1
|
Debnath M, Malhotra M, Kulkarni A. Protein corona formation on supramolecular polymer nanoparticles causes differential endosomal sorting resulting in an attenuated NLRP3 inflammasome activation. Biomater Sci 2025. [PMID: 40244934 DOI: 10.1039/d5bm00244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Upon introduction into biological environments, nanoparticles undergo the spontaneous formation of a dynamic protein corona, which continually evolves and significantly modifies their physicochemical properties and interactions with biological systems. This evolving protein corona can critically impact the nanoparticles' endocytic pathways and targeting efficiency, potentially altering their functional characteristics and obscuring their intended therapeutic effects. Despite considerable focus on the characterization of corona proteins and their impact on nanoparticle uptake, the intracellular processes and their effects on immunogenicity are not yet thoroughly understood. Supramolecular polymer nanoparticles (SNPs) with a highly hydrophobic core are recognized for triggering NLRP3 inflammasome activation, a key component of the innate immune system. Here, it is reported that the protein corona formation on SNPs exerts an inhibitory effect on the activation pathway of NLRP3 inflammasome. The protein corona impairs the intrinsic capacity of SNPs to induce lysosomal membrane rupture, thereby diminishing the cellular stress signals necessary for the formation of the NLRP3 inflammasome complex. Furthermore, the cells transport SNPs with an attached protein corona to recycling endosomes, where they are sorted and prepared for exocytosis. Conversely, nascent SNPs are primarily confined to late endosomes and lysosomes, leading to lysosomal rupture and inflammasome activation. This differential routing reflects the significant impact of the protein corona on the cellular handling and subsequent biological activity of nanoparticles. In summary, this study elucidates the fundamental role of the protein corona in shaping the intracellular disposition of nanoparticles, with implications for modulating their interactions with the immune system.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
2
|
Chen X, Wang Y, Huang J, Dou H, Zhang Z, Zheng Y, Long R, Zhang X, Xu F, Ye W, Xiao Q. Tamibarotene directly targets the NACHT domain of NLRP3 to alleviate acute myocardial infarction. Biochem Pharmacol 2025; 234:116801. [PMID: 39952330 DOI: 10.1016/j.bcp.2025.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The aberrant activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated in the exacerbation of myocardial damage and the subsequent development of heart failure following myocardial infarction (MI). Inhibiting NLRP3 inflammasome activation offers a promising therapeutic strategy for mitigating MI-related injury, although no NLRP3 inhibitors have received Food and Drug administration (FDA) approval to date. To identify novel NLRP3 inflammasome inhibitors through the repurposing of FDA-approved drugs, Tamibarotene emerged as a potent inhibitor with a favorable safety profile. Mechanistically, Tamibarotene inhibits NLRP3 inflammasome activation independently of retinoic acid receptor activation, binding to Phe410 and Ile417 within the nucleotide-binding and oligomerization (NACHT) domain in an ATPase activity-dependent manner. This interaction further inhibits the assembly of the NLRP3 inflammasome. In a murine model of MI, Tamibarotene significantly reduced myocardial damage and improved cardiac function by inhibiting NLRP3 inflammasome activation. In summary, NLRP3 has been identified as a direct target of Tamibarotene for myocardial repair following MI, indicating that Tamibarotene could serve as a potential precursor for the development of innovative NLRP3 inhibitors.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yunjing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Junjun Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huaqian Dou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhe Zhang
- Department of Cardiovascular Medicine & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Yutong Zheng
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Rui Long
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Xiaofeng Zhang
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Fengdan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Weijun Ye
- Department of Pharmacy, the Eighth People' s Hospital of Dongguan, Dongguan Children' s Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China.
| | - Qing Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Astiawati T, Rohman MS, Wihastuti T, Sujuti H, Endharti A, Sargowo D, Oceandy D, Lestari B, Triastuti E, Nugraha RA. The Emerging Role of Colchicine to Inhibit NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome and Interleukin-1β Expression in In Vitro Models. Biomolecules 2025; 15:367. [PMID: 40149903 PMCID: PMC11940210 DOI: 10.3390/biom15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
While the beneficial effects of colchicine on inflammation and infarcted myocardium have been documented, its impact on cardiac fibroblast activation in the context of myocardial infarction (MI) remains unknown. This study aimed to investigate the effect of colchicine on the regulation of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and Interleukin-1β (IL-1β) expression in fibroblasts. 3T3 fibroblasts were exposed to 600 μM CoCl2 for 24 h to simulate hypoxia, with normoxic cells as controls. Colchicine (1 μM) was administered for 24 h. ASC-NLRP3 colocalization and IL-1β expression were evaluated using immunofluorescence and flow cytometry, respectively. Data were analyzed using t-tests and one-way ANOVA with post hoc tests. Hypoxia treatment significantly induced apoptosis-associated speck-like protein containing a CARD (ASC)-NLRP3 colocalization (p < 0.05). Colchicine treatment of hypoxic 3T3 cells reduced ASC-NLRP3 colocalization, although this reduction was not statistically significant. Additionally, IL-1β expression was significantly inhibited in colchicine-treated hypoxic 3T3 cells compared to those treated with placebo (p < 0.05). The findings of this study indicate that colchicine treatment inhibits the activation of the NLRP3 inflammasome by disrupting the colocalization of ASC and NLRP3, thereby reducing IL-1β expression in CoCl2-treated 3T3 cells.
Collapse
Affiliation(s)
- Tri Astiawati
- Doctoral Program of Medical Science, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
- Department of Cardiology, Doctor Iskak General Hospital, Tulungagung 62233, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
- Cardiovascular Research Centre, Brawijaya University, Malang 65145, Indonesia
| | - Titin Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
| | - Hidayat Sujuti
- Department of Biochemistry, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
| | - Agustina Endharti
- Doctoral Program of Medical Science, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
| | - Delvac Oceandy
- Division of Cardiovascular Science, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Bayu Lestari
- Department of Pharmacology, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK;
| | - Efta Triastuti
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia;
| | - Ricardo Adrian Nugraha
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga—Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia;
| |
Collapse
|
4
|
Vázquez Marrero VR, Doerner J, Wodzanowski KA, Zhang J, Lu A, Boyer FD, Vargas I, Hossain S, Kammann KB, Dresler MV, Shin S. Dendritic cells activate pyroptosis and effector-triggered apoptosis to restrict Legionella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638189. [PMID: 40027713 PMCID: PMC11870440 DOI: 10.1101/2025.02.13.638189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The innate immune system relies on pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and guard proteins to monitor pathogen disruption of host cell processes. How different immune cell types engage PRR- and guard protein-dependent defenses in response to infection is poorly understood. Here, we show that macrophages and dendritic cells (DCs) respond in distinct ways to bacterial virulence activities. In macrophages, the bacterial pathogen Legionella pneumophila deploys its Dot/Icm type IV secretion system (T4SS) to deliver effector proteins that facilitate its robust intracellular replication. In contrast, T4SS activity triggers rapid DC death that potently restricts Legionella replication within this cell type. Intriguingly, we found that infected DCs exhibit considerable heterogeneity at the single cell level. Initially, a subset of DCs activate caspase-11 and NLRP3 inflammasome-dependent pyroptosis and release IL-1 β early during infection. At later timepoints, a separate DC population undergoes apoptosis driven by T4SS effectors that block host protein synthesis, thereby depleting the levels of the pro-survival proteins Mcl-1 and cFLIP. Together, pyroptosis and effector-triggered apoptosis robustly restrict Legionella replication in DCs. Collectively, our work suggests a model where Mcl-1 and cFLIP guard host translation in DCs, and that macrophages and DCs distinctly employ innate immune sensors and guard proteins to mount divergent responses to Legionella infection.
Collapse
|
5
|
Ciani M, Rigillo G, Benatti C, Pani L, Blom JM, Brunello N, Tascedda F, Alboni S. Time- and Region-specific Effect of Vortioxetine on Central LPS-induced Transcriptional Regulation of NLRP3 Inflammasome. Curr Neuropharmacol 2025; 23:196-208. [PMID: 39005130 PMCID: PMC11793070 DOI: 10.2174/1570159x22666240705143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Inflammasome overactivation, multiprotein complexes that trigger inflammatory responses, plays a critical role in Major Depressive Disorder (MDD) pathogenesis and treatment responses. Indeed, different antidepressants alleviate depression-related behaviours by specifically counteracting the NLRP3 inflammasome signalling pathway. The immunomodulatory effects of vortioxetine (VTX), a multimodal antidepressant with cognitive benefits, were recently revealed to counter memory impairment induced by a peripheral lipopolysaccharide (LPS) injection 24 hours (h) postchallenge. The potential link between VTX and NLRP3, along with other inflammasomes, remains un-explored. METHODS The potential link between VTX and NLRP3, along with other inflammasomes, remains unexplored. Hence, adult C57BL/6J male mice (n = 73) were fed with a standard or VTX-enriched diet (600 mg/kg of food, 28 days), injected with LPS (830 μg/kg) or saline, and sacrificed 6/24 h post-LPS. At these time-points, transcriptional effects of LPS and VTX on NLRP3, NLRP1, NLRC4, AIM2 (inflammasomes), ASC and CASP1 (related subunits) and NEK7 mediator (NLRP3 regulator) were assessed in dorsal and ventral hippocampal subregions, frontal-prefrontal cortex and hypothalamus, brain regions serving behavioural-cognitive functions impaired in MDD. RESULTS Varied expression patterns of inflammasomes were revealed, with long-term NLRP3 and ASC transcriptional changes observed in response to LPS. It was demonstrated that VTX counteracted the LPS-mediated NLRP3 and ASC upregulation in memory-related brain areas like the dorsal hippocampus at 24 h time-point, potentially via regulating NEK7 expression. No VTX-mediated transcriptional effects were observed on other inflammasomes, reinforcing a potentially specific modulation on the NLRP3 inflammasome signalling pathway. CONCLUSION Thus, a novel VTX molecular mechanism in modulating the NLRP3 inflammasome in a time- and area-specific manner in the brain was highlighted, with significant clinical implications in treating depression and cognitive impairments.
Collapse
Affiliation(s)
- Miriam Ciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience
and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience
and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, USA
| | - Johanna M.C. Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience
and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience
and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Centre of Neuroscience
and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Zhang Z, Wu C, Bao Z, Ren Z, Zou M, Lei S, Liu K, Deng X, Yin S, Shi Z, Zhang L, Lan Z, Chen L. Benzoylmesaconine mitigates NLRP3 inflammasome-related diseases by reducing intracellular K + efflux and disrupting NLRP3 inflammasome assembly. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156154. [PMID: 39447229 DOI: 10.1016/j.phymed.2024.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Benzoylmesaconine (BMA), a major alkaloid derived from the traditional Chinese medicine Aconitum carmichaeli Debx, exhibits potent anti-inflammatory properties. However, the precise mechanism underlying its action remains unclear. PURPOSE This study aimed to investigate the inhibitory mechanism of BMA on the NLRP3 inflammasome and assess its therapeutic efficacy in NLRP3-related metabolic diseases. METHODS A classic NLRP3 inflammasome-activated bone marrow-derived macrophage (BMDM) model was established to evaluate BMA's effects on NLRP3 upstream and downstream protein expression, as well as pyroptosis. Two distinct animal disease models, MSU-induced gouty arthritis and DSS-induced colitis, were utilized to validate BMA's anti-inflammatory activity in vivo. RESULTS In vitro findings revealed that BMA can suppress NLRP3 inflammasome activation by inhibiting interleukin-1β (IL-1β) secretion and GSDMD-N protein expression. This mechanism involved blocking intracellular K+ efflux and interfering with the formation of NLRP3 inflammasomes. In vivo studies demonstrated that BMA significantly alleviated inflammatory symptoms in MSU-induced acute gout and DSS-induced colitis models. CONCLUSION These findings suggest that BMA effectively inhibits the activation of the NLRP3 signaling pathway through dual mechanisms: reducing intracellular K+ efflux and disrupting NLRP3 inflammasome assembly. This multifaceted action highlights the therapeutic potential of BMA for NLRP3-related diseases.
Collapse
Affiliation(s)
- Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zilu Bao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaoxiang Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Min Zou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shuhui Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Kaiqun Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhaohua Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China
| | - Liqin Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, 2 Zheshan West Road, Wuhu 241002, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
7
|
An J, Marwaha A, Laxer RM. Autoinflammatory Diseases: A Review. J Rheumatol 2024; 51:848-861. [PMID: 38879186 DOI: 10.3899/jrheum.2023-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Autoinflammatory disease (AID) is a vast spectrum of disorders characterized by recurrent attacks of sterile inflammation. Since the first cloning of the familial Mediterranean fever gene in 1997, there has been a rapid rate of discovery of new AIDs. As of 2022, there have been 485 inborn errors of immunity documented by the International Union of Immunological Societies, for which many display aspects of autoinflammation. The pathophysiology of AIDs is complex. Although many are caused by rare mutations in genes that govern innate immunity, others are polygenic, where disease expression is thought to be triggered by environmental factors in genetically predisposed hosts. AIDs range in prevalence from common entities like gout to ultrarare monogenic diseases. Whereas AIDs were initially studied in pediatric populations, it is now apparent that they can present in adulthood and even in the elderly. AIDs can be clinically challenging given their rarity, as well as the heterogeneity in presentation and underlying etiology. Although the care of AIDs can span medical disciplines, the rheumatologist often plays a central role given the inflammatory nature of these illnesses. In this review, we explore the current understanding of the pathophysiology of these complex conditions and propose a classification system for AIDs. We place an emphasis on AIDs that present to the adult rheumatologist and discuss important AIDs that can mimic more classic rheumatic diseases such as systemic lupus erythematosus and inflammatory arthritis. Finally, we offer an approach to the clinical assessment, diagnosis, and management of AIDs.
Collapse
Affiliation(s)
- Jason An
- J. An, MD, MSc, Division of Rheumatology, Hospital for Sick Children, University of Toronto, Toronto, Ontario;
| | - Ashish Marwaha
- A. Marwaha, MD, PhD, Department of Medical Genetics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta
| | - Ronald M Laxer
- R.M. Laxer, MDCM, Division of Rheumatology, Hospital for Sick Children, University of Toronto, and Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Shi Z, Sun H, Tian X, Song X, Fan J, Sun S, Wang J, Zhang J, Wang J. Extracellular vesicles containing miR-181a-5p as a novel therapy for experimental autoimmune encephalomyelitis-induced demyelination. Int Immunopharmacol 2024; 135:112326. [PMID: 38796967 DOI: 10.1016/j.intimp.2024.112326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system. Recent research has revealed that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), containing specific miRNAs, possess immunomodulatory properties and have demonstrated therapeutic potential in the treatment of MS. This study aimed to investigate the role MSC-EVs, containing microRNA-181a-5p (miR-181a-5p) in both experimental autoimmune encephalomyelitis (EAE), an established animal model of MS, and lipopolysaccharide-stimulated BV2 microglia. We evaluated clinical symptoms and inflammatory responses in EAE mice following intrathecal injections of MSC-EVs. MSC-EVs containing miR-181a-5p were co-cultured with microglia to explore their impact on inflammation and cell pyroptosis. We validated the interaction between miR-181a-5p and its downstream regulators and conducted in vivo verification by injecting manipulated EVs containing miR-181a-5p into EAE mice. Our results demonstrated that MSC-EVs, containing miR-181a-5p reduced the clinical symptoms of EAE mice. Furthermore, we observed downregulation of miR-181a-5p in EAE model mice, and its expression was restored after treatment with MSC-EVs, which corresponded to suppressed microglial inflammation and pyroptosis. Additionally, EVs containing miR-181a-5p mitigated spinal cord injury and demyelination in EAE mice. Mechanistically, ubiquitin-specific protease 15 (USP15) exhibited high expression in EAE mice, and miR-181a-5p was specifically targeted and bound to USP15, thereby regulating the RelA/NEK7 axis. In conclusion, MSC-EVs containing miR-181a-5p inhibit microglial inflammation and pyroptosis through the USP15-mediated RelA/NEK7 axis, thus alleviating the clinical symptoms of EAE. These findings present a potential therapeutic approach for the treatment of MS.
Collapse
Affiliation(s)
- Zhong Shi
- Ophthalmology Department, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Huanhuan Sun
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xinyi Tian
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao 266002, Shandong, China
| | - Xiujuan Song
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jingyi Fan
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Shichao Sun
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jinli Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jing Zhang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jueqiong Wang
- Department of Neurology, Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
9
|
Herring M, Persson A, Potter R, Karlsson R, Särndahl E, Ejdebäck M. Exposing kinetic disparities between inflammasome readouts using time-resolved analysis. Heliyon 2024; 10:e32023. [PMID: 38867997 PMCID: PMC11168392 DOI: 10.1016/j.heliyon.2024.e32023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The NLRP3 inflammasome is an intracellular multiprotein complex described to be involved in both an effective host response to infectious agents and various diseases. Investigation into the NLRP3 inflammasome has been extensive in the past two decades, and often revolves around the analysis of a few specific readouts, including ASC-speck formation, caspase-1 cleavage or activation, and cleavage and release of IL-1β and/or IL-18. Quantification of these readouts is commonly undertaken as an endpoint analysis, where the presence of each positive outcome is assessed independently of the others. In this study, we apply time-resolved analysis of a human macrophage model (differentiated THP-1-ASC-GFP cells) to commonly accessible methods. This approach yields the additional quantifiable metrics time-resolved absolute change and acceleration, allowing comparisons between readouts. Using this methodological approach, we reveal (potential) discrepancies between inflammasome-related readouts that otherwise might go undiscovered. The study highlights the importance of time-resolved data in general and may be further extended as well as incorporated into other areas of research.
Collapse
Affiliation(s)
- Matthew Herring
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Ryan Potter
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
| | - Roger Karlsson
- Nanoxis Consulting AB, Göteborg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Göteborg, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden
| | - Mikael Ejdebäck
- School of Bioscience, Systems Biology Research Centre, University of Skövde, Skövde, Sweden
| |
Collapse
|
10
|
Alanazi M, Weng T, McLeod L, Gearing LJ, Smith JA, Kumar B, Saad MI, Jenkins BJ. Cytosolic DNA sensor AIM2 promotes KRAS-driven lung cancer independent of inflammasomes. Cancer Sci 2024; 115:1834-1850. [PMID: 38594840 PMCID: PMC11145135 DOI: 10.1111/cas.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/10/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
Constitutively active KRAS mutations are among the major drivers of lung cancer, yet the identity of molecular co-operators of oncogenic KRAS in the lung remains ill-defined. The innate immune cytosolic DNA sensor and pattern recognition receptor (PRR) Absent-in-melanoma 2 (AIM2) is best known for its assembly of multiprotein inflammasome complexes and promoting an inflammatory response. Here, we define a role for AIM2, independent of inflammasomes, in KRAS-addicted lung adenocarcinoma (LAC). In genetically defined and experimentally induced (nicotine-derived nitrosamine ketone; NNK) LAC mouse models harboring the KrasG12D driver mutation, AIM2 was highly upregulated compared with other cytosolic DNA sensors and inflammasome-associated PRRs. Genetic ablation of AIM2 in KrasG12D and NNK-induced LAC mouse models significantly reduced tumor growth, coincident with reduced cellular proliferation in the lung. Bone marrow chimeras suggest a requirement for AIM2 in KrasG12D-driven LAC in both hematopoietic (immune) and non-hematopoietic (epithelial) cellular compartments, which is supported by upregulated AIM2 expression in immune and epithelial cells of mutant KRAS lung tissues. Notably, protection against LAC in AIM2-deficient mice is associated with unaltered protein levels of mature Caspase-1 and IL-1β inflammasome effectors. Moreover, genetic ablation of the key inflammasome adapter, ASC, did not suppress KrasG12D-driven LAC. In support of these in vivo findings, AIM2, but not mature Caspase-1, was upregulated in human LAC patient tumor biopsies. Collectively, our findings reveal that endogenous AIM2 plays a tumor-promoting role, independent of inflammasomes, in mutant KRAS-addicted LAC, and suggest innate immune DNA sensing may provide an avenue to explore new therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Mohammad Alanazi
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Teresa Weng
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Julian A. Smith
- Department of Surgery, School of Clinical Sciences/Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Beena Kumar
- Department of Anatomical PathologyMonash HealthClaytonVictoriaAustralia
| | - Mohamed I. Saad
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
- South Australian immunoGENomics Cancer Institute (SAiGENCI)The University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
11
|
Sasaki I, Fukuda-Ohta Y, Nakai C, Wakaki-Nishiyama N, Okamoto C, Okuzaki D, Morita S, Kaji S, Furuta Y, Hemmi H, Kato T, Yamamoto A, Tosuji E, Saitoh SI, Tanaka T, Hoshino K, Fukuda S, Miyake K, Kuroda E, Ishii KJ, Iwawaki T, Furukawa K, Kaisho T. A stress sensor, IRE1α, is required for bacterial-exotoxin-induced interleukin-1β production in tissue-resident macrophages. Cell Rep 2024; 43:113981. [PMID: 38520688 DOI: 10.1016/j.celrep.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1β (IL-1β), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1β production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1β production, indicating that IRE1α is required for CT- or CTB-induced IL-1β production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.
Collapse
Affiliation(s)
- Izumi Sasaki
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| | - Yuri Fukuda-Ohta
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Chihiro Nakai
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Naoko Wakaki-Nishiyama
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Chizuyo Okamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Morita
- First Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shiori Kaji
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yuki Furuta
- Department of Thoracic and Cardiovascular Surgery, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Hiroaki Hemmi
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan; Laboratory of Immunology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Takashi Kato
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Asumi Yamamoto
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Emi Tosuji
- Department of Dermatology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Shin-Ichiroh Saitoh
- Department of Intractable Disorders, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takashi Tanaka
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa 230-0045, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki, Kagawa 761-0793, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa 210-0821, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan.
| |
Collapse
|
12
|
Nandi D, Debnath M, Forster J, Pandey A, Bharadwaj H, Patel R, Kulkarni A. Nanoparticle-mediated co-delivery of inflammasome inhibitors provides protection against sepsis. NANOSCALE 2024; 16:4678-4690. [PMID: 38317511 DOI: 10.1039/d3nr05570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The NLRP3 inflammasome, a multiprotein complex responsible for triggering the release of pro-inflammatory cytokines, plays a crucial role in inducing the inflammatory response associated with sepsis. While small molecule inhibitors of the NLRP3 inflammasome have been investigated for sepsis management, delivering NLRP3 inhibitors has been accompanied by several challenges, primarily related to the drug formulation, delivery route, stability, and toxicity. Many existing inflammasome inhibitors either show higher liver toxicity or require a high dosage to efficiently impede the inflammasome complex assembly. Moreover, the potential synergistic effects of combining multiple inflammasome inhibitors in sepsis therapy remain largely unexplored. Therefore, a rational approach is essential for presenting the potential administration of NLRP3 small molecule inhibitors to inhibit NLRP3 inflammasome activation effectively. In this context, we present a lipid nanoparticle-based dual-drug delivery system loaded with MCC 950 and disulfiram, demonstrating markedly higher efficiency compared to an equivalent amount of free-drug combinations and individual drug nanoparticles in vitro. This combination therapy substantially improved the in vivo survival rate of mice for LPS-induced septic peritonitis. Additionally, the synergistic approach illustrated a significant reduction in the expression of active caspase-1 as well as IL-1β inhibition integral components in the NLRP3 pathway. This study underscores the importance of integrating combination therapies facilitated by nanoparticle delivery to address the limitations of small molecule inflammasome inhibitors.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
| | - Ankit Pandey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
| | - Hariharan Bharadwaj
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ruchi Patel
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, Massachusetts 01107, United States.
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, MA, USA.
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Yu X, Matico RE, Miller R, Chauhan D, Van Schoubroeck B, Grauwen K, Suarez J, Pietrak B, Haloi N, Yin Y, Tresadern GJ, Perez-Benito L, Lindahl E, Bottelbergs A, Oehlrich D, Van Opdenbosch N, Sharma S. Structural basis for the oligomerization-facilitated NLRP3 activation. Nat Commun 2024; 15:1164. [PMID: 38326375 PMCID: PMC10850481 DOI: 10.1038/s41467-024-45396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1β signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.
Collapse
Affiliation(s)
- Xiaodi Yu
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA.
| | - Rosalie E Matico
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Robyn Miller
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Dhruv Chauhan
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | | | - Karolien Grauwen
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Javier Suarez
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Beth Pietrak
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | - Nandan Haloi
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yanting Yin
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| | | | - Laura Perez-Benito
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Astrid Bottelbergs
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Daniel Oehlrich
- Johnson & Johnson Innovation Medicine, Discovery Sciences, Beerse, Belgium
| | - Nina Van Opdenbosch
- Johnson & Johnson Innovation Medicine, J&J Interventional Oncology, Beerse, Belgium
| | - Sujata Sharma
- Johnson & Johnson Innovation Medicine, Spring House, PA, 19044, USA
| |
Collapse
|
14
|
Zhong C, Yang J, Deng K, Lang X, Zhang J, Li M, Qiu L, Zhong G, Yu J. Tiliroside Attenuates NLRP3 Inflammasome Activation in Macrophages and Protects against Acute Lung Injury in Mice. Molecules 2023; 28:7527. [PMID: 38005247 PMCID: PMC10673355 DOI: 10.3390/molecules28227527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The Nod-like receptor family PYRIN domain containing 3 (NLRP3) inflammasome is a multiprotein signaling complex that plays a pivotal role in innate immunity, and the dysregulated NLRP3 inflammasome activation is implicated in various diseases. Tiliroside is a natural flavonoid in multiple medicinal and dietary plants with known anti-inflammatory activities. However, its role in regulating NLRP3 inflammasome activation and NLRP3-related disease has not been evaluated. Herein, it was demonstrated that tiliroside is inhibitory in activating the NLRP3 inflammasome in macrophages. Mechanistically, tiliroside promotes AMP-activated protein kinase (AMPK) activation, thereby leading to ameliorated mitochondrial damage as evidenced by the reduction of mitochondrial reactive oxygen species (ROS) production and the improvement of mitochondrial membrane potential, which is accompanied by attenuated NLRP3 inflammasome activation in macrophages. Notably, tiliroside potently attenuated lipopolysaccharide (LPS)-induced acute lung injury in mice, which has been known to be NLRP3 inflammasome dependent. For the first time, this study identified that tiliroside is an NLRP3 inflammasome inhibitor and may represent a potential therapeutic agent for managing NLRP3-mediated inflammatory disease.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Yang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jiangtao Zhang
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Min Li
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang Qiu
- Center for Translational Medicine, College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guoyue Zhong
- Center for Traditional Chinese Medicine Resources and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun Yu
- Department of Cardiovascular Sciences, Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
15
|
Zeng N, Wang Q, Zhang C, Zhou Y, Yan J. A review of studies on the implication of NLRP3 inflammasome for Parkinson's disease and related candidate treatment targets. Neurochem Int 2023; 170:105610. [PMID: 37704080 DOI: 10.1016/j.neuint.2023.105610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease for which the prevalence is second only to Alzheimer's disease (AD). This disease primarily affects people of middle and old age, significantly impacting their health and quality of life. The main pathological features include the degenerative nigrostriatal dopaminergic (DA) neuron loss and Lewy body (LB) formation. Currently, available PD medications primarily aim to alleviate clinical symptoms, however, there is no universally recognized therapy worldwide that effectively prevents, clinically treats, stops, or reverses the disease. Consequently, the evaluation and exploration of potential therapeutic targets for PD are of utmost importance. Nevertheless, the pathophysiology of PD remains unknown, and neuroinflammation mediated by inflammatory cytokines that prompts neuron death is fundamental for the progression of PD. The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is a key complex of proteins linking the neuroinflammatory cascade in PD. Moreover, mounting evidence suggests that traditional Chinese medicine (TCM) alleviates PD by suppressing the NLRP3 inflammasome. This article aims to comprehensively review the available studies on the composition and activating mechanism of the NLRP3 inflammasome, along with its significance in PD pathogenesis and potential treatment targets. We also review natural products or synthetic compounds which reduce neuroinflammation via modulating NLRP3 inflammasome activity, aiming to identify new targets for future PD diagnosis and treatment through the exploration of NLRP3 inhibitors. Additionally, this review offers valuable references for developing new PD treatment methods.
Collapse
Affiliation(s)
- Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541100, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, 541004, China.
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, 541004, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
16
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar Y, Deng F. CHIP protects against septic acute kidney injury by inhibiting NLRP3-mediated pyroptosis. iScience 2023; 26:107762. [PMID: 37692286 PMCID: PMC10492219 DOI: 10.1016/j.isci.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Septic acute kidney injury (S-AKI), the most common type of acute kidney injury (AKI), is intimately related to pyroptosis and oxidative stress in its pathogenesis. Carboxy-terminus of Hsc70-interacting protein (CHIP), a U-box E3 ligase, modulates oxidative stress by degrading its targeted proteins. The role of CHIP in S-AKI and its relevance with pyroptosis have not been investigated. In this study, we showed that CHIP was downregulated in renal proximal tubular cells in lipopolysaccharide (LPS)-induced S-AKI. Besides, the extent of redox injuries in S-AKI was attenuated by CHIP overexpression or activation but accentuated by CHIP gene disruption. Mechanistically, our work demonstrated that CHIP interacted with and ubiquitinated NLRP3 to promote its proteasomal degradation, leading to the inhibition of NLRP3/ACS inflammasome-mediated pyroptosis. In summary, this study revealed that CHIP ubiquitinated NLRP3 to alleviate pyroptosis in septic renal injuries, suggesting that CHIP might be a potential therapeutic target for S-AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal.S. Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
17
|
Debnath M, Forster J, Ramesh A, Kulkarni A. Protein Corona Formation on Lipid Nanoparticles Negatively Affects the NLRP3 Inflammasome Activation. Bioconjug Chem 2023; 34:1766-1779. [PMID: 37707953 DOI: 10.1021/acs.bioconjchem.3c00329] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The interaction between lipid nanoparticles (LNPs) and serum proteins, giving rise to a unique identification in the form of the protein corona, has been shown to be associated with novel recognition by cell receptors. The presence of the corona enveloping the nanoparticle strongly affects the interplay with immune cells. The immune responses mediated by protein corona can affect nanoparticle toxicity and targeting capabilities. But the intracellular signaling of LNPs after corona formation resulting in the change of nanoparticles' ability to provoke immune responses remains unclear. Therefore, a more systematic and delineated approach must be considered to present the correlation between corona complexes and the shift in nanoparticle immunogenicity. Here, we studied and reported the inhibiting effect of the absorbed proteins on the LNPs on the NLRP3 inflammasome activation, a key intracellular protein complex that modulates several inflammatory responses. Ionizable lipid as a component of LNP was observed to play an important role in modulating the activation of NLRP3 inflammasome in serum-free conditions. However, in the presence of serum proteins, the corona layer on LNPs caused a significant reduction in the inflammasome activation. Reduction in the lysosomal rupture after treatment with corona-LNPs significantly reduced inflammasome activation. Furthermore, a strong reduction of cellular uptake in macrophages after the corona formation was observed. On inspecting the uptake mechanisms in macrophages using transport inhibitors, lipid formulation was found to play a critical role in determining the endocytic pathways for the LNPs in macrophages. This study highlights the need to critically analyze the protein interactions with nanomaterials and their concomitant adaptability with immune cells to evaluate nano-bio surfaces and successfully design nanomaterials for biological applications.
Collapse
Affiliation(s)
- Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant St., Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant St., Amherst, Massachusetts 01003, United States
| | - Anujan Ramesh
- Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant St., Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
You H, Li H, Gou W. lncRNA HOTAIR promotes ROS generation and NLRP3 inflammasome activation by inhibiting Nrf2 in diabetic retinopathy. Medicine (Baltimore) 2023; 102:e35155. [PMID: 37713847 PMCID: PMC10508377 DOI: 10.1097/md.0000000000035155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a microvascular complication associated with damage to the retina due to inflammation induced by high glucose. Activation of the NLRP3 inflammasome plays a critical role in DR and its prevention is beneficial to patients. However, the regulation of long non-coding RNA (lncRNA) in NLRP3 inflammasome activation of DR is incompletely understood. So, this study aimed to uncover the functional and regulatory mechanism of the lncRNA HOTAIR in NLRP3 inflammasome activation in Dr. METHODS The vitreous humor was collected from the patients and detected the inflammatory and oxidative stress makers. Human retinal endothelial cells (HRECs) were cultured and stimulated in low D-glucose (5 mmol/L) or high D-glucose (20 mmol/L). Additionally, HRECs were knocked down HOTAIR with a si-RNA. Then, the NLRP3 inflammasome activation was analyzed by western blotting and pyroptosis cell imaging. The ROS was measured by specific probe. The activation of Nrf2 measured by Immunofluorescent staining. The interaction between HOTAIR and Nrf2 was evaluated by co-immunoprecipitation and RNA immunoprecipitation. RESULTS The expression of HOTAIR was significantly increased in the vitreous of patients with DR and in HRECs stimulated with high glucose. Furthermore, HOTAIR knockdown relieved NLRP3 inflammasome activation. More specifically, HOTAIR knockdown suppressed the expression of NLRP3, pro-caspase-1, and pro-IL-1β, as well as IL-1β maturation and pyroptosis. HOTAIR knockdown also interfered with the ROS generation induced by high glucose. Moreover, HOTAIR promoted the interaction between Nrf2 and Keap1 by binding and inactivating Nrf2. CONCLUSION The lncRNA HOTAIR promotes NLRP3 inflammasome activation and ROS generation by inhibiting Nrf2 in Dr.
Collapse
Affiliation(s)
- Hui You
- Department of Ophthalmology, Suining Central Hospital, Suining, China
| | - Hongyu Li
- Department of gynaecology, Suining Central Hospital, Suining, China
| | - Wenjun Gou
- Department of Ophthalmology, Suining Central Hospital, Suining, China
| |
Collapse
|
19
|
Mou YJ, Ma YT, Yuan X, Wang M, Liu Y, Pei CS, Liu CF, Hou XO, Hu LF. Cystathionine β-Synthase Suppresses NLRP3 Inflammasome Activation via Redox Regulation in Microglia. Antioxid Redox Signal 2023. [PMID: 37464816 DOI: 10.1089/ars.2022.0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Aims: Cystathionine β-synthase (CBS) is essential for homocysteine (Hcy) transsulfuration, yielding cysteine as a common precursor of hydrogen sulfide (H2S), glutathione (GSH), and other sulfur molecules, which produce neuroprotective effects in neurological conditions. We previously reported a disruption of microglial CBS/H2S signaling in a Parkinson's disease (PD) mouse model. Yet, it remains unclear whether CBS affects nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome activity and other pathologies in PD. Results: Microglial CBS expression decreased after lipopolysaccharide (LPS) stimulation. Elevated GSSG (the oxidized GSH) content and decreased H2S generation were found in the brains of microglial cbs conditional-knockout (cbscKO) mice, whereas serum and brain Hcy levels remained unaltered. Moreover, microglial cbscKO mice were susceptible to NLRP3 inflammasome activation and dopaminergic neuron losses caused by LPS injection into the substantia nigra, whereas cbs overexpression or activation produced opposite effects. In vitro studies showed that cbs overexpression or activation suppressed microglial NLRP3 inflammasome activation and interleukin (IL)-1β secretion by reducing mitochondrial reactive oxygen species (mitoROS) level. Conversely, ablation of cbs enhanced NLRP3 expression and mitoROS generation and augmented microglial NLRP3 inflammasome activity in response to adenosine triphosphate challenge, which was blocked by the mitoROS scavenger. Innovation and Conclusion: The study demonstrated an elevated GSSG level and reduced H2S generation, which correlated with a susceptible status of microglia in the brain of cbscKO mice. Our findings reveal a critical role of CBS in restraining the microglial NLRP3 inflammasome by controlling redox homeostasis and highlight that activation or upregulation of CBS may become a potential strategy for PD treatment.
Collapse
Affiliation(s)
- Yu-Jie Mou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Ya-Ting Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xin Yuan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Miao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yang Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chong-Shuang Pei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Ou Hou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Li-Fang Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Chang H, Yang F, Bai H, Lu Z, Xing C, Dai X, Wan W, Liao S, Cao H. Molybdenum and/or cadmium induce NLRP3 inflammasome production by causing mitochondria-associated endoplasmic reticulum membrane dysfunction in sheep hepatocytes. Chem Biol Interact 2023; 382:110617. [PMID: 37385403 DOI: 10.1016/j.cbi.2023.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 μM Mo), Cd group (4 μM Cd) and Mo + Cd group (600 μM Mo+4 μM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1β, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.
Collapse
Affiliation(s)
- Huifeng Chang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - He Bai
- Medical Research Center, Mudanjiang Medical University, No. 3 Tongxiang street, Aimin District, Mudanjiang, 157011, Heilongjiang, PR China
| | - Zengting Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330096, Jiangxi, PR China
| | - Shuxian Liao
- Fengxin County Modern Agricultural Technology Service Center, Fengxin, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
21
|
Nagar A, Bharadwaj R, Shaikh MOF, Roy A. What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research. Front Immunol 2023; 14:1188864. [PMID: 37564644 PMCID: PMC10411722 DOI: 10.3389/fimmu.2023.1188864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Speck assembly is the hallmark of NLRP3 inflammasome activation. The 1µm structure comprising of NLRP3 and ASC is the first observable phenotype of NLRP3 activation. While the common consensus is that the specks are the site of inflammasome activity, no direct experimental evidence exists to support this notion. In these 22 years, since the inflammasome discovery, several research studies have been published which directly or indirectly support or refute the idea of speck being the inflammasome. This review compiles the data from two decades of research to answer a long-standing question: "What are NLRP3-ASC specks?"
Collapse
Affiliation(s)
- Abhinit Nagar
- Department of Flow Cytometry, Cytek Biosciences, Fremont, CA, United States
| | - Ravi Bharadwaj
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Mohammad Omar Faruk Shaikh
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
22
|
Yu TG, Cha JS, Kim G, Sohn YK, Yoo Y, Kim U, Song JJ, Cho HS, Kim HS. Oligomeric states of ASC specks regulate inflammatory responses by inflammasome in the extracellular space. Cell Death Discov 2023; 9:142. [PMID: 37120628 PMCID: PMC10148886 DOI: 10.1038/s41420-023-01438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Inflammasomes are multi-protein complexes and play a crucial role in host defense against pathogens. Downstream inflammatory responses through inflammasomes are known to be related to the oligomerization degree of ASC specks, but the detailed mechanism still remains unexplored. Here, we demonstrate that oligomerization degrees of ASC specks regulate the caspase-1 activation in the extracellular space. A protein binder specific for a pyrin domain (PYD) of ASC (ASCPYD) was developed, and structural analysis revealed that the protein binder effectively inhibits the interaction between PYDs, disassembling ASC specks into low oligomeric states. ASC specks with a low oligomerization degree were shown to enhance the activation of caspase-1 by recruiting and processing more premature caspase-1 through interactions between CARD of caspase-1 (caspase-1CARD) and CARD of ASC (ASCCARD). These findings can provide insight into controlling the inflammasome-mediated inflammatory process as well as the development of inflammasome-targeting drugs.
Collapse
Affiliation(s)
- Tae-Geun Yu
- Departement of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jeong Seok Cha
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
- Research Institute of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Gijeong Kim
- Departement of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yoo-Kyoung Sohn
- Departement of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- R&D Center, Sugentech, Inc., Daejeon, Korea
| | - Youngki Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Uijin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Ji-Joon Song
- Departement of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Hak-Sung Kim
- Departement of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
23
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
24
|
Kumar S, Budhathoki S, Oliveira CB, Kahle AD, Calhan OY, Lukens JR, Deppmann CD. Role of the caspase-8/RIPK3 axis in Alzheimer's disease pathogenesis and Aβ-induced NLRP3 inflammasome activation. JCI Insight 2023; 8:157433. [PMID: 36602874 PMCID: PMC9977425 DOI: 10.1172/jci.insight.157433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The molecular mediators of cell death and inflammation in Alzheimer's disease (AD) have yet to be fully elucidated. Caspase-8 is a critical regulator of several cell death and inflammatory pathways; however, its role in AD pathogenesis has not yet been examined in detail. In the absence of caspase-8, mice are embryonic lethal due to excessive receptor interacting protein kinase 3-dependent (RIPK3-dependent) necroptosis. Compound RIPK3 and caspase-8 mutants rescue embryonic lethality, which we leveraged to examine the roles of these pathways in an amyloid β-mediated (Aβ-mediated) mouse model of AD. We found that combined deletion of caspase-8 and RIPK3, but not RIPK3 alone, led to diminished Aβ deposition and microgliosis in the mouse model of AD carrying human presenilin 1 and amyloid precursor protein with 5 familial AD mutations (5xFAD). Despite its well-known role in cell death, caspase-8 did not appear to affect cell loss in the 5xFAD model. In contrast, we found that caspase-8 was a critical regulator of Aβ-driven inflammasome gene expression and IL-1β release. Interestingly, loss of RIPK3 had only a modest effect on disease progression, suggesting that inhibition of necroptosis or RIPK3-mediated cytokine pathways is not critical during midstages of Aβ amyloidosis. These findings suggest that therapeutics targeting caspase-8 may represent a novel strategy to limit Aβ amyloidosis and neuroinflammation in AD.
Collapse
Affiliation(s)
- Sushanth Kumar
- Department of Biology and,Neuroscience Graduate Program, School of Medicine, and
| | | | | | | | | | - John R. Lukens
- Neuroscience Graduate Program, School of Medicine, and,Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
25
|
Tivantinib alleviates inflammatory diseases by directly targeting NLRP3. iScience 2023; 26:106062. [PMID: 36843841 PMCID: PMC9950949 DOI: 10.1016/j.isci.2023.106062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
NLRP3 inflammasome-mediated immune responses are involved in the pathogenesis of multiple inflammatory diseases, but few clinical drugs are identified that directly target the NLRP3 inflammasome to treat these diseases to date. Here, we show that the anticancer agent tivantinib is a selective inhibitor of NLRP3 and has a strong therapeutic effect on inflammasome-driven disease. Tivantinib specifically inhibits canonical and non-canonical NLRP3 inflammasome activation without affecting AIM2 and NLRC4 inflammasome activation. Mechanistically, Tivantinib inhibits NLRP3 inflammasome by directly blocking NLRP3 ATPase activity and subsequent inflammasome complex assembly. In vivo, Tivantinib reduces IL-1β production in mouse models of lipopolysaccharide (LPS)-induced systemic inflammation, monosodium urate (MSU)-induced peritonitis and Con A-induced acute liver injury (ALI), and also has remarkable preventive and therapeutic effects on experimental autoimmune encephalomyelitis (EAE). In conclusion, our study identifies the anticancer drug tivantinib as a specific inhibitor of NLRP3 and provides a promising therapeutic agent for inflammasome-driven disease.
Collapse
|
26
|
Zhou Y, Chen Y, Zhong X, Xia H, Zhao M, Zhao M, Xu L, Guo X, You CG. Lipoxin A4 attenuates MSU-crystal-induced NLRP3 inflammasome activation through suppressing Nrf2 thereby increasing TXNRD2. Front Immunol 2022; 13:1060441. [PMID: 36569930 PMCID: PMC9772058 DOI: 10.3389/fimmu.2022.1060441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Gout is a common inflammatory disease. The activation of NLRP3 inflammasome induced by monosodium urate (MSU) crystals has a critical role in gout, and its prevention is beneficial for patients. Lipoxin A4 (LXA4) is an endogenous lipoxygenase-derived eicosanoid mediator with powerful anti-inflammatory properties. However, whether LXA4 can suppress NLRP3 inflammasome activation induced by MSU crystals remains unclear. This study aimed to investigate the protective effect of LXA4 on MSU-crystal-induced NLRP3 inflammasome activation and its underlying molecular mechanisms. We found that LXA4 inhibited MSU-crystal-induced NLRP3 inflammasome activation, interleukin (IL)-1β maturation, and pyroptosis. More specifically, LXA4 suppressed the assembly of the NLRP3 inflammasome, including oligomerization and speck formation of ASC, and ASC-NLRP3 interaction. Furthermore, LXA4 suppressed oxidative stress, the upstream events for NLRP3 inflammasome activation, as evidenced by the fact that LXA4 eliminated total reactive oxygen species (ROS) generation and alleviated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and mitochondrial dysfunction. However, LXA4 also depressed the Nrf2 activation, a critical molecule in the antioxidant pathway, and then exerted an inhibitory impact on Klf9 expression and promotional impact on TXNRD2 expression, two molecules located downstream of Nrf2 in sequence. Knockdown of TXNRD2 reversed the LXA4-induced depression of ROS and NLRP3 inflammasome. Moreover, LXA4 alleviated joint inflammation and decreased the production of cleaved caspase-1 and matured IL-1β in gouty arthritis rats. Taken together, our findings demonstrate that LXA4 can attenuate MSU-crystal-induced NLRP3 inflammasome activation, probably through suppressing Nrf2 activation to increase TXNRD2 expression. The present study highlights the potential of LXA4 as an attractive new gout treatment candidate.
Collapse
Affiliation(s)
- You Zhou
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China,Department of Medical Laboratory, Central Hospital of Suining, Suining, China,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Yongjun Chen
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Xiaowu Zhong
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Hongtao Xia
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Mingcai Zhao
- Department of Medical Laboratory, Central Hospital of Suining, Suining, China
| | - Mengyuan Zhao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Xiaolan Guo
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Chong-Ge You,
| |
Collapse
|
27
|
Cilostazol Alleviates NLRP3 Inflammasome-Induced Allodynia/Hyperalgesia in Murine Cerebral Cortex Following Transient Ischemia: Focus on TRPA1/Glutamate and Akt/Dopamine/BDNF/Nrf2 Trajectories. Mol Neurobiol 2022; 59:7194-7211. [PMID: 36127628 PMCID: PMC9616778 DOI: 10.1007/s12035-022-03024-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) provokes inflammation that augments neuropathic pain. Cilostazol (CLZ) has pleiotropic effects including neuroprotection in several ravaging central disorders; nonetheless, its potential role in transient central ischemic-induced allodynia and hyperalgesia has not been asserted before. Rats were allocated into 4 groups; sham, sham + CLZ, and 45 min-bilateral carotid occlusion followed by a 48 h-reperfusion period either with or without CLZ (50 mg/kg; p.o) post-treatment. CLZ prolonged latency of hindlimb withdrawal following von Frey filaments, 4 °C cold, and noxious mechanical stimulations. Histopathological alterations and the immunoexpression of glial fibrillary acidic protein induced by I/R were reduced by CLZ in the anterior cingulate cortex (ACC) area, while, CLZ enhanced intact neuronal count. Meanwhile, CLZ modulated cerebral cortical glutamate, dopamine neurotransmission, and transient receptor potential ankyrin 1 (TRPA1). CLZ anti-inflammatory potential was mediated by the downregulated p65 NF-κB and sirtuin-1 enhancement to reduce nucleotide-binding domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), active caspase-1, and interleukin-1β, indicative of inflammasome deactivation. It also revealed an antioxidant capacity via boosting nuclear factor E2-related factor (Nrf2) enhancing glutathione through forkhead box protein O3a (FOXO3a) reduction. Additionally, CLZ triggered neuronal survival by promoting the p-content of Akt, TrkB, and CREB as well as BDNF content. A novel approach of CLZ in hindering global cerebral I/R-mediated neuropathy is firstly documented herein to forward its adjunct action via deactivating the NLRP3 inflammasome, besides enhancing Nrf2 axis, neuronal survival, and dopamine neurotransmission as well as inhibiting TRPA1 and excitotoxicity.
Collapse
|
28
|
Li W, Yang K, Li B, Wang Y, Liu J, Chen D, Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front Pharmacol 2022; 13:1060104. [PMID: 36506567 PMCID: PMC9727192 DOI: 10.3389/fphar.2022.1060104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal ischemia reperfusion (II/R) is a clinical emergency that frequently occurs in a variety of clinical conditions. Severe intestinal injury results in the release of cytotoxic substances and inflammatory mediators which can activate local inflammatory response and bacterial translocation. This triggers multi-organ failure, including lung injury, which is a common complication of II/R injury and contributes to the high mortality rate. Corilagin (Cor) is a natural ellagitannin found in a variety of plants. It has many biological and pharmacological properties, including antioxidant, anti-inflammatory and anti-apoptosis activities. However, no studies have evaluated the effects and molecular mechanisms of Cor in alleviating II/R-induced intestinal and lung damage. In this study, Cor was found to significantly alleviate II/R-induced pathological damage, inflammatory response, oxidative stress, NLRP3 inflammasome activation, and pyroptosis in intestinal and lung tissues both in vivo and in vitro. Further, Cor inhibited the NLRP3 inflammasome activation and pyroptosis in RAW264.7 and MLE-12 cells induced by LPS/nigericin and that in IEC-6 cells induced by nigericin, indicating an amelioration of Cor in II/R-induced intestinal and lung injury via inhibiting NLRP3 inflammasome activation and pyroptosis. Thus, Cor might be a potential therapeutic agent for II/R-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kejia Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| |
Collapse
|
29
|
Baena Carstens L, Campos D’amico R, Fernandes de Moura K, Morais de Castro E, Centenaro F, Silva Barbosa G, Vieira Cavalcante da Silva G, Brenny I, Honório D’Agostini JC, Hlatchuk EC, Pissette de Lima S, Camargo Martins AP, De Castro Deus M, Konzen Klein C, Kubaski Benevides AP, Nagashima S, Machado-Souza C, Pinho RA, Pellegrino Baena C, de Noronha L. Lung Inflammasome Activation in SARS-CoV-2 Post-Mortem Biopsies. Int J Mol Sci 2022; 23:ijms232113033. [PMID: 36361818 PMCID: PMC9659061 DOI: 10.3390/ijms232113033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease’s mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1β, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.
Collapse
Affiliation(s)
- Lucas Baena Carstens
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Raissa Campos D’amico
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Hospital Marcelino Champagnat, Av. Presidente Affonso Camargo, 1399-Cristo Rei, Curitiba 80050-370, PR, Brazil
| | - Karen Fernandes de Moura
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Hospital Marcelino Champagnat, Av. Presidente Affonso Camargo, 1399-Cristo Rei, Curitiba 80050-370, PR, Brazil
| | - Eduardo Morais de Castro
- Postgraduate in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe (FPP), Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), R. Silva Jardim, 1632-Água Verde, Curitiba 80230-020, PR, Brazil
| | - Flávia Centenaro
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Giovanna Silva Barbosa
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Guilherme Vieira Cavalcante da Silva
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Isadora Brenny
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Júlio César Honório D’Agostini
- Departmnet of Medical Pathology, Universidade Federal do Paraná (UFPR), Rua General Carneiro, 181-Alto da Glória, Curitiba 80215-901, PR, Brazil
| | - Elisa Carolina Hlatchuk
- Departmnet of Medical Pathology, Universidade Federal do Paraná (UFPR), Rua General Carneiro, 181-Alto da Glória, Curitiba 80215-901, PR, Brazil
| | - Sabrina Pissette de Lima
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Ana Paula Camargo Martins
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Marina De Castro Deus
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Carolline Konzen Klein
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Ana Paula Kubaski Benevides
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Seigo Nagashima
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Correspondence: (S.N.); (L.d.N.); Tel.: +55-(41)-99942-7191 (S.N.); Tel.: +55-(41)-999994769 (L.d.N.)
| | - Cleber Machado-Souza
- Postgraduate in Biotechnology Applied in Health of Children and Adolescent, Faculdades Pequeno Príncipe (FPP), Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), R. Silva Jardim, 1632-Água Verde, Curitiba 80230-020, PR, Brazil
| | - Ricardo A Pinho
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
| | - Cristina Pellegrino Baena
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Hospital Marcelino Champagnat, Av. Presidente Affonso Camargo, 1399-Cristo Rei, Curitiba 80050-370, PR, Brazil
| | - Lúcia de Noronha
- Laboratory of Experimental Pathology, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Postgraduate Program of Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), R. Imaculada Conceição, 1155-Prado Velho, Curitiba 80215-901, PR, Brazil
- Correspondence: (S.N.); (L.d.N.); Tel.: +55-(41)-99942-7191 (S.N.); Tel.: +55-(41)-999994769 (L.d.N.)
| |
Collapse
|
30
|
Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy. Front Physiol 2022; 13:907504. [PMID: 35755447 PMCID: PMC9218738 DOI: 10.3389/fphys.2022.907504] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a multi-protein signalling complex integral to the chronic inflammatory response, activated in response to sterile and non-sterile cellular damage. The assembly and activation of the NLRP3 inflammasome comprise a two-step process involving nuclear factor kappa B (NFkB)-mediated priming, followed by canonical, non-canonical or alternative signalling pathways. These result in the maturation and release of inflammatory cytokines interleukin 1 beta (IL1ß) and interleukin-18 (IL18), which are associated with chronic inflammatory conditions including diabetic kidney disease. Diabetic nephropathy is a condition affecting ∼40% of people with diabetes, the key underlying pathology of which is tubulointerstitial inflammation and fibrosis. There is growing evidence to suggest the involvement of the NLRP3 inflammasome in this chronic inflammation. Early deterioration of kidney function begins in the glomerulus, with tubular inflammation dictating the progression of late-stage disease. Priming and activation of the NLRP3 inflammasome have been linked to several clinical markers of nephropathy including proteinuria and albuminuria, in addition to morphological changes including mesangial expansion. Treatment options for diabetic nephropathy are limited, and research that examines the impact of directly targeting the NLRP3 inflammasome, or associated downstream components are beginning to gain favour, with several agents currently in clinical trials. This review will explore a role for NLRP3 inflammasome activation and signalling in mediating inflammation in diabetic nephropathy, specifically in the glomerulus and proximal tubule, before briefly describing the current position of therapeutic research in this field.
Collapse
Affiliation(s)
- B M Williams
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C L Cliff
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - K Lee
- Lincoln County Hospital, Lincoln, United Kingdom
| | - P E Squires
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - C E Hills
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
31
|
Johnson NH, Hadad R, Taylor RR, Rodríguez Pilar J, Salazar O, Llompart-Pou JA, Dietrich WD, Keane RW, Pérez-Bárcena J, de Rivero Vaccari JP. Inflammatory Biomarkers of Traumatic Brain Injury. Pharmaceuticals (Basel) 2022; 15:ph15060660. [PMID: 35745576 PMCID: PMC9227014 DOI: 10.3390/ph15060660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) has a complex pathology in which the initial injury releases damage associated proteins that exacerbate the neuroinflammatory response during the chronic secondary injury period. One of the major pathological players in the inflammatory response after TBI is the inflammasome. Increased levels of inflammasome proteins during the acute phase after TBI are associated with worse functional outcomes. Previous studies reveal that the level of inflammasome proteins in biological fluids may be used as promising new biomarkers for the determination of TBI functional outcomes. In this study, we provide further evidence that inflammatory cytokines and inflammasome proteins in serum may be used to determine injury severity and predict pathological outcomes. In this study, we analyzed blood serum from TBI patients and respective controls utilizing Simple Plex inflammasome and V-PLEX inflammatory cytokine assays. We performed statistical analyses to determine which proteins were significantly elevated in TBI individuals. The receiver operating characteristics (ROC) were determined to obtain the area under the curve (AUC) to establish the potential fit as a biomarker. Potential biomarkers were then compared to documented patient Glasgow coma scale scores via a correlation matrix and a multivariate linear regression to determine how respective biomarkers are related to the injury severity and pathological outcome. Inflammasome proteins and inflammatory cytokines were elevated after TBI, and the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18, tumor necrosis factor (TNF)-α, IL-4 and IL-6 were the most reliable biomarkers. Additionally, levels of these proteins were correlated with known clinical indicators of pathological outcome, such as the Glasgow coma scale (GCS). Our results show that inflammatory cytokines and inflammasome proteins are promising biomarkers for determining pathological outcomes after TBI. Additionally, levels of biomarkers could potentially be utilized to determine a patient’s injury severity and subsequent pathological outcome. These findings show that inflammation-associated proteins in the blood are reliable biomarkers of injury severity that can also be used to assess the functional outcomes of TBI patients.
Collapse
Affiliation(s)
- Nathan H. Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
| | - Ruby Rose Taylor
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Javier Rodríguez Pilar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Osman Salazar
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Antonio Llompart-Pou
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - W. Dalton Dietrich
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Robert W. Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.H.J.); (R.H.); (R.W.K.)
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
| | - Jon Pérez-Bárcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain; (J.R.P.); (O.S.); (J.A.L.-P.); (J.P.-B.)
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (R.R.T.); (W.D.D.)
- Correspondence:
| |
Collapse
|
32
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
33
|
Prather ER, Gavrilin MA, Wewers MD. The central inflammasome adaptor protein ASC activates the inflammasome after transition from a soluble to an insoluble state. J Biol Chem 2022; 298:102024. [PMID: 35568196 PMCID: PMC9163591 DOI: 10.1016/j.jbc.2022.102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC) is a 22 kDa protein that functions as the central adaptor for inflammasome assembly. ASC forms insoluble specks in monocytes undergoing pyroptosis, and the polymerization of ASC provides a template of CARDs that leads to proximity-mediated autoactivation of caspase-1 in canonical inflammasomes. However, specks are insoluble protein complexes, and solubility is typically important for protein function. Therefore, we sought to define whether ASC specks comprise active inflammasome complexes or are simply the end stage of exhausted ASC polymers. Using a THP-1 cell–lysing model of caspase-1 activation that is ASC dependent, we compared caspase-1 activation induced by preassembled insoluble ASC specks and soluble monomeric forms of ASC. Unexpectedly, after controlling for the concentration dependence of ASC oligomerization, we found that only insoluble forms of ASC promoted caspase-1 autocatalysis. This link to insolubility was recapitulated with recombinant ASC. We show that purified recombinant ASC spontaneously precipitated and was functional, whereas the maltose-binding protein–ASC fusion to ASC (promoting enhanced solubility) was inactive until induced to insolubility by binding to amylose beads. This functional link to insolubility also held true for the Y146A mutation of the CARD of ASC, which avoids insolubility and caspase-1 activation. Thus, we conclude that the role of ASC insolubility in inflammasome function is inextricably linked to its pyrin domain–mediated and CARD-mediated polymerizations. These findings will support future studies into the molecular mechanisms controlling ASC solubility.
Collapse
Affiliation(s)
- Evan R Prather
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mikhail A Gavrilin
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Mark D Wewers
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
34
|
Wu D, Zhang Z, Jiang X, Du Y, Zhang S, Yang XD. Inflammasome Meets Centrosome: Understanding the Emerging Role of Centrosome in Controlling Inflammasome Activation. Front Immunol 2022; 13:826106. [PMID: 35281071 PMCID: PMC8907152 DOI: 10.3389/fimmu.2022.826106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Inflammasomes are multi-protein platforms that are assembled in response to microbial and danger signals to activate proinflammatory caspase-1 for production of active form of IL-1β and induction of pyroptotic cell death. Where and how an inflammasome is assembled in cells has remained controversial. While the endoplasmic reticulum, mitochondria and Golgi apparatus have been reported to be associated with inflammasome assembly, none of these sites seems to match the morphology, number and size of activated inflammasomes that are microscopically observable as one single perinuclear micrometer-sized punctum in each cell. Recently, emerging evidence shows that NLRP3 and pyrin inflammasomes are assembled, activated and locally regulated at the centrosome, the major microtubule organizing center in mammalian cells, elegantly accounting for the singularity, size and perinuclear location of activated inflammasomes. These new exciting findings reveal the previously unappreciated importance of the centrosome in controlling inflammasome assembly and activation as well as inflammasome-related diseases.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Jiang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaning Du
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangyan Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Yang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Artlett CM. The Mechanism and Regulation of the NLRP3 Inflammasome during Fibrosis. Biomolecules 2022; 12:biom12050634. [PMID: 35625564 PMCID: PMC9138796 DOI: 10.3390/biom12050634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrosis is often the end result of chronic inflammation. It is characterized by the excessive deposition of extracellular matrix. This leads to structural alterations in the tissue, causing permanent damage and organ dysfunction. Depending on the organ it effects, fibrosis can be a serious threat to human life. The molecular mechanism of fibrosis is still not fully understood, but the NLRP3 (NOD-, LRR- and pyrin–domain–containing protein 3) inflammasome appears to play a significant role in the pathogenesis of fibrotic disease. The NLRP3 inflammasome has been the most extensively studied inflammatory pathway to date. It is a crucial component of the innate immune system, and its activation mediates the secretion of interleukin (IL)-1β and IL-18. NLRP3 activation has been strongly linked with fibrosis and drives the differentiation of fibroblasts into myofibroblasts by the chronic upregulation of IL-1β and IL-18 and subsequent autocrine signaling that maintains an activated inflammasome. Both IL-1β and IL-18 are profibrotic, however IL-1β can have antifibrotic capabilities. NLRP3 responds to a plethora of different signals that have a common but unidentified unifying trigger. Even after 20 years of extensive investigation, regulation of the NLRP3 inflammasome is still not completely understood. However, what is known about NLRP3 is that its regulation and activation is complex and not only driven by various activators but controlled by numerous post-translational modifications. More recently, there has been an intensive attempt to discover NLRP3 inhibitors to treat chronic diseases. This review addresses the role of the NLRP3 inflammasome in fibrotic disorders across many different tissues. It discusses the relationships of various NLRP3 activators to fibrosis and covers different therapeutics that have been developed, or are currently in development, that directly target NLRP3 or its downstream products as treatments for fibrotic disorders.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology & Immunology, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
36
|
Blake MK, O'Connell P, Pepelyayeva Y, Godbehere S, Aldhamen YA, Amalfitano A. ERAP1 is a critical regulator of inflammasome-mediated proinflammatory and ER stress responses. BMC Immunol 2022; 23:9. [PMID: 35246034 PMCID: PMC8895631 DOI: 10.1186/s12865-022-00481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses. Results Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1β and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1−/− mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1−/− BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA). Conclusions Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00481-9.
Collapse
Affiliation(s)
- Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|