1
|
Kolenda T, Białas P, Guglas K, Stasiak M, Kozłowska-Masłoń J, Tylkowska K, Zapłata A, Poter P, Janiczek-Polewska M, Mantaj P, Gieremek P, Kazimierczak U, Przybyła A, Regulska K, Stanisz B, Leporowska E, Mackiewicz A, Mackiewicz J, Kazmierska J, Cybulski Z, Teresiak A. lncRNA EGOT Is the Marker of HPV Infection and a Prognostic Factor for HNSCC Patients. Biomedicines 2025; 13:798. [PMID: 40299341 PMCID: PMC12025276 DOI: 10.3390/biomedicines13040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Background: High-risk human papillomavirus (HPV) contributes to oropharyngeal cancers through mechanisms involving the deregulation of host cell functions by oncoproteins E6 and E7. Changes in the epigenome, particularly involving long non-coding RNAs (lncRNAs), are crucial for understanding HPV-related carcinogenesis. Methods: This study aimed to analyze the expression levels of lncRNAs in HPV-related head and neck squamous cell carcinoma (HNSCC) to determine their biological and clinical significance, addressing the current gap in clinically validated biomarkers for early screening and therapeutic interventions. Results: The study highlights the significant overexpression of the EGOT gene in HPV-positive HNSCC samples, suggesting its potential as a marker to distinguish between HPV-negative and HPV-positive cases. Furthermore, high EGOT expression correlates with better overall survival (OS) and indicates possible resistance to therapy, making it a valuable prognostic factor. Conclusions: These findings underscore the potential of incorporating EGOT expression analysis in clinical practice for improved patient stratification and treatment outcomes in HNSCC.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (K.G.); (K.R.); (Z.C.); (A.T.)
- Microbiology Laboratory, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland;
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.S.); (U.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Piotr Białas
- Department of Cell Biology, Poznan University of Medical Sciences, 5D Rokietnicka, 60-806 Poznan, Poland
| | - Kacper Guglas
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (K.G.); (K.R.); (Z.C.); (A.T.)
- Microbiology Laboratory, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland;
| | - Maciej Stasiak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.S.); (U.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Karina Tylkowska
- Microbiology Laboratory, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland;
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Anna Zapłata
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.Z.); (E.L.)
| | - Paulina Poter
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland;
| | - Marlena Janiczek-Polewska
- Department of Clinical Oncology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Patrycja Mantaj
- Radiation Protection Department, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
| | - Paulina Gieremek
- Departament of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka Street 3, 60-806 Poznan, Poland; (P.G.); (B.S.)
- Pharmacy, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.S.); (U.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Anna Przybyła
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.S.); (U.K.); (A.M.)
| | - Katarzyna Regulska
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (K.G.); (K.R.); (Z.C.); (A.T.)
- Pharmacy, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Beata Stanisz
- Departament of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka Street 3, 60-806 Poznan, Poland; (P.G.); (B.S.)
| | - Ewa Leporowska
- Department of Laboratory Diagnostics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland; (A.Z.); (E.L.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (M.S.); (U.K.); (A.M.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznan University of Medical Sciences, 60-512 Poznan, Poland;
| | - Joanna Kazmierska
- Radiotherapy Department II, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
| | - Zefiryn Cybulski
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (K.G.); (K.R.); (Z.C.); (A.T.)
- Microbiology Laboratory, Greater Poland Cancer Centre, Garbary Street 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (K.G.); (K.R.); (Z.C.); (A.T.)
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland;
| |
Collapse
|
2
|
Sultan S, Gorris MAJ, Martynova E, van der Woude LL, Buytenhuijs F, van Wilpe S, Verrijp K, Figdor CG, de Vries IJM, Textor J. ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging. Biol Methods Protoc 2024; 10:bpae094. [PMID: 39866377 PMCID: PMC11769680 DOI: 10.1093/biomethods/bpae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
Tissue specimens taken from primary tumors or metastases contain important information for diagnosis and treatment of cancer patients. Multiplex imaging allows in situ visualization of heterogeneous cell populations, such as immune cells, in tissue samples. Most image processing pipelines first segment cell boundaries and then measure marker expression to assign cell phenotypes. In dense tissue environments, this segmentation-first approach can be inaccurate due to segmentation errors or overlapping cells. Here, we introduce the machine-learning pipeline "ImmuNet", which identifies positions and phenotypes of cells without segmenting them. ImmuNet is easy to train: human annotators only need to click on an immune cell and score its expression of each marker-drawing a full cell outline is not required. We trained and evaluated ImmuNet on multiplex images from human tonsil, lung cancer, prostate cancer, melanoma, and bladder cancer tissue samples and found it to consistently achieve error rates below 5%-10% across tissue types, cell types, and tissue densities, outperforming a segmentation-based baseline method. Furthermore, we externally validate ImmuNet results by comparing them to flow cytometric cell count measurements from the same tissue. In summary, ImmuNet is an effective, simpler alternative to segmentation-based approaches when only cell positions and phenotypes, but not their shapes, are required for downstream analyses. Thus, ImmuNet helps researchers to analyze cell positions in multiplex tissue images more easily and accurately.
Collapse
Affiliation(s)
- Shabaz Sultan
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
| | - Mark A J Gorris
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Oncode Institute, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Evgenia Martynova
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
| | - Lieke L van der Woude
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Oncode Institute, Radboudumc, Nijmegen 6525 GA, The Netherlands
- Department of Pathology, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Franka Buytenhuijs
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
| | - Sandra van Wilpe
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Department of Medical Oncology, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Kiek Verrijp
- Oncode Institute, Radboudumc, Nijmegen 6525 GA, The Netherlands
- Department of Pathology, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | - Carl G Figdor
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Oncode Institute, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | | | - Johannes Textor
- Medical BioSciences, Radboudumc, Nijmegen 6562 GA, The Netherlands
- Data Science Group, Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
| |
Collapse
|
3
|
van der Hoorn IAE, Martynova E, Subtil B, Meek J, Verrijp K, Textor J, Flórez-Grau G, Piet B, van den Heuvel MM, de Vries IJM, Gorris MAJ. Detection of dendritic cell subsets in the tumor microenvironment by multiplex immunohistochemistry. Eur J Immunol 2024; 54:e2350616. [PMID: 37840200 DOI: 10.1002/eji.202350616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Dendritic cells (DCs) are essential in antitumor immunity. In humans, three main DC subsets are defined: two types of conventional DCs (cDC1s and cDC2s) and plasmacytoid DCs (pDCs). To study DC subsets in the tumor microenvironment (TME), it is important to correctly identify them in tumor tissues. Tumor-derived DCs are often analyzed in cell suspensions in which spatial information about DCs which can be important to determine their function within the TME is lost. Therefore, we developed the first standardized and optimized multiplex immunohistochemistry panel, simultaneously detecting cDC1s, cDC2s, and pDCs within their tissue context. We report on this panel's development, validation, and quantitative analysis. A multiplex immunohistochemistry panel consisting of CD1c, CD303, X-C motif chemokine receptor 1, CD14, CD19, a tumor marker, and DAPI was established. The ImmuNet machine learning pipeline was trained for the detection of DC subsets. The performance of ImmuNet was compared with conventional cell phenotyping software. Ultimately, frequencies of DC subsets within several tumors were defined. In conclusion, this panel provides a method to study cDC1s, cDC2s, and pDCs in the spatial context of the TME, which supports unraveling their specific roles in antitumor immunity.
Collapse
Affiliation(s)
- Iris A E van der Hoorn
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evgenia Martynova
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Beatriz Subtil
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jelena Meek
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kiek Verrijp
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes Textor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Data Science, Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Division of Immunotherapy, Oncode Institute, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Kus Ozturk S, Graham Martinez C, Sheahan K, Winter DC, Aherne S, Ryan ÉJ, van de Velde CJ, Marijnen CA, Hospers GA, Roodvoets AG, Doukas M, Mens D, Verhoef C, van der Post RS, Nagtegaal ID. Relevance of shrinkage versus fragmented response patterns in rectal cancer. Histopathology 2023; 83:870-879. [PMID: 37609761 DOI: 10.1111/his.15027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
AIMS Partial response to neoadjuvant chemoradiotherapy (CRT) presents with one of two main response patterns: shrinkage or fragmentation. This study investigated the relevance of these response patterns in rectal cancer, correlation with other response indicators, and outcome. METHODS AND RESULTS The study included a test (n = 197) and a validation cohort (n = 218) of post-CRT patients with rectal adenocarcinoma not otherwise specified and a partial response. Response patterns were scored by two independent observers using a previously developed three-step flowchart. Tumour regression grading (TRG) was established according to both the College of American Pathologists (CAP) and Dworak classifications. In both cohorts, the predominant response pattern was fragmentation (70% and 74%), and the scoring interobserver agreement was excellent (k = 0.85). Patients with a fragmented pattern presented with significantly higher pathological stage (ypTNM II-IV, 78% versus 35%; P < 0.001), less tumour regression with Dworak (P = 0.004), and CAP TRG (P = 0.005) compared to patients with a shrinkage pattern. As a predictor of prognosis, the shrinkage pattern outperformed the TRG classification and stratified patients better in overall (fragmented pattern, hazard ratio [HR] 2.04, 95% confidence interval [CI] 1.19-3.50, P = 0.008) and disease-free survival (DFS; fragmented pattern, HR 2.50, 95% CI 1.23-5.10, P = 0.011) in the combined cohorts. The multivariable regression analyses revealed pathological stage as the only independent predictor of DFS. CONCLUSIONS The heterogeneous nature of tumour response following CRT is reflected in fragmentation and shrinkage. In rectal cancer there is a predominance of the fragmented pattern, which is associated with advanced stage and less tumour regression. While not independently associated with survival, these reproducible patterns give insights into the biology of tumour response.
Collapse
Affiliation(s)
- Sonay Kus Ozturk
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Kieran Sheahan
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Desmond C Winter
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Susan Aherne
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Éanna J Ryan
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | | | - Corrie Am Marijnen
- Department of Radiotherapy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Geke Ap Hospers
- Department of Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Annet Gh Roodvoets
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - David Mens
- Department of Surgical Oncology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Qiu C, Lin Q, Ji S, Han C, Yang Q. Expression of IDO1 in Tumor Microenvironment Significantly Predicts the Risk of Recurrence/Distant Metastasis for Patients With Esophageal Squamous Cell Carcinoma. J Transl Med 2023; 103:100263. [PMID: 37839637 DOI: 10.1016/j.labinv.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
In this study, we aimed to explore immune markers predicting locoregional recurrence/distant metastasis (R/M) for patients with esophageal squamous cell carcinoma (ESCC) post-surgical intervention by using a novel high-throughput spatial tool to quantify multiple immune proteins expressed in ESCC and lymphocytes in tumor microenvironment (TME-L). First, formalin-fixed paraffin-embedded tissues from surgical patients with ESCC (n = 94) were constructed on a microarray, which was then divided into discovery (n = 36) and validation cohorts (n = 58). Using a newly developed GeoMx digital spatial profiling tool, 31 immune proteins in paired ESCC and TME-L, morphologically segmented by PANCK and CD45, respectively, from the discovery cohort were quantified, releasing 2,232 variables. Next, the correlation matrix was analyzed using the Corrplot package in R Studio, resulting in 6 closely correlated clusters. The Least Absolute Shrinkage and Selection Operator regression scoring model predictive of R/M risk with superior specificity was successfully established based on the 3 following hierarchically clustered immune proteins: ARG1 in ESCC/PANCK+, STING, and IDO1 in TME-L/CD45+. Moreover, the expression of IDO1 in TME-L, rather than in ESCC, significantly predicted the R/M risk score with an area under curve of 0.9598. In addition, its correlation with R/M status was further validated by dual immunohistochemistry staining of IDO1 and CD45 in discovery and validation cohorts. Above all, our findings not only provide a more accurate scoring approach based on quantitative immune proteins for the prediction of R/M risk, but also propose that IDO1 in TME-L potentially plays a driving role in mediating R/M in ESCC.
Collapse
Affiliation(s)
- Cen Qiu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saiyan Ji
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Han
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyuan Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
7
|
Haddad TS, van den Dobbelsteen L, Öztürk SK, Geene R, Nijman IJ, Verrijp K, Jamieson NB, Wood C, van Vliet S, Reuvers L, Achouiti S, Rutgers N, Brouwer N, Simmer F, Zlobec I, Lugli A, Nagtegaal ID. Pseudobudding: ruptured glands do not represent true tumor buds. J Pathol 2023; 261:19-27. [PMID: 37403270 DOI: 10.1002/path.6146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 07/06/2023]
Abstract
Tumor budding (TB) is a strong biomarker of poor prognosis in colorectal cancer and other solid cancers. TB is defined as isolated single cancer cells or clusters of up to four cancer cells at the invasive tumor front. In areas with a large inflammatory response at the invasive front, single cells and cell clusters surrounding fragmented glands are observed appearing like TB. Occurrence of these small groups is referred to as pseudobudding (PsB), which arises due to external influences such as inflammation and glandular disruption. Using a combination of orthogonal approaches, we show that there are clear biological differences between TB and PsB. TB is representative of active invasion by presenting features of epithelial-mesenchymal transition and exhibiting increased deposition of extracellular matrix within the surrounding tumor microenvironment (TME), whereas PsB represents a reactive response to heavy inflammation where increased levels of granulocytes within the surrounding TME are observed. Our study provides evidence that areas with a strong inflammatory reaction should be avoided in the routine diagnostic assessment of TB. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Sonay K Öztürk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robin Geene
- USEQ, CMM, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isaäc J Nijman
- USEQ, CMM, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kiek Verrijp
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nigel B Jamieson
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
| | - Colin Wood
- University of Glasgow, Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, Glasgow, UK
| | | | - Luuk Reuvers
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Soumia Achouiti
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Natasja Rutgers
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nelleke Brouwer
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Simmer
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inti Zlobec
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Alessandro Lugli
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
8
|
Iliadi C, Verset L, Bouchart C, Martinive P, Van Gestel D, Krayem M. The current understanding of the immune landscape relative to radiotherapy across tumor types. Front Immunol 2023; 14:1148692. [PMID: 37006319 PMCID: PMC10060828 DOI: 10.3389/fimmu.2023.1148692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Collapse
Affiliation(s)
- Chrysanthi Iliadi
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|