1
|
Luo Y, Ye Z, Li Y, Wong CW, Xu S, Deng Y, Su Z, Li X, Huang Y, Han B. Analysis of long noncoding gene expression and its interactions with protein-coding genes in vascular endothelial cells in keloids. Eur J Med Res 2025; 30:86. [PMID: 39920823 PMCID: PMC11806810 DOI: 10.1186/s40001-025-02271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/01/2025] [Indexed: 02/09/2025] Open
Abstract
OBJECTIVES The purpose of this study was to determine the relationship between protein-coding RNA (messenger RNA, mRNA) and long noncoding RNA (lncRNA) expressed in vascular endothelial cells (VECs) in keloids by reanalyzing Gene Expression Omnibus (GEO) microarray chip data. MATERIALS AND METHODS The GSE121618 database and clinical information of these samples were downloaded and reanalyzed by the R language package. Expression differences in mRNA and lncRNA between keloids and normal skin were calculated. GO/KEGG enrichment analysis was conducted to determine the function of these genes, and an interaction network of lncRNAs-mRNAs was constructed. Magnetic Sorting of VECs and qRT-PCR were used to verify these bioinformatic results. RESULTS The expression of three hundred and five mRNAs in the keloid group was significantly different from that in the normal group, and 98 lncRNAs were different, 21 of which were upregulated and 118 of which were downregulated. The hub relationship between the upregulated lncRNA‒mRNA interaction was lncRNA LINC01546-RASAL3/COL13A1, while the downregulated hub was lncRNA LOC101929787-PRKAA2/KRT71/SSTR1. qPCR verification result showed no obvious statistical differences. CONCLUSIONS Through the in-depth mining of keloid microarray data using bioinformatic methods, we speculated that VECs can affect the development and progression of keloids by epigenomic regulation via lncRNA‒mRNA interactions.
Collapse
Affiliation(s)
- Yunxiang Luo
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zi Ye
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yi Li
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chau Wei Wong
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.
- LIHE Hospital, 1428 GuangZhou Avenue, Guangzhou, 510060, China.
| | - Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yu Deng
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Zhicheng Su
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Xueqing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yingxiong Huang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Bing Han
- Scar and Wound Treatment Department, Plastic Surgery Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Tebben K, Yirampo S, Coulibaly D, Koné A, Laurens M, Stucke E, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry A, Kouriba B, Plowe C, Doumbo O, Lyke K, Takala-Harrison S, Thera M, Travassos M, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. RESEARCH SQUARE 2023:rs.3.rs-3487114. [PMID: 37961587 PMCID: PMC10635353 DOI: 10.21203/rs.3.rs-3487114/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
| | - Salif Yirampo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Drissa Coulibaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Abdoulaye Koné
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Ahmadou Dembélé
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Youssouf Tolo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Karim Traoré
- Universite des Sciences des Techniques et des Technologies de Bamako
| | - Ahmadou Niangaly
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Bourema Kouriba
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | - Ogobara Doumbo
- Universite des Sciences des Techniques et des Technologies de Bamako
| | | | | | - Mahamadou Thera
- Malaria Research and Training Centre-International Center for Excellence in Research (MRTC-ICER)
| | | | | |
Collapse
|
4
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563751. [PMID: 37961701 PMCID: PMC10634788 DOI: 10.1101/2023.10.24.563751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per season. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, vary dramatically among children. To examine the factors contributing to these variations, we simultaneously characterized the host and parasite gene expression profiles from 136 children with symptomatic falciparum malaria and analyzed the expression of 9,205 human and 2,484 Plasmodium genes. We used gene expression deconvolution to estimate the relative proportion of immune cells and parasite stages in each sample and to adjust the differential gene expression analyses. Parasitemia explained much of the variation in both host and parasite gene expression and revealed that infections with higher parasitemia had more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age was also strongly correlated with gene expression variations. Plasmodium falciparum genes associated with age suggested that older children carried more male gametocytes, while host genes associated with age indicated a stronger innate response (through TLR and NLR signaling) in younger children and stronger adaptive immunity (through TCR and BCR signaling) in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies; Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine; Baltimore, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore, USA
| |
Collapse
|
5
|
Yu T, Hu C, Zhao X, Cai L, Chen B, Lu L, Yang M. Identification of a novel immune-related long noncoding RNA in carp primary macrophages associated with bisphenol A' s immunoregulatory effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106656. [PMID: 37595502 DOI: 10.1016/j.aquatox.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) play pivotal roles in various biological processes. However, current studies on lncRNAs mostly focus on mammalian species, with little research on the functional roles of lncRNAs in teleost fish. Here, we identified a novel intergenic lncRNA (linc-93.2) in the head kidney primary macrophages of common carp (Cyprinus carpio) after exposure to a typical environmental endocrine disrupting chemical, bisphenol A (BPA). As a result, linc-93.2 was more than 3,619 bp in length and predominantly localized to the nucleus of primary macrophages other than cytoplasm, with the highest expression level in spleen followed by head kidney among different organs. Bioinformatic analysis predicted a cis-target gene, dennd1b, and 20 trans-target genes including hsp70, gna13 and rasgap, were potentially regulated by linc-93.2; NFκB and estrogen receptor (ERα) binding sites were located in the promoter region upstream of its transcription start site, which together suggested the involvement of linc-93.2 in immune and neurological functions in fish. Based on that, the expression level of linc-93.2 was determined in macrophages following acute lipopolysaccharide (LPS) and BPA treatments, both of which significantly induced linc-93.2 and IL-1β expression in cells. Moreover, a NF-κB inhibitor PDTC significantly reduced linc-93.2 expression in macrophages, but co-exposure of macrophages to PDTC with BPA or LPS could significantly rescue linc-93.2 expression, consistent with the observation on that LPS or BPA alone significantly induced both linc-93.2 and its target gene expression. Interestingly, linc-93.2 and its target gene expression was significantly suppressed by an ER antagonist ICI 182,780, however, the co-exposure of macrophages to ICI 182,780 with BPA failed to attenuate their declined expression. Overall, the current study demonstrated that linc-93.2, a novel immune-related lncRNA, may participate in the immune processes of common carp macrophages via the NF-κB and ER pathway. The results presented in this study enhance our understanding of the immunotoxin mechanisms of BPA in teleost fish.
Collapse
Affiliation(s)
- Ting Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chengzhang Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xiaoyu Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, 361013, China
| | - Lingcan Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Pal DS, Banerjee T, Lin Y, de Trogoff F, Borleis J, Iglesias PA, Devreotes PN. Actuation of single downstream nodes in growth factor network steers immune cell migration. Dev Cell 2023; 58:1170-1188.e7. [PMID: 37220748 PMCID: PMC10524337 DOI: 10.1016/j.devcel.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.
Collapse
Affiliation(s)
- Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yiyan Lin
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Félix de Trogoff
- Department of Mechanical Engineering, STI School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Aguilan JT, Pedrosa E, Dolstra H, Baykara RN, Barnes J, Zhang J, Sidoli S, Lachman HM. Proteomics and phosphoproteomics profiling in glutamatergic neurons and microglia in an iPSC model of Jansen de Vries Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548192. [PMID: 37461463 PMCID: PMC10350077 DOI: 10.1101/2023.07.08.548192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.
Collapse
Affiliation(s)
- Jennifer T. Aguilan
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jesse Barnes
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Jinghang Zhang
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY, 10461
| |
Collapse
|
8
|
Pérez-Hernández T, Hernández JN, Machín C, McNeilly TN, Nisbet AJ, Matthews JB, Burgess STG, González JF. Exploring the transcriptomic changes underlying recombinant vaccine efficacy against Teladorsagia circumcincta in 3-month-old lambs. Vet Parasitol 2023; 320:109960. [PMID: 37269732 DOI: 10.1016/j.vetpar.2023.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Teladorsagia circumcincta is an abomasal parasitic nematode that can cause serious issues in small ruminant production, which are aggravated by drug resistance. Vaccines have been suggested as a feasible, long-lasting alternative for control since adaptation to the host's immune mechanisms by helminths develops at a much slower pace than anthelmintic resistance. Recently, a T. circumcincta recombinant subunit vaccine yielded over a 60% reduction in egg excretion and worm burden and induced strong humoral and cellular anti-helminth responses in vaccinated 3-month-old Canaria Hair Breed (CHB) lambs, but Canaria Sheep (CS) of a similar age were not protected by the vaccine. Here, we compared the transcriptomic profiles in the abomasal lymph nodes of such 3-month-old CHB and CS vaccinates 40 days after infection with T. circumcincta to understand differences in responsiveness at the molecular level. In the CS, differentially expressed genes (DEG) identified were related to general immunity processes such as antigen presentation or antimicrobial proteins and down-regulation of inflammation and immune response through regulatory T cell-associated genes. However, upregulated genes in CHB vaccinates were associated with type-2 oriented immune responses, i.e., immunoglobulin production, activation of eosinophils, as well as tissue structure and wound repair-related genes and protein metabolism pathways such as DNA and RNA processing. These results highlight potentially more optimal timing and orientation of immune responses in CHB sheep compared to CS associated with vaccine-induced protection. The data obtained in this study thus deepens our understanding of variations in responsiveness to vaccination in young lamb and provides insights for vaccine refinement strategies.
Collapse
Affiliation(s)
- Tara Pérez-Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | - Julia N Hernández
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain.
| | - Cynthia Machín
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Jorge F González
- Instituto Universitario Sanidad Animal y Seguridad Alimentaria, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Spain
| |
Collapse
|
9
|
Gao RF, Yang K, Qu YN, Wei X, Shi JR, Lv CY, Zhao YC, Sun XL, Xu YJ, Yang YQ. m 6A demethylase ALKBH5 attenuates doxorubicin-induced cardiotoxicity via posttranscriptional stabilization of Rasal3. iScience 2023; 26:106215. [PMID: 36876119 PMCID: PMC9982307 DOI: 10.1016/j.isci.2023.106215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Collapse
Affiliation(s)
- Ri-Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ya-Nan Qu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Jia-Ran Shi
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chun-Yu Lv
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 200240, China
| | - Yong-Chao Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Xiao-Lei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200232, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 518036, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Corresponding author
| |
Collapse
|
10
|
SAITO S, KELEL M. Oral administration of Lacticaseibacillus casei ATCC393 promotes angiogenesis by enhancing neutrophil activity in a murine hind-limb ischemia model. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:94-99. [PMID: 36660599 PMCID: PMC9816049 DOI: 10.12938/bmfh.2022-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/13/2022] [Indexed: 01/01/2023]
Abstract
Angiogenesis is a highly regulated biological event and requires the participation of neutrophils, which are innate immune cells, to initiate the systematic responses. Some strains of lactic acid bacteria (LAB) can be used for probiotics that provide functional modifications in our immune systems. Here, we show that oral administration of Lacticaseibacillus casei ATCC393 promoted inflammatory angiogenesis accompanied by enhanced neutrophil activity. Heat-killed L. casei (HK-LC) administration improved angiogenesis in a murine hind-limb ischemia (HLI) model. The recruitment and activity of neutrophils were enhanced by HK-LC administration under the HLI conditions. Our results provide novel evidence of an immunological contribution of LAB uptake in the prevention of or recovery from cardiovascular diseases.
Collapse
Affiliation(s)
- Suguru SAITO
- Institute of Biomedical Sciences (IBMS), Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan,Division of Virology, Department of Infection and Immunity,
Faculty of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi
329-0498, Japan,Department of Dentistry, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2R7, Canada,*Corresponding author. Suguru Saito (E-mail: )
| | - Musin KELEL
- Institute of Biomedical Sciences (IBMS), Academia Sinica, 128
Academia Road, Section 2, Nankang, Taipei 115, Taiwan,Department of Biotechnology, College of Biological and
Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa,
Ethiopia
| |
Collapse
|
11
|
Saito S, Okuno A, Maekawa T, Kobayashi R, Yamashita O, Tsujimura N, Inaba M, Kageyama Y, Tsuji NM. Lymphocyte antigen 6 complex locus G6D downregulation is a novel parameter for functional impairment of neutrophils in aged mice. Front Immunol 2022; 13:1001179. [PMID: 36389807 PMCID: PMC9647080 DOI: 10.3389/fimmu.2022.1001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Immunological aging is a critical event that causes serious functional impairment in the innate immune system. However, the identification markers and parameters are still poorly understood in immunological aging of myeloid lineage cells. Here, we show that a downregulation of lymphocyte antigen 6 complex locus G6D (Ly-6G) observed in aged mouse neutrophils could serve as a novel marker for the prediction of age-associated functional impairment in the neutrophils. Ly-6G expression was significantly downregulated in the bone marrow (BM) neutrophils of aged mice compared to young mice confirmed by flow cytometry analysis. In vitro experiments using BM-isolated neutrophils showed significant downregulations in their activities, such as phagocytosis, reactive oxygen species (ROS) production, interleukin (IL)-1β production, neutrophil extracellular trap (NET) formation, and migration as well as bacterial clearance, in the aged mouse neutrophils compared to those of young mice counterparts. Interestingly, the magnitudes of functional parameters were strongly correlated with the Ly-6G expression in the neutrophils. Thus, our results suggest that downregulation of Ly-6G reflects the age-associated functional attenuation of the neutrophils.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori, Japan
| | - Toshio Maekawa
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
| | - Ryoki Kobayashi
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Division of Microbiology and Immunology, Department of Infection and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Osamu Yamashita
- Technical Service Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Morihiko Inaba
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Yasushi Kageyama
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Department of Food Science, Jumonji University, Niiza, Japan
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| |
Collapse
|