1
|
Wu J, Yang F, Huang G. Single-cell sequencing combined with bulk RNA seq reveals the roles of natural killer cell in prognosis and immunotherapy of hepatocellular carcinoma. Sci Rep 2025; 15:15314. [PMID: 40312525 PMCID: PMC12046010 DOI: 10.1038/s41598-025-99638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of highly heterogeneous tumor characterized by a high mortality rate and poor prognosis. Natural Killer cells (NK cells) are important immune cells that play an important role in anti-tumor activities, antiviral responses, and immune regulation. The relationship between NK cells and HCC remains unclear. It would be valuable to identify a NK-related prognostic signature for HCC. WGCNA and single-cell sequencing RNA were performed to identify NK cell related genes. Gene Enrichment Analysis were used to identify the potential signal pathway. After combing genes from WGCNA and scRNA, Unicox, LASSO + StepCox and Multicox analysis were used to filter prognostic-related gene and construct a prognostic model. Then we performed Proposed time analysis to identify the developmental trajectories of NK cells. Finally, ssGSEA and estimate methods were used to evaluate the immune microenvironment and sensitivity drugs. Using the scRNA-seq data, we identified 1396 genes with high NK cell scores. Based on the results of scRNA-seq, 250 NK-related genes were identified from WGCNA. We identified 223 intersecting genes between the scRNA-seq and WGCNA. After integrating clinical data with the bulk RNA-seq data of these intersecting genes, we constructed a prognostic model to accurately predict the prognosis of HCC patients. Eventually, we found that high-risk HCC patients exhibited worse survival outcomes and lower sensitivity to immunotherapy. We constructed a risk model based on NK cell-related genes that can predict the prognosis of HCC patients accurately. This model can also predict the immunotherapy response of HCC effectively.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Single-Cell Analysis/methods
- Prognosis
- Immunotherapy/methods
- RNA-Seq
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment/immunology
- Sequence Analysis, RNA
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Male
Collapse
Affiliation(s)
- Jiahao Wu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, China
| | - Guanqun Huang
- Guangzhou Twelfth People's Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Li T, Li X, Kang P, Zhao J. Exploring CX3CR1 as a prognostic biomarker and immunotherapeutic target in sarcoma. Transl Oncol 2025; 53:102283. [PMID: 39837057 PMCID: PMC11787715 DOI: 10.1016/j.tranon.2025.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Sarcomas (SARC) are a diverse group of malignant tumors originating from mesenchymal tissues, characterized by poor prognosis under conventional therapies. CX3CR1, a chemokine receptor involved in immune cell migration, has emerged as a key player in SARC. Post-translational modifications (PTMs) such as phosphorylation and ubiquitination critically modulate CX3CR1, influencing cancer progression, immune responses, and treatment resistance. METHODS This study investigates CX3CR1 expression, its biological functions, and prognostic value in SARC. Using data from The Cancer Genome Atlas (TCGA), we analyzed CX3CR1 gene expression, methylation patterns, CRISPR screening results, and immune infiltration metrics. Functional experiments included knockout and overexpression models, CCK-8 assays and flow cytometry to assess apoptosis. RESULTS CX3CR1 expression was significantly elevated in SARC tissues and positively correlated with overall survival, disease-specific survival, and progression-free intervals. Methylation analysis identified CpG sites associated with CX3CR1 expression, differentiating tumor and adjacent tissues. CRISPR screening highlighted CX3CR1's essential role in tumor growth, while immune infiltration analysis underscored its impact on the tumor microenvironment. PTMs were found to stabilize CX3CR1, enhancing its activity in key signaling pathways. Overexpression of CX3CR1 amplified inflammatory and apoptotic responses, while knockdown showed protective effects in vitro. CONCLUSIONS CX3CR1 serves as a promising prognostic biomarker and therapeutic target in sarcoma. Targeting CX3CR1's PTMs could advance personalized treatments and improve outcomes for sarcoma patients.
Collapse
Affiliation(s)
- Tengfei Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xun Li
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Pengcheng Kang
- Department of Orthopedics, Loudi Central Hospital, Ward 32, Loudi, China
| | - Jinmin Zhao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Ding Y, Chen Y, Xie S, Qiu Q, Guo X, Feng Y, Li H, Zhu F, Liu Y. Chemokine family significance and prognostic value in colorectal cancer. Front Immunol 2025; 15:1404768. [PMID: 39835121 PMCID: PMC11743568 DOI: 10.3389/fimmu.2024.1404768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background Colorectal cancer (CRC) poses a substantial global health concern, exhibits inconspicuous early symptoms, and is typically diagnosed at advanced stages leading to unfavorable outcomes. The intricate tumor microenvironment plays a crucial role in CRC development and progression, where chemokines contribute significantly. These chemokines exhibit widespread expression within tumor cells, facilitating immune cell infiltration, angiogenesis, and the establishment of distant metastases. The dysregulation of various chemokines in the context of CRC has emerged as a pivotal factor in the disease's pathogenesis. Methods To explore the relationship between chemokine gene expression and CRC patient survival, as well as to clarify their biological roles,We conducted RNA-sequencing (RNA-seq) analysis on a cohort of 88 CRC patients with tumor samples, thereby enabling a detailed exploration of chemokine involvement in CRC. This study was rigorously augmented using comprehensive datasets from The Cancer Genome Atlas (TCGA), ensuring a robust analysis of gene expression patterns associated with clinical outcomes. Results Through data analysis, we identified key genes from the chemokine family thought pertinent to CRC outcomes. Consequently, we constructed a novel prognostic model based on the risk score derived from these chemokine expressions. Validation against clinical metadata, executed through immunohistochemistry analysis, affirmed the relevance and accuracy of our model in predicting patient survival. Conclusion Our findings illuminate the critical role of chemokines in shaping the immune microenvironment of CRC, thereby highlighting potential therapeutic targets for future treatment strategies. Our new prognostic model could provide important information for the development of targeted therapies for CRC, enhancing personalized treatment approaches andultimately improving survival for CRC patients.
Collapse
Affiliation(s)
- Yi Ding
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Hubei Province Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Siyun Xie
- Information Science and Technology, Northwest University, Xi’an, Shaanxi, China
| | - Quanpeng Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaolong Guo
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Feng
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fang Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of High Talent, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Wu Y, Liu L, Li Z, Zhang T, Wang Q, Cheng M. A Risk Model Based on Ferroptosis-Related Genes OSMR, G0S2, IGFBP6, IGHG2, and FMOD Predicts Prognosis in Glioblastoma Multiforme. CNS Neurosci Ther 2025; 31:e70161. [PMID: 39815665 PMCID: PMC11735466 DOI: 10.1111/cns.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a common and highly aggressive brain tumor with a poor prognosis. However, the prognostic value of ferroptosis-related genes (FRGs) and their classification remains insufficiently studied. OBJECTIVE This study aims to explore the significance of ferroptosis classification and its risk model in GBM using multi-omics approaches and to evaluate its potential in prognostic assessment. METHODS Ferroptosis-related genes (FRGs) were retrieved from databases such as FerrDB. The TCGA-GBM and CGGA-GBM datasets were used as training and testing cohorts, respectively. Univariate Cox regression and LASSO regression analyses were performed to establish a risk model comprising five genes (OSMR, G0S2, IGFBP6, IGHG2, FMOD). A Meta-analysis of integrated TCGA and GTEx data was conducted to examine the differential expression of these genes between GBM and normal tissues. Key gene protein expression differences were analyzed using CPTAC and HPA databases. Single-cell RNA sequencing (scRNA-seq) analysis was employed to explore the cell type-specific distribution of these genes. RESULTS The five-gene risk model demonstrated significant prognostic value in GBM. Meta-analysis revealed distinct expression patterns of the identified genes between GBM and normal tissues. Protein expression analysis confirmed these differences. scRNA-seq analysis highlighted the diverse distribution of these genes across different cell types, offering insights into their biological roles. CONCLUSION The ferroptosis-based risk model provides valuable prognostic insights into GBM and highlights potential therapeutic targets, emphasizing the biological significance of ferroptosis-related genes in tumor progression.
Collapse
Affiliation(s)
- Yaqiu Wu
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhili Li
- Department of Neurosurgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Tian Zhang
- Department of Neurosurgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
5
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Xu Q, Liu C, Wang H, Li S, Yan H, Liu Z, Chen K, Xu Y, Yang R, Zhou J, Yang X, Liu J, Wang L. Deciphering the impact of aggregated autophagy-related genes TUBA1B and HSP90AA1 on colorectal cancer evolution: a single-cell sequencing study of the tumor microenvironment. Discov Oncol 2024; 15:431. [PMID: 39259234 PMCID: PMC11390999 DOI: 10.1007/s12672-024-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.
Collapse
Affiliation(s)
- Qianping Xu
- Department of Gastrointestinal and Hernial Surgery, Meishan Hospital of West China Hospital of Sichuan University, Meishan City People's Hospital, Meishan, 620010, China
| | - Chao Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hailin Wang
- Department of Hepatobiliary Surgery, Affliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Shujuan Li
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hanshen Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Ziyang Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Runqin Yang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jingfang Zhou
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Xiaolin Yang
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Lexin Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
7
|
Huang T, Zhu G, Chen F. The Potential Impact of HNRNPA2B1 on Human Cancers Prognosis and Immune Microenvironment. J Immunol Res 2024; 2024:5515307. [PMID: 39268079 PMCID: PMC11392580 DOI: 10.1155/2024/5515307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/09/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
HNRNPA2B1 is a member of the HNRNP family, which is associated with telomere function, mRNA translation, and splicing, and plays an important role in tumor development. To date, there have been no pan-cancer studies of HNRNPA2B1, particularly within the TME. Therefore, we conducted a pan-cancer analysis of HNRNPA2B1 using TCGA data. Based on datasets from TCGA, TARGET, Genotype-Tissue Expression, and Human Protein Atlas, we employed a range of bioinformatics approaches to explore the potential oncogenic role of HNRNPA2B1. This included analyzing the association of HNRNPA2B1 expression with prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), immune response, and immune cell infiltration of individual tumors. We further validated the bioinformatic findings using immunohistochemistry techniques. HNRNPA2B1 was found to be differentially expressed across most tumor types in TCGA's pan-cancer database and was predictive of poorer clinical staging and survival status. HNRNPA2B1 expression was also closely linked to TMB, MSI, tumor stemness, and chemotherapy response. HNRNPA2B1 plays a significant role in the TME and is involved in the regulation of novel immunotherapies. Its expression is significantly associated with the infiltration of macrophages, dendritic cells, NK cells, and T cells. Furthermore, HNRNPA2B1 is closely associated with immune checkpoints, immune-stimulatory genes, immune-inhibitory genes, MHC genes, chemokines, and chemokine receptors. We performed a comprehensive evaluation of HNRNPA2B1, revealing its potential role as a prognostic indicator for patients and its immunomodulatory functions.
Collapse
Affiliation(s)
- Tao Huang
- Department of NeurosurgeryTangdu HospitalFourth Military Medical University, Xi'an, China
| | - Gang Zhu
- Department of NeurosurgeryTangdu HospitalFourth Military Medical University, Xi'an, China
| | - Fan Chen
- Department of NeurosurgeryTangdu HospitalFourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Guo Z, Cao B, Hu Z, Wu J, Zhou W, Zhang W, Shi Z. Immunotherapy, prognostic, and tumor biomarker based on pancancer analysis, SMARCD3. Aging (Albany NY) 2024; 16:10074-10107. [PMID: 38862250 PMCID: PMC11210247 DOI: 10.18632/aging.205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND SMARCD3 has recently been shown to be an important gene affecting cancer, playing an important role in medulloblastoma and pancreatic ductal adenocarcinoma. Therefore, we conducted this research to investigate the potential involvement of SMARCD3 across cancers and to offer recommendations for future studies. METHODS Utilizing information on 33 malignancies in the UCSC Xena database, SMARCD3 expression and its prognostic value were assessed. The tumor microenvironment was evaluated with the "CIBERSORT" and "ESTIMATE" algorithms. SMARCD3 and immune-related genes were analyzed using the TISIDB website. The pathways related to the target genes were examined using GSEA. MSI (microsatellite instability), TMB (tumor mutational burden), and immunotherapy analysis were used to evaluate the impact of target genes on the response to immunotherapy. RESULTS There is heterogeneity in terms of the expression and prognostic value of SMARCD3 among various cancers, but it is a risk factor for many cancers including uterine corpus endometrial cancer (UCEC), renal clear cell carcinoma (KIRC), and gastric adenocarcinoma (STAD). GSEA revealed that SMARCD3 is related to chromatin remodeling and transcriptional activation, lipid metabolism, and the activities of various immune cells. The TMB and MSI analyses suggested that SMARCD3 affects the immune response efficiency of KIRC, LUAD and STAD. Immunotherapy analysis suggested that SMARCD3 may be a potential immunotherapy target. RT-qPCR demonstrated the variation in SMARCD3 expression in KIRC, LUAD, and STAD. CONCLUSION Our study revealed that SMARCD3 affects the prognosis and immunotherapy response of some tumors, providing a direction for further research on this gene.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
9
|
Zhou J, Ye W, Chen L, Li J, Zhou Y, Bai C, Luo L. Triptolide alleviates cerebral ischemia/reperfusion injury via regulating the Fractalkine/CX3CR1 signaling pathway. Brain Res Bull 2024; 211:110939. [PMID: 38574865 DOI: 10.1016/j.brainresbull.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1β (IL-1β), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1β were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1β expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Ling Chen
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Junheng Li
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Yijun Zhou
- Department of Liver Diseases, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Chunfeng Bai
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China
| | - Lian Luo
- Department of Neurology, Affiliated Hangzhou Xixi Hospital Zhejiang University of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Huang Z, Hu X, Wei Y, Lai Y, Qi J, Pang J, Huang K, Li H, Cai P. ADAMTSL2 is a potential prognostic biomarker and immunotherapeutic target for colorectal cancer: Bioinformatic analysis and experimental verification. PLoS One 2024; 19:e0303909. [PMID: 38814950 PMCID: PMC11139340 DOI: 10.1371/journal.pone.0303909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
The ADAMTS Like 2 (ADAMTSL2) mutation has been identified to be associated with different human genetic diseases. The role of ADAMTSL2 is unclear in colorectal cancer (CRC). The study investigated the expression of ADAMTSL2 in both pan cancer and CRC, using data from The Cancer Genome Atlas (TCGA) database to assess its diagnostic value. The study examined the correlation between ADAMTSL2 expression levels and clinical characteristics, as well as prognosis in CRC. The study explored potential regulatory networks involving ADAMTSL2, including its association with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB) / microsatellite instability (MSI), tumor stemness index (mRNAsi), and drug sensitivity in CRC. ADAMTSL2 expression was validated using GSE71187 and quantitative real-time PCR (qRT-PCR). ADAMTSL2 was aberrantly expressed in pan cancer and CRC. An increased level of ADAMTSL2 expression in patients with CRC was significantly associated with the pathologic N stage (p < 0.001), pathologic stage (p < 0.001), age (p < 0.001), histological type (p < 0.001), and neoplasm type (p = 0.001). The high expression of ADAMTSL2 in patients with CRC was found to be significantly associated with a poorer overall survival (OS) (HR: 1.67; 95% CI: 1.18-2.38; p = 0.004), progression-free survival (PFS) (HR: 1.55; 95% CI: 1.14-2.11; p = 0.005) and disease-specific survival (DSS) (HR: 1.83; 95% CI: 1.16-2.89; p = 0.010). The expression of ADAMTSL2 in patients with CRC (p = 0.009) was identified as an independent prognostic determinant. ADAMTSL2 was associated with extracellular matrix receptor (ECM-receptor) interaction, transforming growth factor β (TGF-β) signaling pathway, and more. ADAMTSL2 expression was correlated with immune infiltration, immune checkpoint genes, TMB / MSI and mRNAsi in CRC. ADAMTSL2 expression was significantly and negatively correlated with 1-BET-762, Trametinib, and WZ3105 in CRC. ADAMTSL2 was significantly upregulated in CRC cell lines. The high expression of ADAMTSL2 is significantly correlated with lower OS and immune infiltration of CRC. ADAMTSL2 may be a potential prognostic biomarker and immunotherapeutic target for CRC patients.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Hu
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiqiu Wei
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yousheng Lai
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaming Qi
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jinglin Pang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kang Huang
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huagui Li
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengzhu Cai
- Department of Anorectal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Xia X, Xu F, Dai D, Xiong A, Sun R, Ling Y, Qiu L, Wang R, Ding Y, Lin M, Li H, Xie Z. VDR is a potential prognostic biomarker and positively correlated with immune infiltration: a comprehensive pan-cancer analysis with experimental verification. Biosci Rep 2024; 44:BSR20231845. [PMID: 38639057 PMCID: PMC11065647 DOI: 10.1042/bsr20231845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.
Collapse
MESH Headings
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Humans
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Cell Line, Tumor
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Cancer-Associated Fibroblasts/pathology
- Databases, Genetic
Collapse
Affiliation(s)
- Xuedi Xia
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Dexing Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - An Xiong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ruoman Sun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Yali Ling
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Lei Qiu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Rui Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ya Ding
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Miaoying Lin
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Haibo Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
12
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Zhao W, Li Q, Wen S, Li Y, Bai Y, Tian Z. Novel biomarkers of inflammation-associated immunity in cervical cancer. Front Oncol 2024; 14:1351736. [PMID: 38532933 PMCID: PMC10964772 DOI: 10.3389/fonc.2024.1351736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/28/2024] Open
Abstract
Background Cervical cancer (CC) is a highly malignant gynecological cancer with a direct causal link to inflammation, primarily resulting from persistent high-risk human papillomavirus (HPV) infection. Given the challenges in early detection and mid to late-stage treatment, our research aims to identify inflammation-associated immune biomarkers in CC. Methods Using a bioinformatics approach combined with experimental validation, we integrated two CC datasets (GSE39001 and GSE63514) in the Gene Expression Omnibus (GEO) to eliminate batch effects. Immune-related inflammation differentially expressed genes (DGEs) were obtained by R language identification. Results This analysis identified 37 inflammation-related DEGs. Subsequently, we discussed the different levels of immune infiltration between CC cases and controls. Weighted gene co-expression network analysis (WGCNA) identified seven immune infiltration-related modules in CC. We identified 15 immune DEGs associated with inflammation at the intersection of these findings. In addition, we constructed a protein interaction network using the String database and screened five hub genes using "CytoHubba": CXC chemokine ligand 8 (CXCL8), CXC chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1 (CX3CR1), Fc gamma receptors 3B (FCGR3B), and SELL. The expression of these five genes in CC was determined by PCR experiments. In addition, we assessed their diagnostic value and further analyzed the association of immune cells with them. Conclusions Five inflammation- and immune-related genes were identified, aiming to provide new directions for early diagnosis and mid to late-stage treatment of CC from multiple perspectives.
Collapse
Affiliation(s)
- Weihong Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Li
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Songquan Wen
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yaqin Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Ying Bai
- Department of Obstetrics and Gynecology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiyu Tian
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Hou S, Zhao Y, Chen J, Lin Y, Qi X. Tumor-associated macrophages in colorectal cancer metastasis: molecular insights and translational perspectives. J Transl Med 2024; 22:62. [PMID: 38229160 PMCID: PMC10792812 DOI: 10.1186/s12967-024-04856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Siyu Hou
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
15
|
ZENG SHUANGSHUANG, CHEN XI, YI QIAOLI, THAKUR ABHIMANYU, YANG HUI, YAN YUANLIANG, LIU SHAO. CRABP2 regulates infiltration of cancer-associated fibroblasts and immune response in melanoma. Oncol Res 2023; 32:261-272. [PMID: 38186580 PMCID: PMC10765133 DOI: 10.32604/or.2023.042345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 01/09/2024] Open
Abstract
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment. Cellular retinoic acid-binding protein 2 (CRABP2) is a controversial factor in the occurrence and development of human tumors. However, there is limited research on the relationship between CRABP2 and immunotherapy response. This study found that negative correlations of CRABP2 and immune checkpoint markers (PD-1, PD-L1, and CTLA-4) were observed in breast invasive carcinoma (BRCA), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD) and testicular germ cell tumors (TGCT). In particular, in SKCM patients who were treated with PD-1 inhibitors, high levels of CRABP2 predicted poor prognosis. Additionally, CRABP2 expression was elevated in cancer-associated fibroblasts (CAFs) at the single-cell level. The expression of CRABP2 was positively correlated with markers of CAFs, such as MFAP5, PDPN, ITGA11, PDGFRα/β and THY1 in SKCM. To validate the tumor-promoting effect of CRABP2 in vivo, SKCM xenograft mice models with CRABP2 overexpression have been constructed. These models showed an increase in tumor weight and volume. Enrichment analysis indicated that CRABP2 may be involved in immune-related pathways of SKCM, such as extracellular matrix (ECM) receptor interaction and epithelial-mesenchymal transition (EMT). The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs. In conclusion, this study provides new insights into the role of CRABP2 in immunotherapy response. The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients. Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
Collapse
Affiliation(s)
- SHUANGSHUANG ZENG
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - XI CHEN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - QIAOLI YI
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - ABHIMANYU THAKUR
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - HUI YANG
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, China
| | - YUANLIANG YAN
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - SHAO LIU
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
16
|
Xu L, Zhang H, Shao Y, Fu Z. Bioinformatics analysis-based screening of circRNA gene with mainstream expression trend in colorectal cancer and construction of a coexpression regulatory network. PLoS One 2023; 18:e0295126. [PMID: 38064496 PMCID: PMC10707487 DOI: 10.1371/journal.pone.0295126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Since circRNA can be utilized as a potential diagnostic marker for cancer, to explore the regulatory mechanism of colorectal cancer (CRC) using bioinformatics, the public database of circRNA was mined. METHODS CRC differentially expressed miRNAs were screened in the Cancer Genome Atlas (TCGA) database, CRC differentially expressed circRNAs were searched in the Gene Expression Omnibus (GEO) database, the two databases were combined to identify CRC differentially expressed mRNAs, and a circRNA-miRNA‒mRNA regulatory network was constructed by combining a plurality of target prediction databases to identify key genes. The upstream circRNA and regulatory axis of the key genes were identified for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis to explore the biological functions of circRNA in CRC using the regulatory axis. RESULTS After the screening of the GSE21815 dataset, a total of 22 differentially expressed circRNAs were obtained, with 12 upregulated and 10 downregulated genes. Similarly, the GSE126094 dataset yielded 104 differentially expressed circRNAs, comprising 56 upregulated and 48 downregulated genes. Among the differentially expressed circRNAs, five were identified, with VDAC3 and SETD2 showing downregulated expression, while RAD23B, RPPH1, and MYBL2 exhibited upregulated expression. Following the selection process, five DEcircRNAs, eight target miRNAs, and 105 target DEmRNAs were identified. The protein-protein interaction (PPI) network revealed close relationships among the mRNAs, with E2F2, E2F3, CCND1, TNRC6A, and KAT2B identified as key genes. Notably, CCND1 emerged as a critical gene in the PPI network. Through the upregulation of has-circ-0087862, which binds to miR-892b, the translation inhibition of CCND1 by miR-892b was attenuated, leading to enhanced CCND1 expression. Functional enrichment analysis indicated that CCND1 was involved in protein binding and positive regulation of cellular processes, among other functions. CONCLUSION The differentially expressed genes (DEGs) in CRC markedly affected the survival time of patients. CircRNAs could be utilized as diagnostic markers of CRC, and the key genes in CRC could be screened out by bioinformatics, which would be helpful to understand the drug targets for the treatment of human immunodeficiency virus (HIV)-related CRC patients.
Collapse
Affiliation(s)
- Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Maina JN. A critical assessment of the cellular defences of the avian respiratory system: are birds in general and poultry in particular relatively more susceptible to pulmonary infections/afflictions? Biol Rev Camb Philos Soc 2023; 98:2152-2187. [PMID: 37489059 DOI: 10.1111/brv.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023]
Abstract
In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park Campus, Kingsway Avenue, Johannesburg, 2006, South Africa
| |
Collapse
|
18
|
Rajalingam A, Sekar K, Ganjiwale A. Identification of Potential Genes and Critical Pathways in Postoperative Recurrence of Crohn's Disease by Machine Learning And WGCNA Network Analysis. Curr Genomics 2023; 24:84-99. [PMID: 37994325 PMCID: PMC10662376 DOI: 10.2174/1389202924666230601122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 11/24/2023] Open
Abstract
Background Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year. Thus, surgery is done only to relieve symptoms and not for the complete cure of the disease. The determinants and the genetic factors of this disease recurrence are also not well-defined. Therefore, enhanced diagnostic efficiency and prognostic outcome are critical for confronting CD recurrence. Methods We analysed ileal mucosa samples collected from neo-terminal ileum six months after surgery (M6=121 samples) from Crohn's disease dataset (GSE186582). The primary aim of this study is to identify the potential genes and critical pathways in post-operative recurrence of Crohn's disease. We combined the differential gene expression analysis with Recursive feature elimination (RFE), a machine learning approach to get five critical genes for the postoperative recurrence of Crohn's disease. The features (genes) selected by different methods were validated using five binary classifiers for recurrence and remission samples: Logistic Regression (LR), Decision tree classifier (DT), Support Vector Machine (SVM), Random Forest classifier (RF), and K-nearest neighbor (KNN) with 10-fold cross-validation. We also performed weighted gene co-expression network analysis (WGCNA) to select specific modules and feature genes associated with Crohn's disease postoperative recurrence, smoking, and biological sex. Combined with other biological interpretations, including Gene Ontology (GO) analysis, pathway enrichment, and protein-protein interaction (PPI) network analysis, our current study sheds light on the in-depth research of CD diagnosis and prognosis in postoperative recurrence. Results PLOD2, ZNF165, BOK, CX3CR1, and ARMCX4, are the important genes identified from the machine learning approach. These genes are reported to be involved in the viral protein interaction with cytokine and cytokine receptors, lysine degradation, and apoptosis. They are also linked with various cellular and molecular functions such as Peptidyl-lysine hydroxylation, Central nervous system maturation, G protein-coupled chemoattractant receptor activity, BCL-2 homology (BH) domain binding, Gliogenesis and negative regulation of mitochondrial depolarization. WGCNA identified a gene co-expression module that was primarily involved in mitochondrial translational elongation, mitochondrial translational termination, mitochondrial translation, mitochondrial respiratory chain complex, mRNA splicing via spliceosome pathways, etc.; Both the analysis result emphasizes that the mitochondrial depolarization pathway is linked with CD recurrence leading to oxidative stress in promoting inflammation in CD patients. Conclusion These key genes serve as the novel diagnostic biomarker for the postoperative recurrence of Crohn's disease. Thus, among other treatment options present until now, these biomarkers would provide success in both diagnosis and prognosis, aiming for a long-lasting remission to prevent further complications in CD.
Collapse
Affiliation(s)
- Aruna Rajalingam
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Kanagaraj Sekar
- Laboratory for Structural Biology and Bio-computing, Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali Ganjiwale
- Department of Life Sciences, Bangalore University, Bangalore, Karnataka, 560056, India
| |
Collapse
|
19
|
Lu G, Wang H, Xu R, Xu J, An F, Xu H, Nie H, Mei J, Zhan Q, Zhang Q. Formin protein FMNL1 is a biomarker for tumor-infiltrating immune cells and associated with well immunotherapeutic response. J Cancer 2023; 14:2978-2989. [PMID: 37859818 PMCID: PMC10583584 DOI: 10.7150/jca.86965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023] Open
Abstract
Background: Increased studies on the basis of bulk RNA-sequencing (RNA-seq) data of cancer identify numbers of immune-related genes which may play potential regulatory roles in the tumor microenvironment (TME) without in-depth validation. Methods: In the current study, the immunological correlation and cell subpopulation expression pattern of FMNL1 were analyzed using public data. In addition, the cell subpopulation expression pattern of FMNL1 was also deeply validated using single-cell RNA-sequencing (scRNA-seq) and multiplexed quantitative immunofluorescence (mQIF). Results: Bulk FMNL1 mRNA was related to better prognosis in hepatocellular carcinoma (HCC) and was able to identify immuno-hot tumor in not only HCC but also multiple cancer types. Bulk FMNL1 mRNA also predicted the response to immunotherapy in multiple cancers. Further validation using scRNA-seq and mQIF revealed that FMNL1 was a biomarker for immune cells. Conclusions: FMNL1 is a biomarker for immune cells in not only hepatocellular carcinoma, but also multiple cancer types. Moreover, immune infiltration analysis using the bulk RNA-seq data would be further validated using scRNA-seq and/or mQIF to describe the cell subpopulation expression pattern in tumor tissues for more in-depth and appropriate understanding.
Collapse
Affiliation(s)
- Guomin Lu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Hui Wang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Rui Xu
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Junying Xu
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Fangmei An
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Haoran Xu
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - He Nie
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jie Mei
- Departments of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qiang Zhan
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qinglin Zhang
- Departments of Gastroenterology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
20
|
He Q, Huangfu L, Fan B, Zhuang Q, He L, Li L, You W, Xing X. T-cells infiltration mediates the association between neutrophil/lymphocyte ratio and survival in gastric cancer. Cancer Med 2023; 12:15893-15902. [PMID: 37306187 PMCID: PMC10469634 DOI: 10.1002/cam4.6228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Neutrophil/lymphocyte ratio (NLR) is a vital index for systemic inflammation and a prognostic indicator for gastric cancer (GC). Despite the abundant literature on NLR's prognostic value for GC, the underlying factors mediating its impact on survival remain unclear. The objective of this study was to analyze the role of NLR in different prognostic models and subgroups, and investigate the mediating effects of immune infiltrates between NLR and survival. METHODS A total of 924 patients who underwent D2 lymph node resection were enrolled in this study. According to the level of NLR, patients were divided into two groups, the high and low NLR groups. Clinical parameters, indexes related to immune infiltrates, and survival were compared between the two groups. Prognostic models, interaction analysis, and mediating effects analysis were performed to investigate the clinical association of NLR, immune infiltrates, and survival. RESULTS The infiltration of CD3+ and CD8+ T cells was significantly different in the two NLR groups. The level of NLR was an independent prognostic predictor of GC. In addition, an interaction effect exists between NLR and MMR status on the prognosis of GC (p-interaction <0.01). Lastly, the mediating effect analysis revealed that the infiltration level of CD3+ T cells was the mediating factor between NLR and survival (p < 0.001). CONCLUSIONS The level of NLR is an independent prognostic predictor of GC. The effect of NLR on prognosis is partly mediated by CD3+ T-cell infiltration.
Collapse
Affiliation(s)
- Qifei He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer CenterPeking University Cancer Hospital and InstituteBeijingChina
- Department of Bone Joint and Musculoskeletal TumorThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer CenterPeking University Cancer Hospital and InstituteBeijingChina
| | - Biao Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer CenterPeking University Cancer Hospital and InstituteBeijingChina
| | - Qianzheng Zhuang
- Department of Bone Joint and Musculoskeletal TumorThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Liu He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer CenterPeking University Cancer Hospital and InstituteBeijingChina
| | - Lin Li
- Department of Gastroenterology, Aerospace Center HospitalPeking University Aerospace School of Clinical MedicineBeijingChina
| | - Wei You
- Department of Bone Joint and Musculoskeletal TumorThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's HospitalShenzhenChina
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer CenterPeking University Cancer Hospital and InstituteBeijingChina
| |
Collapse
|
21
|
Zhao M, Zhang Q, Song Z, Lei H, Li J, Peng F, Lin S. ATP2C2 as a novel immune-related marker that defines the tumor microenvironment in triple-negative breast cancer. Transl Cancer Res 2023; 12:1802-1815. [PMID: 37588742 PMCID: PMC10425650 DOI: 10.21037/tcr-23-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive cancer that affects about 13/100,000 women yearly. Patients with TNBC are often resistant to endocrine and molecular targeted therapy, making clinical treatment challenging. Researches indicate that tumor microenvironment (TME) is related to prognosis in many cancers. Therefore, we aim to identify TME immune-related biomarkers to enhance the prognosis and immunotherapy efficacy in patients with TNBC. Methods The bulk mRNA transcriptome data and clinical information of the (GSE58812) and (GSE25055) datasets were downloaded from the Gene Expression Omnibus (GEO) database, and the ESTIMATE algorithm was used to calculate the ImmuneScore, StromalScore, and ESTIMATEScore. Patients were divided into low and high groups according to the quartiles of ImmuneScore, StromalScore, and the median of ESTIMATEScore to filter differential expression genes (DEGs), respectively. The DEGs were then evaluated using univariate and multivariate Cox regression to identify TME-related genes and its association with survival rate for the construction of a TMErisk model with three biomarkers. Then Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) data were used to compare the gene expression in cancer and normal tissues. xCell analysis calculated the proportion of tumor-infiltrating immune cells in low and high expression of ATPase Secretory Pathway Ca2+ Transporting 2 (ATP2C2). In addition, samples from 20 TNBC patients admitted to our institution were used for immunohistochemical (IHC) examination. Results Three immune-related DEGs were identified, including prolyl 3-hydroxylase 2 (P3H2), sodium voltage-gated channel beta subunit 3 (SCN3B), and ATP2C2 and a TMErisk model was constructed and validated. However, only ATP2C2 was selected for further analysis. ATP2C2 mRNA level of TNBC patients was higher than that of normal breast tissue. Survival analysis showed that patients with high expression of ATP2C2 had a bad prognosis. xCell analysis demonstrated that the expression of ATP2C2 was associated with 16 kinds of tumor-infiltrating immune cells. Protein expression of ATP2C2 in TNBC tissues was higher compared to paired normal tissues in IHC. Conclusions This study constructed and validated a TMErisk model that can effectively predict 3- and 5-year survival rate for TNBC patients. TNBC patients with lower expression of ATP2C2 had a good prognosis.
Collapse
Affiliation(s)
- Mingyuan Zhao
- Department of Pathology, Zhejiang hospital, Hangzhou, China
| | - Qilong Zhang
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, China
| | - Zichen Song
- Department of Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huan Lei
- Department of Pathology, Zhejiang hospital, Hangzhou, China
| | - Jing Li
- Department of Pathology, Zhejiang hospital, Hangzhou, China
| | - Fang Peng
- Department of Pathology, Zhejiang hospital, Hangzhou, China
| | - Shuangyan Lin
- Department of Pathology, Zhejiang hospital, Hangzhou, China
| |
Collapse
|
22
|
Jun X, Gao S, Yu L, Wang G. The clinical relevance and prediction efficacy from therapy of tumor microenvironment related signature score in colorectal cancer. Front Oncol 2023; 13:1123455. [PMID: 37234984 PMCID: PMC10207322 DOI: 10.3389/fonc.2023.1123455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction As the top 3 cancer in terms of incidence and mortality, the first-line treatment for CRC includes FOLFOX, FOLFIRI, Cetuximab or immunotherapy. However, the drug sensitivity of patients to regimens is different. There has been increasing evidence that immune components of TME can affect the sensitivity of patients to drugs. Therefore, it is necessary to define novo molecular subtypes of CRC based on TME immune components, and screen patients who are sensitive to the treatments, to make personalized therapy possible. Methods We analyzed the expression profiles and 197 TME-related signatures of 1775 patients using ssGSEA, univariate Cox proportional risk model and LASSO-Cox regression model, and defined a novo molecular subtype (TMERSS) of CRC. Simultaneously, we compared the clinicopathological factors, antitumor immune activity, immune cell abundance and differences of cell states in different TMERSS subtypes. In addition, patients sensitive to the therapy were screened out by correlation analysis between TMERSS subtypes and drug responses. Results Compared with low TMERSS subtype, high TMERSS subtype has a better outcome, which may be associated to higher abundance of antitumor immune cell in high TMERSS subtype. Our findings suggested that the high TMERSS subtype may have a higher proportion of respondents to Cetuximab agent and immunotherapy, while the low TMERSS subtype may be more suitable for treatment with FOLFOX and FOLFIRI regimens. Discussion In conclusion, the TMERSS model may provide a partial reference for the prognosis evaluation of patients, the prediction of drug sensitivity, and the implementation of clinical decision-making.
Collapse
Affiliation(s)
- Xiang Jun
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengnan Gao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Yu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Lobbes LA, Schütze MA, Droeser R, Arndt M, Pozios I, Lauscher JC, Hering NA, Weixler B. Muscarinic Acetylcholine Receptor M3 Expression and Survival in Human Colorectal Carcinoma-An Unexpected Correlation to Guide Future Treatment? Int J Mol Sci 2023; 24:ijms24098198. [PMID: 37175905 PMCID: PMC10179005 DOI: 10.3390/ijms24098198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.
Collapse
Affiliation(s)
- Leonard A Lobbes
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcel A Schütze
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Raoul Droeser
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, CH-4058 Basel, Switzerland
| | - Marco Arndt
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C Lauscher
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nina A Hering
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
24
|
Wang X, Zhang Y, Song N, Li K, Lei S, Wang J, Wang Z, Zhang W. CILP2: A prognostic biomarker associated with immune infiltration in colorectal cancer. Heliyon 2023; 9:e15535. [PMID: 37144183 PMCID: PMC10151353 DOI: 10.1016/j.heliyon.2023.e15535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
The function played by cartilage intermediate layer protein 2 (CILP2) between colorectal cancer (CRC) progression and immune response remains unclear, especially with respect to immune cell infiltration and checkpoints. Materials and Methods: We examined CILP2 expression in The Cancer Genome Atlas (TCGA) COAD-READ cohort and analyzed its relationship with clinicopathological features, mutations, survival, and immunity. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analyses (GSEA) were performed to determine CILP2 related pathways. To further investigate the results of TCGA analysis, validation was performed using CRC cell lines, fresh pathological tissues, and a CRC tissue microarray (TMA). Results: In both TCGA and TMA cohorts, CILP2 expression was increased in CRC tissues and was associated with patient T stage (T3 and T4), N stage (N1), pathological stage (III and IV), and overall survival. Immune cell infiltration and checkpoint analysis revealed that CILP2 expression is highly correlated with multiple immune marker genes, including PD-1. In addition, results of enrichment analysis indicated that CILP2 related genes was mainly enriched in extracellular matrix related functions. Conclusion: Elevated CILP2 expression is associated with adverse CRC clinical features and immune cells, it has potential as a biomarker detrimental to CRC survival.
Collapse
Affiliation(s)
- Xueli Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Niping Song
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaiqiang Li
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Siyun Lei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Corresponding author.
| | - Wei Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
- Corresponding author. Department of Gastrointestinal surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China.
| |
Collapse
|
25
|
Atreya I, Neurath MF. How the Tumor Micromilieu Modulates the Recruitment and Activation of Colorectal Cancer-Infiltrating Lymphocytes. Biomedicines 2022; 10:biomedicines10112940. [PMID: 36428508 PMCID: PMC9687992 DOI: 10.3390/biomedicines10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The successful treatment of advanced colorectal cancer disease still represents an insufficiently solved clinical challenge, which is further complicated by the fact that the majority of malignant colon tumors show only relatively low immunogenicity and therefore have only limited responsiveness to immunotherapeutic approaches, such as, for instance, the use of checkpoint inhibitors. As it has been well established over the past two decades that the local tumor microenvironment and, in particular, the quantity, quality, and activation status of intratumoral immune cells critically influence the clinical prognosis of patients diagnosed with colorectal cancer and their individual benefits from immunotherapy, the enhancement of the intratumoral accumulation of cytolytic effector T lymphocytes and other cellular mediators of the antitumor immune response has emerged as a targeted objective. For the future identification and clinical validation of novel therapeutic target structures, it will thus be essential to further decipher the molecular mechanisms and cellular interactions in the intestinal tumor microenvironment, which are crucially involved in immune cell recruitment and activation. In this context, our review article aims at providing an overview of the key chemokines and cytokines whose presence in the tumor micromilieu relevantly modulates the numeric composition and antitumor capacity of tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Imke Atreya
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8535204; Fax: +49-9131-8535209
| |
Collapse
|
26
|
Overexpression of CDCP1 is Associated with Poor Prognosis and Enhanced Immune Checkpoints Expressions in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1469354. [PMID: 36090897 PMCID: PMC9452972 DOI: 10.1155/2022/1469354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022]
Abstract
CUB-domain containing protein 1 (CDCP1) is a transmembrane protein acting as an effector of SRC family kinases, which play an oncogenic role in multiple human cancers. However, its clinical and immune correlations in breast cancer (BrCa) have not been explored. To define the expression, prognostic value, and potential molecular role of CDCP1 in BrCa, multiple public datasets, and an in-house cohort were used. Compared with paratumor tissue, CDCP1 was remarkably upregulated in the tumor tissues at both mRNA and protein levels. In the in-house cohort, CDCP1 protein expression was related to several clinicopathological parameters, including age, ER status, PR status, molecular type, and survival status. Kaplan–Meier analysis and Cox regression analysis exhibited that CDCP1 was an important prognostic biomarker in BrCa. In addition, enrichment analysis uncovered that CDCP1 was not only involved in multiple oncogenic pathways, but correlated with overexpression of immune checkpoints. Overall, we reported that increased expression of CDCP1 is a favorable prognostic factor in patients with BrCa. In addition, the correlations between CDCP1 and immune checkpoints provide a novel insight into the adjuvant treatment for immune checkpoint blockade via targeting CDCP1.
Collapse
|
27
|
Tan S, Guo X, Bei C, Zhang H, Li D, Zhu X, Tan H. Prognostic significance and immune characteristics of CMTM4 in hepatocellular carcinoma. BMC Cancer 2022; 22:905. [PMID: 35986302 PMCID: PMC9389844 DOI: 10.1186/s12885-022-09999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/11/2022] [Indexed: 12/09/2022] Open
Abstract
Background Previous study has shown that chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family member 4 (CMTM4) can bind and maintain programmed cell death ligand 1 (PD-L1) expression to promote tumor progression by alleviating the suppression of tumor-specific T cell activity, suggesting its potential role in tumor immunotherapy. However, the role of CMTM4 in tumor immunity has not been well clarified, especially in hepatocellular carcinoma (HCC). Methods The protein expression of CMTM4/PD-L1/CD4/CD8 was detected by immunohistochemistry (IHC) detection in 90 cases of HCC tissues. The mRNA expression profiles and related prognosis data were obtained from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC). Two immune therapy cohorts were from Imvigor210 and GSE176307. Results Though the single protein expression of CMTM4, PD-L1, CD4 or CD8 in HCC tissues by IHC detection didn’t show a significant relationship with the prognosis of HCC patients, we found that high co-expression of CMTM4/PD-L1/CD4 showed a good prognosis of HCC patients. Further Timer 2.0 analysis identified that HCC patients with high expression of CMTM4/PD-L1 and high infiltration of CD4+ T cells had a better overall survival than those with low infiltration of CD4+ T cells. Moreover, a series of bioinformatics analyses revealed that CMTM4-related genes posed important effects on prognosis and immunity in HCC patients, and CMTM4 had a positive correlation with infiltration of CD4+ and CD8+ T cells in HCC. At last, we used two immunotherapy cohorts to verify that the combination of CMTM4 with PD-L1 could improve the prognosis of tumor patients underwent immunotherapy. Conclusions CMTM4 and PD-L1 co-expression with T cell infiltration shows prognostic significance in HCC, suggesting combined effect from multiple proteins should be considered in HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09999-y.
Collapse
|