Huang Y, Xiao Y, Wang B, Wei X, Shi J, Lai X, Wang T, Wang J, Xiang AP. Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1α. LIFE MEDICINE 2022; 1:359-371. [PMID: 39872742 PMCID: PMC11749126 DOI: 10.1093/lifemedi/lnac049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 01/30/2025]
Abstract
The clinical applications of MSC therapy have been intensely investigated in acute respiratory distress syndrome. However, clinical studies have fallen short of expectations despite encouraging preclinical results. One of the key problems is that transplanted stem cells can hardly survive in the harsh inflammatory environment. Prolonging the survival of transplanted MSCs might be a promising strategy to enhance the therapeutic efficacy of MSC therapy. Here, we identified Nestin, a class VI intermediate filament, as a positive regulator of MSC survival in the inflammatory microenvironment. We showed that Nestin knockout led to a significant increase of MSC apoptosis, which hampered the therapeutic effects in an LPS-induced lung injury model. Mechanistically, Nestin knockout induced a significant elevation of endoplasmic reticulum (ER) stress level. Further investigations showed that Nestin could bind to IRE1α and inhibit ER stress-induced apoptosis under stress. Furthermore, pretreatment with IRE1α inhibitor 4μ8C improved MSC survival and improved therapeutic effect. Our data suggests that Nestin enhances stem cell survival after transplantation by inhibiting ER stress-induced apoptosis, improving protection, and repair of the lung inflammatory injury.
Collapse
Affiliation(s)
- Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Chenhao Jiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qiying Lu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Qiu
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Drug Administration Key Laboratory of Quality Control and Research of Blood Products, Guangzhou 510663, China
| | - Yinong Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Xiao
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyan Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Wei
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiahao Shi
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiancheng Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
10
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
11
|
Beyls C, Martin N, Booz T, Viart C, Boisgard S, Daumin C, Crombet M, Epailly J, Huette P, Dupont H, Abou-Arab O, Mahjoub Y. Prognostic value of acute cor pulmonale in COVID-19-related pneumonia: A prospective study. Front Med (Lausanne) 2022; 9:824994. [PMID: 36267616 PMCID: PMC9576859 DOI: 10.3389/fmed.2022.824994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND It is known that acute cor pulmonale (ACP) worsens the prognosis of non-coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (NC-ARDS). The ACP risk score evaluates the risk of ACP occurrence in mechanically ventilated patients with NC-ARDS. There is less data on the risk factors and prognosis of ACP induced by COVID-19-related pneumonia. OBJECTIVE The objective of this study was to evaluate the prognostic value of ACP, assessed by transthoracic echocardiography (TTE) and clinical factors associated with ACP in a cohort of patients with COVID-19-related pneumonia. MATERIALS AND METHODS Between February 2020 and June 2021, patients admitted to intensive care unit (ICU) at Amiens University Hospital for COVID-19-related pneumonia were assessed by TTE within 48 h of admission. ACP was defined as a right ventricle/left ventricle area ratio of >0.6 associated with septal dyskinesia. The primary outcome was mortality at 30 days. RESULTS Among 146 patients included, 36% (n = 52/156) developed ACP of which 38% (n = 20/52) were non-intubated patients. The classical risk factors of ACP (found in NC-ARDS) such as PaCO2 >48 mmHg, driving pressure >18 mmHg, and PaO2/FiO2 < 150 mmHg were not associated with ACP (all P-values > 0.1). The primary outcome occurred in 32 (22%) patients. More patients died in the ACP group (n = 20/52 (38%) vs. n = 12/94 (13%), P = 0.001). ACP [hazards ratio (HR) = 3.35, 95%CI [1.56-7.18], P = 0.002] and age >65 years (HR = 2.92, 95%CI [1.50-5.66], P = 0.002) were independent risk factors of 30-day mortality. CONCLUSION ACP was a frequent complication in ICU patients admitted for COVID-19-related pneumonia. The 30-day-mortality was 38% in these patients. In COVID-19-related pneumonia, the classical risk factors of ACP did not seem relevant. These results need confirmation in further studies.
Collapse
Affiliation(s)
- Christophe Beyls
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Nicolas Martin
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Thomas Booz
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Christophe Viart
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Solenne Boisgard
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Camille Daumin
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Maxime Crombet
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Julien Epailly
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Pierre Huette
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Hervé Dupont
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| | - Osama Abou-Arab
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
| | - Yazine Mahjoub
- Department of Anesthesiology and Critical Care Medicine, Amiens University Hospital, Amiens, France
- UR UPJV 7518 SSPC (Simplification of Care of Complex Surgical Patients) Research Unit, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
12
|
Yao W, Dong H, Qi J, Zhang Y, Shi L. Safety and efficacy of mesenchymal stem cells in severe/critical patients with COVID-19: A systematic review and meta-analysis. EClinicalMedicine 2022; 51:101545. [PMID: 35844767 PMCID: PMC9270852 DOI: 10.1016/j.eclinm.2022.101545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The present study aims to better understand the efficacy and safety of mesenchymal stromal cells (MSCs) in treating severe/critical patients with COVID-19. METHODS PubMed, the Cochrane Library, and the Chinese electronic database CNKI were searched from inception up to Dec 19, 2021. Original comparative studies for MSC treatment + standard treatment for severe/critical patients with COVID-19, with placebo or standard treatment as the control group, were included. The primary outcomes were in-hospital mortality and adverse events (AEs). A meta-analysis was performed to compare the mortality rates between the two groups. Then, a subgroup analysis was performed according to the category of the disease (severe or critical) and MSC dose. Afterwards, a descriptive analysis was performed for AEs and secondary outcomes. The funnel plot and Egger's test were used for the publication bias assessment. FINDINGS Compared to placebo or standard care, MSCs provide significant benefit in the treatment of patients with severe/critical COVID-19, in terms of in-hospital mortality rate (odds ratio: 0.52, 95% CI 0.32-0.84), with very low heterogeneity (P=0.998 [Q test], I 2=0.0%) and less AEs. No significant difference was found in mortality rate due to the different disease categories or MSC doses. Furthermore, no publication bias was found. INTERPRETATION The present study demonstrates that MSCs are highly likely to reduce mortality and are safe to use for patients with severe or critical COVID-19, regardless of whether 1-3 doses are applied. However, due to the small sample size of the included studies, further high-quality, large-scale trials are needed to confirm this statement in the future. FUNDING The National Key Research and Development Program of China (No. 2020YFC0860900), the Science and Technology Project of Wuhan (No. 2020020602012112), the Tianjin Science and Technology Research Program (18PTSYJC00070 and 16PTWYHZ00030), Haihe Laboratory of Cell Ecosystem Innovation Fund (HH22KYZX0046), and the Tianjin Free Trade Zone Innovation Development Project (ZMCY-03-2021002-01) funded the study. We are also grateful for the support from the 3551 Talent Plan of China Optics Valley.
Collapse
Affiliation(s)
- Weiqi Yao
- Department of Hematology, Union Hospital, Tong Ji Medical College, Hua Zhong University of Science and Technology, Hubei, China
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
| | - Haibo Dong
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
| | - Ji Qi
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
| | - Yu Zhang
- Wuhan Optics Valley Vcanbio Cell & Gene Technology Co., Ltd., Hubei, China
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd., Hubei, China
- Hubei Engineering Research Center for Human Stem Cell Preparation, Application and Resource Preservation, Wuhan, China
- VCANBIO Cell & Gene Engineering Corp., Ltd., No. 12 Meiyuan Road, Tianjin, China
- State Industrial Base for Stem Cell Engineering Products, Tianjin, China
- Corresponding authors.
| | - Lei Shi
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Xi Si Huan Middle Road, Fengtai District, Beijing, China
- Corresponding authors.
| |
Collapse
|
13
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
14
|
Zhang Y, Zheng L, Deng H, Feng D, Hu S, Zhu L, Xu W, Zhou W, Wang Y, Min K, Zhou Q, Chen Y, Zhou H, Yang H, Lv X. Electroacupuncture Alleviates LPS-Induced ARDS Through α7 Nicotinic Acetylcholine Receptor-Mediated Inhibition of Ferroptosis. Front Immunol 2022; 13:832432. [PMID: 35222419 PMCID: PMC8866566 DOI: 10.3389/fimmu.2022.832432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an uncontrollable, progressive pulmonary inflammatory disease, and as a common clinical critical disease, there is no effective treatment available. Electroacupuncture (EA) therapy is a type of traditional Chinese medicine physiotherapy that can alleviate the inflammatory response. However, the potential mechanism of EA in the treatment of ARDS is not yet clear. Ferroptosis is a new type of programmed cell death characterized by intracellular iron accumulation and lipid peroxidation. Recently, emerging evidence has shown that ferroptosis is closely related to the occurrence and development of ARDS caused by various pathological factors. Here, we further investigated whether EA-mediated inhibition of ferroptosis in lung tissue could attenuate lipopolysaccharide (LPS)-induced ARDS and explored its underlying mechanisms. In this study, mice were administered LPS intraperitoneally to establish a model of LPS-induced ARDS. We found that EA stimulation could not only reduce the exudation of inflammatory cells and proteins in the alveolar lumen but also significantly alleviate the pathological changes of lung tissue, inhibit the production of proinflammatory cytokines and improve the survival rate of mice. Concurrently, we also found that ferroptosis events occurred in the lung tissue of LPS-induced ARDS mice, manifested by elevated iron levels, ROS production and lipid peroxidation. Intriguingly, our results showed that EA stimulation at the Zusanli (ST36) acupoint activated α7 nicotinic acetylcholine receptor (α7nAchR) in lung tissue mainly through the sciatic nerve and cervical vagus nerve, thus exerting anti-ferroptosis and pulmonary protective effects. Additionally, these effects were eliminated by methyllycaconitine (MLA), a selective antagonist of α7nAchR. In vitro experiments, activation of α7nAchR protected alveolar epithelial cells from LPS-induced ferroptosis. Furthermore, our experiments showed that the pulmonary protective effects of EA stimulation were effectively reversed by erastin, a ferroptosis activator. Collectively, we demonstrated that EA stimulation could alleviate LPS-induced ARDS by activating α7nAchR to inhibit LPS-induced ferroptosis in alveolar epithelial cells. Targeting and regulating ferroptosis in alveolar epithelial cells may be a potential intervention approach for the treatment of LPS-induced ALI/ARDS in the future.
Collapse
Affiliation(s)
- Yiguo Zhang
- Graduate School, Wannan Medical College, Wuhu, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Song Hu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenting Xu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyu Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|