1
|
Beyls E, Duthoo E, Backers L, Claes K, De Bruyne M, Pottie L, Bordon V, Bonroy C, Tavernier SJ, Claes KBM, Vral A, Baeyens A, Haerynck F. Investigating Chromosomal Radiosensitivity in Inborn Errors of Immunity: Insights from DNA Repair Disorders and Beyond. J Clin Immunol 2025; 45:75. [PMID: 39945898 PMCID: PMC11825639 DOI: 10.1007/s10875-025-01858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Human inborn errors of immunity (IEI) represent a diverse group of genetic disorders affecting the innate and/or adaptive immune system. Some IEI entities comprise defects in DNA repair factors, resulting in (severe) combined immunodeficiencies, bone marrow failure, predisposition to malignancies, and potentially resulting in radiosensitivity (RS). While other IEI subcategories such as common variable immunodeficiency (CVID) and immune dysregulation disorders also associate with lymphoproliferative and malignant complications, the occurrence of RS phenotypes in the broader IEI population is not well characterized. Nonetheless, identifying RS in IEI patients through functional testing is crucial to reconsider radiation-related therapeutic protocols and to improve overall patient management. This study aimed to investigate chromosomal RS in a diverse cohort of 107 IEI patients using the G0 cytokinesis-block micronucleus (MN) assay. Our findings indicate significant variability in RS across specific genetic and phenotypical subgroups. Severe RS was detected in all ataxia-telangiectasia (AT) patients, a FANCI deficient and ERCC6L2 deficient patient, but not in any other IEI patient included in this cohort. Age emerged as an influencing factor for both spontaneous and radiation-induced MN yields, while the manifestation of additional clinical features, including infection susceptibility, immune dysregulation, or malignancies did not associate with increased MN levels. Our extensive analysis of RS in the IEI population underscores the clinical importance of RS assessment in AT patients and supports RS testing in all IEI patients suspected of having a DNA repair disorder associated with RS.
Collapse
Affiliation(s)
- Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Evi Duthoo
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Lynn Backers
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kathleen B M Claes
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Vral
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium.
- Department of Pediatric Respiratory and Infectious Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
2
|
Karaaslan BG, Demirkale ZH, Turan I, Aydemir S, Meric Z, Taskin Z, Kilinc OC, Burtecene N, Topcu B, Yucel E, Aydogmus C, Cokugras H, Kiykim A. Evaluation of T-cell repertoire by flow cytometric analysis in primary immunodeficiencies with DNA repair defects. Scand J Immunol 2025; 101:e70003. [PMID: 39967281 PMCID: PMC11836546 DOI: 10.1111/sji.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 02/20/2025]
Abstract
The group of patients with DNA-repair-defects increases susceptibility to infections due to impaired repertoire diversity. In this context, we aimed to investigate the TCRvβ-repertoire by flow cytometric analysis and its correlation with clinical entities in a group of IEI patients with DNA repair defects. Peripheral lymphocyte subset and TCRvβ-repertoire analyses were performed by flow cytometric analysis. The aim was to explore the changing TCR-Vβ-repertoire that can predict some clinical entities by investigating the repertoire using flow-cytometric-analysis-based TCR-Vβ and its interaction with clinical entities in a group of IEI patients with DNA repair defects. TCR-repertoire of the patients with DNA-repair-defects and healthy controls was analysed with flow-cytometer. The potential of flow-cytometric analysis of the TCR repertoire as a practical and easily accessible clinical prediction method was investigated. Thirty-nine-IEI patients with DNA-repair-defects and 15 age-matched healthy-controls were included in this study. Peripheral lymphocyte subset and TCR-Vβ repertoire analyses were performed by flow cytometry. Compared to the control group, 9 out of 24 clones (37.5%) exhibited a statistically significant reduction, while only 3 clones showed a statistically significant increase (p < 0.05). Preferential use of vβ-genes was associated with some clinical entities. Lower TCR-vβ-9 and TCR-vβ23, higher TCR-vβ7.2 were found in the patients with pneumonia (n = 13) (p = 0.018, p = 0.044 p = 0.032). AT patients with pneumonia had lower TCR-vβ-9 clone than patients without pneumonia (p = 0.008). Skewed proliferation of most TCR-vβ clones was seen DNA-repair-defects, especially AT. In addition, this study showed that preferential use of TCR-vβ genes could be predictive for some clinical entities.
Collapse
Affiliation(s)
- Betul Gemici Karaaslan
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Hizli Demirkale
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Isilay Turan
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Sezin Aydemir
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zeynep Meric
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Zuleyha Taskin
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ozgur Can Kilinc
- Cerrahpasa School of MedicineIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Nihan Burtecene
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Birol Topcu
- Department of BiostatisticsTekirdag Namik Kemal UniversityTekirdagTürkiye
| | - Esra Yucel
- Istanbul Medical Faculty, Department of Pediatric Immunology and AllergyIstanbul UniversityIstanbulTürkiye
| | - Cigdem Aydogmus
- Department of Pediatric Immunology and AllergyBasaksehir Cam and Sakura City HospitalIstanbulTürkiye
| | - Haluk Cokugras
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| | - Ayca Kiykim
- Cerrahpasa School of Medicine, Department of Pediatric Immunology and AllergyIstanbul University‐CerrahpasaIstanbulTürkiye
| |
Collapse
|
3
|
Salami F, Shad TM, Fathi N, Mojtahedi H, Esmaeili M, Shahkarami S, Afrakoti LGMP, Amirifar P, Delavari S, Nosrati H, Razavi A, Ranjouri MR, Yousefpour M, Esfahani ZH, Azizi G, Ashrafi M, Rezaei N, Yazdani R, Abolhassani H. ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects. J Clin Immunol 2025; 45:67. [PMID: 39853455 PMCID: PMC11762072 DOI: 10.1007/s10875-025-01857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/18/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease. METHODS A-T patients with defined genetic diagnoses were classified based on CSR and based on the severity of their medical complications. Isolated peripheral blood mononuclear cells from any patient were evaluated before and after exposure to 0.5 Gy ionizing radiation for one minute. Western blotting was performed to identify the expression of ATM and phosphorylated ATM (p-ATM) proteins compared to age-sex-matched healthy controls. RESULTS In severe A-T patients (n = 6), the majority (66.7%) had frameshift mutations, while 33.3% had nonsense mutations in the ATM gene. The mild group (n = 3) had two cases of splice errors and one missense mutation. All patients with CSR defect had elevated IgM serum levels, whereas all switched immunoglobulins were reduced in them. Expression of ATM and p-ATM proteins was significantly lower (p = 0.01) in all patients compared to healthy controls, both pre-and post- and post-radiation. Additionally, low ATM and p-ATM protein expression levels were linked with the clinical severity of patients but were not correlated with CSR defects. CONCLUSION Expression and activation of ATM protein were defective in A-T patients compared to healthy controls. Altered expression of ATM and p-ATM proteins may have potential clinical implications for prognostic evaluation and symptom severity assessment in individuals with A-T.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians- Universität München (LMU), Munich, Germany
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Nosrati
- Department of Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmoudreza Ashrafi
- Department of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institute, Solnavägen 9, floor 9D, Stockholm, 17165, Sweden.
| |
Collapse
|
4
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
6
|
Kioutchoukova I, Foster D, Thakkar R, Ciesla C, Cabassa JS, Strouse J, Kurz H, Lucke-Wold B. Neurocutaneous Diseases: Diagnosis, Management, and Treatment. J Clin Med 2024; 13:1648. [PMID: 38541874 PMCID: PMC10971194 DOI: 10.3390/jcm13061648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 01/05/2025] Open
Abstract
Neurocutaneous disorders, also known as phakomatoses, are congenital and acquired syndromes resulting in simultaneous neurologic and cutaneous involvement. In several of these conditions, the genetic phenomenon is understood, providing a pivotal role in the development of therapeutic options. This review encompasses the discussion of the genetic and clinical involvement of neurocutaneous disorders, and examines clinical management and treatment options. With the current advances in genetics, the role of precision medicine and targeted therapy play a substantial role in addressing the management of these conditions. The interconnectedness between therapeutic options highlights the importance of precision medicine in treating each disorder's unique molecular pathway. This review provides an extensive synthesis of ongoing and current therapeutics in the management of such clinically unique and challenging conditions.
Collapse
Affiliation(s)
- Ivelina Kioutchoukova
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Devon Foster
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Rajvi Thakkar
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Christopher Ciesla
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Jake Salvatore Cabassa
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Jacob Strouse
- Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (D.F.); (C.C.); (J.S.C.); (J.S.)
| | - Hayley Kurz
- College of Medicine, University of Florida, Gainsville, FL 32610, USA; (I.K.); (R.T.); (H.K.)
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Lindahl H, Svensson E, Danielsson A, Puschmann A, Svenningson P, Tesi B, Paucar M. The clinical spectrum of ataxia telangiectasia in a cohort in Sweden. Heliyon 2024; 10:e26073. [PMID: 38404774 PMCID: PMC10884802 DOI: 10.1016/j.heliyon.2024.e26073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Ataxia telangiectasia (A-T), caused by biallelic variants in the ATM gene, is a multisystemic and severe syndrome characterized by progressive ataxia, telangiectasia, hyperkinesia, immunodeficiency, increased risk of malignancy, and typically death before the age of 30. In this retrospective study we describe the phenotype of 14 pediatric and adult A-T patients evaluated at the Karolinska University Hospital in Sweden during the last 12 years. Most of the patients in this cohort were severely affected by ataxia and wheelchair use started at a median age of 9 years. One patient died before the age of 30 years, but five patients had survived beyond this age. Four patients received prophylactic immunoglobulin replacement therapy due to hypogammaglobulinemia and respiratory complications ranged from mild to moderate severity. Three patients developed type 2 diabetes in young adulthood and nine patients (64%) had a history of elevated liver function tests. Four patients were diagnosed with cancer at ages 7, 41, 47, and 49 years. All the ATM variants in these patients were previously reported as pathogenic except one, c.6040G > A, which results in a p.Glu2014Lys missense variant. With increased life expectancy, A-T complications such as diabetes type 2 and liver disease may become more common. Despite having severe neurological presentations, the A-T patients in this case series had relatively mild infectious and respiratory complications.
Collapse
Affiliation(s)
- Hannes Lindahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eva Svensson
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Danielsson
- Department of Pediatric Neurology, Sachska Children's Hospital, Stockholm, Sweden
| | - Andreas Puschmann
- Neurology, Department of Clinical Sciences Lund, Lund University, Sweden
- Skane University Hospital, Lund, Sweden
- SciLifeLab National Research Infrastructure, Sweden
| | - Per Svenningson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Paucar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Bajek A, Przewodowska D, Koziorowski D, Jędrzejowska M, Szlufik S. Cervical dystonia and no oculomotor apraxia as new manifestation of ataxia-telangiectasia-like disorder 1 - case report and review of the literature. Front Neurol 2023; 14:1243535. [PMID: 37808486 PMCID: PMC10556495 DOI: 10.3389/fneur.2023.1243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Ataxia-telangiectasia-like disorder 1 (ATLD1) is a rare neurodegenerative disorder associated with early onset ataxia and oculomotor apraxia. The genetic determination of ATLD1 is a mutation in the MRE11 gene (meiotic recombination 11 gene), which causes DNA-double strand break repair deficits. Clinical features of patients with ATLD1 resemble those of ataxia telangiectasia (AT), with slower progression and milder presentation. Main symptoms include progressive cerebellar ataxia, oculomotor apraxia, cellular hypersensitivity to ionizing radiations. Facial dyskinesia, dystonia, dysarthria have also been reported. Here we present a 45-year old woman with cervical and facial dystonia, dysarthria and ataxia, who turned out to be the first case of ATLD without oculomotor apraxia, and with dystonia as a main manifestation of the disease. She had presented those non-specific symptoms for years, before whole exome sequencing confirmed the diagnosis.
Collapse
Affiliation(s)
- Agnieszka Bajek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Przewodowska
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Maria Jędrzejowska
- Genomed Health Care Center, Warsaw, Poland
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
9
|
Sharifinejad N, Azizi G, Chavoshzadeh Z, Mahdaviani SA, Alan MS, Tavakol M, Sadri H, Nabavi M, Ebrahimi SS, Shirkani A, Vosughi Motlagh A, Safarirad M, Aghamahdi F, Nazari F, Delavari S, Jamee M, Fayyaz F, Samimisedeh P, Matani R, Esmaeili M, Yazdani R, Rezaei N, Abolhassani H. Autoimmunity in monogenic combined immune deficiencies with associated or syndromic features. Front Immunol 2022; 13:1023127. [PMID: 36544766 PMCID: PMC9760934 DOI: 10.3389/fimmu.2022.1023127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022] Open
Abstract
Background Combined immune deficiencies (CIDs) with associated or syndromic features are a highly heterogeneous subgroup of inherited immune disorders. These patients represent specific clinical complications with an increased risk of autoimmune conditions. Methods We analyzed data of monogenic patients with syndromic CIDs adopted from the Iranian inborn errors of immunity registry up to January 2022. A comprehensive comparison in terms of demographic, clinical, and immunological features was performed between patients with and without autoimmunity and also among four mutation groups with the most registered cases including ATM, STAT3 (AD-LOF), DNMT3B/ZBTB24, and WAS mutations. Results A total of 137 patients with monogenic syndromic CIDs were included. Most commonly mutated genes were the ATM [80 (58.4%)] and STAT3 (AD-LOF) [19 (13.9%)], followed by DNMT3B [11 (8%)], and WAS [11 (8%)]. More than 18% of all patients with syndromic CIDs, including most DNMT3B/ZBTB24 mutations patients, were clinically diagnosed with antibody deficiencies before genetic evaluation. Patients with ATM and WAS mutations had the latest age of onset and the lowest age of diagnosis, respectively. Autoimmune disorders were diagnosed in 24 patients at a median age of 3.5 (2.6-6.0) years, 70.6% of which were diagnosed prior to the diagnosis of immunodeficiency. Lymphoproliferation, particularly hepatosplenomegaly, was significantly higher in patients with autoimmunity (p=0.004). Syndromic CID patients with autoimmunity had significantly lower IgG levels. Hematologic autoimmunity mainly immune thrombocytopenic purpura was the most frequent autoimmunity among major groups of ATM, STAT3 (AD-LOF), DNMT3B/ZBTB24, and WAS mutations, however ATM-mutated patients present more diversified involved organs including rheumatologic, gastrointestinal and dermatologic autoimmunity. Conclusion About 18% of patients with monogenic syndromic CIDs developed autoimmunity, mainly in the form of hematological immune diseases. Autoimmunity could be an early-onset involvement with a potential diagnostic impact on suspicious cases of syndromic CIDs.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Hassan Abolhassani, ; Gholamreza Azizi,
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Homa Sadri
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sareh Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Bushehr, Iran
| | - Ahmad Vosughi Motlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Molood Safarirad
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzad Nazari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farimah Fayyaz
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rahman Matani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden,*Correspondence: Hassan Abolhassani, ; Gholamreza Azizi,
| |
Collapse
|
10
|
Nabavizadeh SH, Noeiaghdam R, Johari L, Hosseini SA, Esmaeilzadeh H, Alyasin SS. A rare case of SRD5A3-CDG in a patient with ataxia and telangiectasia: A case report. Clin Case Rep 2022; 10:e6564. [PMID: 36439385 PMCID: PMC9684675 DOI: 10.1002/ccr3.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid 5α-reductase type 3 congenital disorder of glycosylation (SRD5A3-CDG) is an extremely rare congenital disease. Common manifestations are developmental delay, intellectual disability, ophthalmological abnormalities, cerebellar abnormalities, ataxia, and hypotonia. Here, we discuss a seven-year-old boy with SRD5A3-CDG (homozygous variant c.57G>A [p.Trp19Ter]), featuring the unprecedented finding of telangiectasia.
Collapse
Affiliation(s)
- Sayyed Hesamedin Nabavizadeh
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Rafat Noeiaghdam
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Leila Johari
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | | | - Hossein Esmaeilzadeh
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Soheila Sadat Alyasin
- Allergy Research Center, Department of Pediatrics, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
11
|
Huang P, Zhang L, Tang L, Ren Y, Peng H, Xiong J, Liu L, Xu J, Xiao Y, Li J, Mao D, Liu L. Analysis of Clinical and Genetic Characterization of Three Ataxia-Telangiectasia Pedigrees With Novel ATM Gene Mutations. Front Pediatr 2022; 10:877826. [PMID: 35586824 PMCID: PMC9108171 DOI: 10.3389/fped.2022.877826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The clinical manifestations of ataxia-telangiectasia (AT) are very complex and are easily misdiagnosed and missed. The purpose of this study was to explore the clinical characteristics and genetic features of five pediatric patients with AT from three pedigrees in china. METHODS Retrospectively collected and analyzed the clinical data and genetic testing results of five AT patients diagnosed by the Whole-exome sequencing followed by Sanger sequencing. The five patients with AT were from three pedigrees, including two female patients (case 1 and case 2) in pedigree I, one male patient (case 3) in pedigree II, and two male patients (case 4 and case 5) in pedigree III. According to the United Kingdom Association for Clinical Genomic Science Best Practice Guidelines for Variants Classification in Rare Disease 2020 to grade the genetic variants. RESULTS Five patients had mainly clinical presentations including unsteady gait, dysarthria, bulbar conjunctive telangiectasia, cerebellar atrophy, intellectual disability, stunted growth, increase of alpha-fetoprotein in serum, lymphopenia. Notably, one patient with classical AT presented dystonia as the first symptom. One patient had recurrent infections, five patients had serum Immunoglobulin (Ig) A deficiency, and two patients had IgG deficiency. In three pedigrees, we observed five pathogenic variants of the ATM gene, which were c.1339C>T (p.Arg447Ter), c.7141_7151delAATGGAAAAAT (p.Asn2381GlufsTer18), c.437_440delTCAA (p.Leu146GlnfsTer6), c.2482A>T (p.Lys828Ter), and c.5495_5496+2delAAGT (p.Glu1832GlyfsTer4). Moreover, the c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT were previously unreported variants. CONCLUSIONS Pediatric patients with classical AT may present dystonia as the main manifestation, or even a first symptom, besides typical cerebellar ataxia, bulbar conjunctive telangiectasia, etc. Crucially, we also found three novel pathogenic ATM gene variants (c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT), expanding the ATM pathogenic gene mutation spectrum.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|