1
|
Chatsirisakul O, Leenabanchong N, Siripaopradit Y, Chang CW, Buhngamongkol P, Pongpirul K. Strain-Specific Therapeutic Potential of Lactiplantibacillus plantarum: A Systematic Scoping Review. Nutrients 2025; 17:1165. [PMID: 40218922 PMCID: PMC11990516 DOI: 10.3390/nu17071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Objectives: This systematically scoping review aims to evaluate the therapeutic potential and clinical benefits of specific Lactiplantibacillus plantarum (L. plantarum) strains in human health, identifying their strain-specific effects across various medical conditions. Methods: Following the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines and employing the PICO framework, a comprehensive literature search was conducted in the PubMed and Embase databases to identify relevant studies published up to December 2023. Inclusion criteria were rigorously applied to ensure the selection of high-quality studies focusing on the clinical application of distinct L. plantarum stains. Results: This review analyzed several unique strains of L. plantarum across 69 studies, identifying several therapeutic benefits. L. plantarum 299v effectively improved gastrointestinal symptoms, enhanced oral health, and reduced systemic inflammation. L. plantarum IS-10506 exhibited notable immunomodulatory effects, especially in managing atopic dermatitis. L. plantarum LB931 showed promise in decreasing pathogenic colonization, supporting women's vaginal health. Additionally, L. plantarum CCFM8724 demonstrated potential in reducing early childhood caries, highlighting its promise in pediatric oral care. Conclusions: The therapeutic potential of L. plantarum is extensive, with certain strains exhibiting promising clinical benefits for specific health concerns. The findings of this review advocate for the integration of L. plantarum strains into clinical practice, emphasizing the need for further research to elucidate their mechanisms of action, optimal dosages, and long-term safety profiles.
Collapse
Affiliation(s)
- Oranut Chatsirisakul
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Natasha Leenabanchong
- Faculty of Medicine and Public Health, HRH Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Lak Si, Bangkok 10210, Thailand;
| | - Yada Siripaopradit
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Chun-Wei Chang
- College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Patsakorn Buhngamongkol
- Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand; (O.C.); (Y.S.); (P.B.)
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine, Faculty of Medicine, Chulalongkorn University, Rama IV Rd., Pathumwan, Bangkok 10330, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, UK
- Bumrungrad International Hospital, Bangkok 10110, Thailand
| |
Collapse
|
2
|
Feng C, Wang L, Bai H, Huang Q, Liang S, Liang R, Yu J, Wang S, Guo H, Raza SHA, Shan X, Zhang D, Sun W, Zhang L. The high efficiency protective effectiveness of a newly isolated myoviruses bacteriophage vB_AceP_PAc in protecting mice from Aeromonas caviae infection in mice. BMC Microbiol 2025; 25:112. [PMID: 40025468 PMCID: PMC11874395 DOI: 10.1186/s12866-025-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Phage therapy is an effective strategy to combat multidrug resistance in bacteria and has been increasingly utilized to protect animals from bacterial infections. This study involved the isolation and purification of a novel myoviruses phage, vB_AceP_PAc, from a drug-resistant bacterial strain Aeromonas caviae. Genome sequence analysis based on nucleotide sequences revealed that vB_AceP_PAc shared significant similarity with the genomes of 10 other Aeromonas phages, with the highest coverage rate of 52% with phiA047. Intraperitoneal injection of 1 × 10⁷ CFU/mL (100 µL/mouse) A. caviae AC-CY resulted in diarrhea in mice three days later. At this time, oral administration of 1 × 109 PFU/mL (100 µL/mouse) vB_AceP_PAc effectively alleviated the diarrhea induced by Pseudomonas aeruginosa infection in the mice. Furthermore, oral administration of 1 × 109 PFU/ml vB_AceP_PAc (100 µl/mouse) in healthy mice significantly reduced inflammatory cytokine levels, increased tight junction molecule levels, and improved intestinal barrier function. Moreover, the consumption of vB_AceP_PAc by health mice led to a significant increase in the abundance of Lactobacillaceae in the gut, while the expression of CD3+CD4+/CD3+CD8+ was minimally affected. Overall, the findings of this study confirmed the promising potential of bacteriophage vB_AceP_PAc in treating diarrhea caused by A. caviae.
Collapse
Affiliation(s)
- Chao Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lu Wang
- Institute of Intelligent Oncology, Chongqing University, Chongqing, 400030, China
| | - Huifang Bai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qixing Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Liang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ruiqi Liang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiahao Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hui Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dongxing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wuwen Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Postdoctoral Scientifc Research Workstation, Changchun Borui Science and Technology Co., Ltd., Changchun, 130000, China.
| | - Lei Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Postdoctoral Scientifc Research Workstation, Changchun Borui Science and Technology Co., Ltd., Changchun, 130000, China.
| |
Collapse
|
3
|
Liu H, Li P, Xin J, Huang H, Yang Y, Deng H, Zhou Z, Zhong Z, Peng G, Chen D, He C. Probiotic Characteristics and Whole Genome Analysis of Lactiplantibacillus plantarum PM8 from Giant Panda (Ailuropoda melanoleuca) Milk. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10473-x. [PMID: 39900880 DOI: 10.1007/s12602-025-10473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Milk is a rich source of probiotics, particularly lactic acid bacteria (LAB), which have been shown to promote gut health, support the immune system, enhance digestion, and prevent pathogen colonization. This study aimed to isolate and identify LAB strains from giant panda (Ailuropoda melanoleuca) milk, evaluate their probiotic properties, and analyze the genomic characteristics of a promising strain. Thirteen LAB strains were isolated from 12 samples of giant panda milk. Among all LAB strains, Lactiplantibacillus plantarum PM8 (PM8) demonstrated probiotic properties and safety features. It exhibited strong growth performance, high antipathogenic activity against four pathogens, and strong survival rates under simulated gastrointestinal conditions. PM8 also showed excellent adhesion capabilities to Caco-2 cells. Additionally, safety assessment revealed no hemolysin production and minimal antibiotic resistance, making it a promising candidate for probiotic applications. The genome of PM8 consists of 3,227,035 bp with a GC content of 44.60% and contains 3171 coding sequences, including 113 carbohydrate-active enzyme genes and genes related to exopolysaccharides synthesis, vitamin B biosynthesis, adhesion, antioxidant activity, and bile salt hydrolysis. Notably, it contains genes involved in nonribosomally synthesized secondary metabolite and bacteriocin production. The genomic safety analysis confirmed that PM8 lacks the capacity to transmit bacterial antimicrobial resistance and is non-pathogenic to both humans and animals. These findings suggest that PM8 holds considerable potential for enhancing gut health and supporting the development of safe probiotic products.
Collapse
Affiliation(s)
- Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Pinhan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Jialiang Xin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haocheng Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuxue Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Hongchuan Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Changliang He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Zhang W, Zheng L, Xie J, Su X, Zhang M, Huang H, Schmitz-Esser S, Du S, Yang Y, Xie J, Zhang Q, Yu S, Guo Q, Wang H, Zhang L, Yang K, Hou R. The giant panda gut harbors a high diversity of lactic acid bacteria revealed by a novel culturomics pipeline. mSystems 2024; 9:e0052024. [PMID: 38920380 PMCID: PMC11265448 DOI: 10.1128/msystems.00520-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Some lactic acid bacteria (LAB) can provide significant health benefits, which are critically important for the conservation of endangered animals, such as giant pandas. However, little is known about the diversity and culturability of LAB in the giant panda gut microbiota. To understand the roles of LAB in giant panda conservation, it is critical to culture bacterial strains of interest. In this study, we established a pipeline to culture bacterial strains using enrichment of target bacteria with different liquid media and growth conditions. Then, the strains were isolated in solid media to study their functions. Using 210 samples from the culture enrichment method and 138 culture-independent samples, we obtained 1120 amplicon sequencing variants (ASVs) belonging to Lactobacillales. Out of the 1120 ASVs, 812 ASVs from the culture enrichment approach were twofold more diverse than 336 ASVs from the culture-independent approach. Many ASVs of interest were not detected in the culture-independent approach. Using this pipeline, we isolated many relevant bacterial strains and established a giant panda gut bacteria strain collection that included strains with low-abundance in culture-independent samples and included most of the giant panda LAB described by other researchers. The strain collection consisted of 60 strains representing 35 species of 12 genera. Thus, our pipeline is powerful and provides guidance in culturing gut microbiota of interest in hosts such as the giant panda.IMPORTANCECultivation is necessary to screen strains to experimentally investigate microbial traits, and to confirm the activities of novel genes through functional characterization studies. In the long-term, such work can aid in the identification of potential health benefits conferred by bacteria and this could aid in the identification of bacterial candidate strains that can be applied as probiotics. In this study, we developed a pipeline with low-cost and user-friendly culture enrichment to reveal the diversity of LAB in giant pandas. We compared the difference between culture-independent and culture enrichment methods, screened strains of interest that produced high concentrations of short-chain fatty acids (SCFAs), and we investigated the catalog of virulence factors, antibiotic resistance, butyrate and lactate synthesis genes of the strains at a genomic level. This study will provide guidance for microbiota cultivation and a foundation for future research aiming to understand the functions of specific strains.
Collapse
Affiliation(s)
- Wenping Zhang
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Lijun Zheng
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Chengdu, Sichuan, China
| | - He Huang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | | | - Shizhang Du
- Key Laboratory of Monitoring Biological Diversity in Minshan Mountain of National Park of Giant Pandas at Mianyang Teachers' College of Sichuan Province, College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, Sichuan, China
| | - Yu Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Jiqin Xie
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qinrong Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Shuran Yu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Qiang Guo
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Hairui Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| | - Kong Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yu S, Xie J, Guo Q, Yan X, Wang Y, Leng T, Li L, Zhou J, Zhang W, Su X. Clostridium butyricum isolated from giant panda can attenuate dextran sodium sulfate-induced colitis in mice. Front Microbiol 2024; 15:1361945. [PMID: 38646621 PMCID: PMC11027743 DOI: 10.3389/fmicb.2024.1361945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Probiotics are beneficial to the intestinal barrier, but few studies have investigated probiotics from giant pandas. This study aims to explore the preventive effects of giant panda-derived Clostridium butyricum on dextran sodium sulfate (DSS)-induced colitis in mice. Methods Clostridium butyricum was administered to mice 14 days before administering DSS treatment to induce enteritis. Results Clostridium butyricum B14 could more effectively prevent colitis in mice than C. butyricum B13. C. butyricum B14 protected the mouse colon by decreasing the histology index and serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels, which improved intestinal inflammation-related symptoms. In addition, the treatment led to the regulation of the expression of Tifa, Igkv12-89, and Nr1d1, which in turn inhibited immune pathways. The expression of Muc4, Lama3, Cldn4, Cldn3, Ocln, Zo1, Zo2, and Snai is related the intestinal mucosal barrier. 16S sequencing shows that the C. butyricum B14 significantly increased the abundance of certain intestinal probiotics. Overall, C. butyricum B14 exerted a preventive effect on colitis in mice by inhibiting immune responses, enhancing the intestinal barrier and increasing the abundance of probiotic species. Thus, C. butyricum B14 administration helps regulate the balance of the intestinal microecology. It can suppress immune pathways and enhance barrier-protective proteins.
Collapse
Affiliation(s)
- Shuran Yu
- College of Life Science, Southwest Forestry University, Kunming, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Junjin Xie
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Qiang Guo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Xia Yan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Yuxiang Wang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Tangjian Leng
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Lin Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Jielong Zhou
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Wenping Zhang
- College of Life Science and Biotechnology, Mianyang Normal University, Mianyang, China
| | - Xiaoyan Su
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| |
Collapse
|
6
|
Lv H, Jia H, Cai W, Cao R, Xue C, Dong N. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3926-3938. [PMID: 36347632 DOI: 10.1002/jsfa.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulcerative colitis is a gastrointestinal disease closely related to intestinal epithelial barrier damage and intestinal microbiome imbalance; however, effective treatment methods are currently limited. Rehmannia glutinosa polysaccharide (RGP) is an important active ingredient with a wide range of pharmacological activities, although its protective effect on colitis remains to be explored. In the present study, we verified the in vitro anti-inflammatory effect of RGP, and observed the ameliorating effect of RGP on dextran sulfate sodium-induced colitis in mice. RESULTS The results showed that (i) RGP attenuates lipopolysaccharide-induced overexpression of inflammatory factors in RAW264.7 cells; (ii) RGP improves the pathological damage caused by DSS, including weight loss, increased disease activity index and intestinal tissue ulcers; (iii) RGP improves tight junction proteins to protects the tightness of the intestinal epithelium; (iv) RGP inhibits the expression of inflammatory factors through the nuclear factor-kappa B pathway, and improved the of intestinal tissues inflammation; and (v) RGP can maintain the species diversity of intestinal microbes, increase the content of short-chain fatty acids and then restore the imbalance of intestinal microecology. CONCLUSION RGP can improve the intestinal microbiota to strengthen the intestinal epithelial barrier and protect against DSS-induced colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|