1
|
Ngoufack Jagni Semengue E, Takou D, Potesta M, Ndjeyep Djupsa SC, Montesano C, Chenwi CA, Beloumou G, Nka AD, Kengni Ngueko AM, Molimbou E, Etame NK, Gouissi Anguechia DH, Mundo Nayang AR, Tueguem PP, Ndomgue T, Tambe Ayuk Ngwese D, Moko Fotso LG, Tommo Tchouaket CM, Ka'e AC, Fainguem N, Abega Abega CA, Mandeng N, Epee E, Esso L, Etoundi Mballa G, Santoro MM, Z-K Bissek AC, Otokoye Otshudiema J, Alteri C, Boum Ii Y, Marcelin AG, Ceccherini-Silberstein F, Ndjolo A, Perno CF, Kaseya J, Colizzi V, Ndembi N, Fokam J. Disparities in anti-SARS-CoV-2 reactivity according to vaccines administered in the era of omicron in Cameroon: Lessons for future outbreak response. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004312. [PMID: 40106487 PMCID: PMC11922206 DOI: 10.1371/journal.pgph.0004312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
With the advent of COVID-19, anti-SARS-CoV-2 vaccines were a global health priority, but evidence on their significance within tropical settings remained limited. We sought to assess the distribution of anti-SARS-CoV-2 antibodies according to vaccine status and types of vaccines administered in Cameroon during Omicron waves. A community based cross-sectional sero-survey was conducted from February-15 through July-31 2022 among individuals tested for COVID-19 in Yaoundé-Cameroon. Sociodemographic data were collected from participants. Anti-SARS-CoV-2 antibodies (both IgG and IgM) were tested on plasma and statistical analyses were performed wherever appropriate. Logistic regression was done with p<0.05 considered statistically significant. Overall, 2449 participants were enrolled: median-age was 40 [31-49], 56.4% (1382/2449) men, 2.2% (54/2449) with flu-like symptoms and 19.6% (481/2449) reporting previous SARS-CoV-2 positivity. Regarding COVID-19 vaccination, 67.5% (1652/2449) had received at least one dose, 55.0% (909/1652) two-dose series and 37.1% (613/1652) received additional booster doses. Median duration from vaccination to phlebotomy was 5 [4-9] months. Seroprevalence of anti-SARS-CoV-2 antibodies was 81.1% (1987/2449). Following logistic regression, vaccine status (aOR=1.95), booster doses (aOR=1.36), post-vaccination time (≤5 months; aOR=1.64), Pfizer (aOR=2.07) and Moderna (aOR=1.52) vaccines, were all associated with a high prevalence of anti-SARS-CoV-2 antibodies (all p<0.05). This high seroprevalence of anti-SARS-CoV-2 antibodies suggests a certain degree of immunity/protection at community-level in Cameroon during Omicron waves, with Pfizer and Moderna inducing greater immunogenicity. However, rapid antibody waning (~5 months) calls for vaccine updates with novel variants (arising from a rapidly evolving virus) that could compromise already acquired immunity.
Collapse
Affiliation(s)
| | - Desire Takou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Marina Potesta
- Department of Biology, Faculty of Sciences, University of Rome "Tor Vergata", Rome, Italy
| | | | - Carla Montesano
- Department of Biology, Faculty of Sciences, University of Rome "Tor Vergata", Rome, Italy
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | - Collins Ambes Chenwi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Grace Beloumou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Alex Durand Nka
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Aurelie Minelle Kengni Ngueko
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Evariste Molimbou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Naomi-Karell Etame
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Davy-Hyacinthe Gouissi Anguechia
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Audrey Rachel Mundo Nayang
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Pamela Patricia Tueguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Therese Ndomgue
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Biology, Faculty of Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Derrick Tambe Ayuk Ngwese
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Larissa Gaëlle Moko Fotso
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Carlos Michel Tommo Tchouaket
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Aude Christelle Ka'e
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Nadine Fainguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Cyrille Alain Abega Abega
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Nadia Mandeng
- Faculty of Health Sciences, University of Bamenda, Bamenda, Cameroon
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Emilienne Epee
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Linda Esso
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Georges Etoundi Mballa
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Maria Mercedes Santoro
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - John Otokoye Otshudiema
- COVID-19 Incident Management Team, World Health Organization, Country Office - Yaoundé, Yaoundé, Cameroon
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Yap Boum Ii
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | | | | | - Alexis Ndjolo
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Carlo-Federico Perno
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Jean Kaseya
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | - Nicaise Ndembi
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
- Institute of Human Virology, University of Maryland School of Medicine, College Park, Maryland, United States of America
| | - Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
| |
Collapse
|
2
|
Fokam J, Takou D, Semengue ENJ, Molimbou E, Chenwi Ambe C, Durand Nka A, Ndjeyep SD, Beloumou GA, Ka'e CA, Gouissi Anguechia DH, Mundo Nayang AR, Moko Fotso LG, Kengni Ngueko AM, Etame NK, Tueguem PP, Tommo Tchouaket CM, Fainguem N, Abega Abega C, Abba A, Tambe Ayuk Ngwese D, Djubgang Djoukwe R, Akenji B, Okomo Assoumou MC, Mandeng N, Esso L, Cappelli G, Shang J, Ndongmo C, Etoundi Mballa GA, Ndembi N, Colizzi V, Perno CF, Ndjolo A. Performance characteristics of INDICAID antigen rapid diagnostic test on SARS-CoV-2 samples during the omicron wave in Cameroon. Heliyon 2024; 10:e29937. [PMID: 38694118 PMCID: PMC11058880 DOI: 10.1016/j.heliyon.2024.e29937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Background WHO recommends the use of COVID-19 antigen rapid diagnostic tests (Ag-RDT) with at least 80 % sensitivity and 97 % specificity. In the era of Omicron variants, we sought to ascertain the performance of the INDICAID™ Ag-RDT compared to real-time PCR (RT-PCR) as the gold standard. Methods A laboratory-based study was conducted among consenting individuals tested for COVID-19 at the virology laboratory of the Chantal BIYA International Reference Centre, Yaoundé-Cameron. The samples were processed by INDICAID™ Ag-RDT and DaAn Gene real-time PCR according to the manufacturer's instructions, and PCR-results were interpreted as per cycle thresholds (CT). The sensitivity, specificity, positive and negative predictive values (PPV and NVP) of INDICAID™ Ag-RDT were evaluated according to PCR CT-values. Results A total of 565 nasopharyngeal swabs were collected from participants (median age [IQR]: 40 [31-75]; M/F sex-ratio was 1.2 and 380 were vaccinated). Following PCR, overall COVID-19 positivity was 5.66 %. For CT < 37, INDICAID™ Ag-RDT sensitivity was 21.9 % (95%CI: [8.3-39.9]), specificity 100 % (95%CI: [99.3-100]); PPV 100 % (95%CI: [59.0-100]), NPV 95.5 % (95%CI: [93.4-97.1]) and kappa = 0.34 (95%CI: [0.19-0.35]). For CT < 25, sensitivity was 100 % (95%CI: [47.8-100.0]), specificity 99.6 % (95%CI: [98.7-99.9]); PPV 94.4 % (95%CI: [51.7-100]), NPV 100 % (95%CI: [99.3-100]) and kappa = 0.83 (95%CI: [0.6-1.0]). COVID-19 sequences generated were all Omicron BA.1 subvariants. Conclusion For patients infected with high viral loads (CT < 25), INDICAID™ Ag-RDT has high intrinsic (sensitivity and specificity) and extrinsic (predictive values) performances for COVID-19 diagnosis. Due to its simplicity and short turnaround time, INDICAID™ Ag-RDT is, therefore a reliable tool to prevent the spread of COVID-19 at community level in the current era of Omicron subvariants.
Collapse
Affiliation(s)
- Joseph Fokam
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Désiré Takou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | | | - Evariste Molimbou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | - Collins Chenwi Ambe
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Alex Durand Nka
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Sandrine Djupsa Ndjeyep
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Grace Angong Beloumou
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Christelle Aude Ka'e
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Davy-Hyacinthe Gouissi Anguechia
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Audrey Rachel Mundo Nayang
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Larissa Gaëlle Moko Fotso
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Aurelie Minelle Kengni Ngueko
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Naomi-Karell Etame
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Pamela Patricia Tueguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Carlos Michel Tommo Tchouaket
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, Yaoundé, Cameroon
| | - Nadine Fainguem
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Cyrille Abega Abega
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
| | - Aissatou Abba
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Laboratory Department, Garoua Regional Health Centre, Garoua, Cameroon
| | - Derrick Tambe Ayuk Ngwese
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Rina Djubgang Djoukwe
- Directorate for Pharmacy, Drug and Laboratory, Ministry of Public Health, Yaounde, Cameroon
| | - Blaise Akenji
- National Public Health Laboratory, Yaoundé, Cameroon
| | - Marie-Claire Okomo Assoumou
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
- National Public Health Laboratory, Yaoundé, Cameroon
| | - Nadia Mandeng
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Faculty of Health Sciences, University of Bamenda, Bamenda, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Linda Esso
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Giulia Cappelli
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- National Research Council, Rome, Italy
| | - Judith Shang
- United States Centres for Disease Control and Prevention, Country Office, Yaoundé, Cameroon
| | - Clement Ndongmo
- United States Centres for Disease Control and Prevention, Country Office, Yaoundé, Cameroon
| | - Georges Alain Etoundi Mballa
- National Public Health Emergency Operations Coordination Centre, Ministry of Public Health, Yaoundé, Cameroon
- Department of Disease, Epidemic and Pandemic Control, Ministry of Public Health, Yaounde, Cameroon
| | - Nicaise Ndembi
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - Vittorio Colizzi
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Department of Experimental Medicine, Faculty of Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- Faculty of Science and Technology, Evangelic University of Cameroon, Bandjoun, Cameroon
| | | | - Alexis Ndjolo
- Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
3
|
Du P, Lam WC, Leung C, Li H, Lyu Z, Yuen CS, Cheung CH, Lam TF, Bian Z, Zhong L. Efficacy and safety of Chinese herbal medicine to prevent and treat COVID-19 household close contacts in Hong Kong: an open-label, randomized controlled trial. Front Immunol 2024; 15:1359331. [PMID: 38799438 PMCID: PMC11116634 DOI: 10.3389/fimmu.2024.1359331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES To evaluate the efficacy and safety of CHM in the prevention of COVID-19 infection and treatment for COVID-19 related symptoms. DESIGN Prospective open-label randomized controlled trial. SETTING Participants' home in Hong Kong. PARTICIPANTS Participants who had household close contact with COVID-19-infected family members. INTERVENTIONS Close contacts were stratified into 4 groups (cohort A, B, C, D) based on symptoms and infection status and were randomized in 4:1 ratio to receive CHM granules (9g/sachet, two times daily) or blank control for 7 days with 2 weeks of follow-up. MAIN OUTCOME MEASURES The primary outcome measure was the rate of positive nucleic acid tests. Secondary outcomes were the proportion of developed COVID-19 related symptoms and adverse events during the whole 3-week study period. Subgroup analysis was used to evaluate demographic factors associated with positive infection rates. RESULTS A total of 2163 contacts were enrolled and randomly assigned to the CHM group (1720 contacts) and blank control (443 contacts) group. During the 21 days, the rate of PCR-positive cases in cohort A was markedly lower in the CHM group (3.6%) compared to the control group (7.0%) (P=0.036). Overall, the rate of infection in the CHM group was significantly lower than that in the control group (10.69% vs. 6.03%; RR 0.56, 95% CI 0.39-0.82) after 7-day treatment. No serious adverse events were reported during the medication period. CONCLUSION The preliminary findings indicate that CHM may be effective and safe in preventing COVID-19. Future double-blind, randomized controlled trials and long-term follow-up are needed to fully evaluate the efficacy of CHM in a larger contact population. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT05269511.
Collapse
Affiliation(s)
- Peipei Du
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Wai Ching Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Choryin Leung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Huijuan Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zipan Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chun Sum Yuen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Chun Hoi Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Tsz Fung Lam
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Linda Zhong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Biomedical Sciences and Chinese Medicine, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Walmsley S, Nabipoor M, Lovblom LE, Ravindran R, Colwill K, McGeer A, Dayam RM, Manase D, Gingras AC, on behalf of the STOPCoV Team. Predictors of Breakthrough SARS-CoV-2 Infection after Vaccination. Vaccines (Basel) 2023; 12:36. [PMID: 38250849 PMCID: PMC10820583 DOI: 10.3390/vaccines12010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The initial two-dose vaccine series and subsequent booster vaccine doses have been effective in modulating SARS-CoV-2 disease severity and death but do not completely prevent infection. The correlates of infection despite vaccination continue to be under investigation. In this prospective decentralized study (n = 1286) comparing antibody responses in an older- (≥70 years) to a younger-aged cohort (aged 30-50 years), we explored the correlates of breakthrough infection in 983 eligible subjects. Participants self-reported data on initial vaccine series, subsequent booster doses and COVID-19 infections in an online portal and provided self-collected dried blood spots for antibody testing by ELISA. Multivariable survival analysis explored the correlates of breakthrough infection. An association between higher antibody levels and protection from breakthrough infection observed during the Delta and Omicron BA.1/2 waves of infection no longer existed during the Omicron BA.4/5 wave. The older-aged cohort was less likely to have a breakthrough infection at all time-points. Receipt of an original/Omicron vaccine and the presence of hybrid immunity were associated with protection of infection during the later Omicron BA.4/5 and XBB waves. We were unable to determine a threshold antibody to define protection from infection or to guide vaccine booster schedules.
Collapse
Affiliation(s)
- Sharon Walmsley
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
- Department of Medicine, University of Toronto, Toronto, ON M5S1A1, Canada
| | - Majid Nabipoor
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Leif Erik Lovblom
- Biostatistics Department, University Health Network, Toronto, ON M5G1L7, Canada; (M.N.); (L.E.L.)
| | - Rizani Ravindran
- Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Alison McGeer
- Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada;
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
| | - Dorin Manase
- DATA Team, University Health Network, Toronto, ON M5G1L7, Canada;
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G1X5, Canada; (K.C.); (R.M.D.); (A.-C.G.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A1, Canada
| | | |
Collapse
|
5
|
Akhtar M, Islam MR, Khaton F, Soltana UH, Jafrin SA, Rahman SIA, Tauheed I, Ahmed T, Khan II, Akter A, Khan ZH, Islam MT, Khanam F, Biswas PK, Ahmmed F, Ahmed S, Rashid MM, Hossain MZ, Alam AN, Alamgir ASM, Rahman M, Ryan ET, Harris JB, LaRocque RC, Flora MS, Chowdhury F, Khan AI, Banu S, Shirin T, Bhuiyan TR, Qadri F. Appearance of tolerance-induction and non-inflammatory SARS-CoV-2 spike-specific IgG4 antibodies after COVID-19 booster vaccinations. Front Immunol 2023; 14:1309997. [PMID: 38173725 PMCID: PMC10763240 DOI: 10.3389/fimmu.2023.1309997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Background Understanding the characteristics of the humoral immune responses following COVID-19 vaccinations is crucial for refining vaccination strategies and predicting immune responses to emerging SARS-CoV-2 variants. Methods A longitudinal analysis of SARS-CoV-2 spike receptor binding domain (RBD) specific IgG antibody responses, encompassing IgG subclasses IgG1, IgG2, IgG3, and IgG4 was performed. Participants received four mRNA vaccine doses (group 1; n=10) or two ChAdOx1 nCoV-19 and two mRNA booster doses (group 2; n=19) in Bangladesh over two years. Results Findings demonstrate robust IgG responses after primary Covishield or mRNA doses; declining to baseline within six months. First mRNA booster restored and surpassed primary IgG responses but waned after six months. Surprisingly, a second mRNA booster did not increase IgG levels further. Comprehensive IgG subclass analysis showed primary Covishield/mRNA vaccination generated predominantly IgG1 responses with limited IgG2/IgG3, Remarkably, IgG4 responses exhibited a distinct pattern. IgG4 remained undetectable initially but increased extensively six months after the second mRNA dose, eventually replacing IgG1 after the 3rd/4th mRNA doses. Conversely, initial Covishield recipients lack IgG4, surged post-second mRNA booster. Notably, mRNA-vaccinated individuals displayed earlier, robust IgG4 levels post first mRNA booster versus Covishield counterparts. IgG1 to IgG4 ratios decreased with increasing doses, most pronounced with four mRNA doses. This study highlights IgG response kinetics, influenced by vaccine type and doses, impacting immunological tolerance and IgG4 induction, shaping future vaccination strategies. Conclusions This study highlights the dynamics of IgG responses dependent on vaccine type and number of doses, leading to immunological tolerance and IgG4 induction, and shaping future vaccination strategies.
Collapse
Affiliation(s)
- Marjahan Akhtar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Rashedul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fatema Khaton
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Umma Hany Soltana
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Syeda Anoushka Jafrin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sadia Isfat Ara Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tasnuva Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ishtiakul Islam Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zahid Hasan Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqul Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Farhana Khanam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Prasanta Kumar Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Faisal Ahmmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shakeel Ahmed
- Bangladesh Institute of Tropical & Infectious Diseases, Chittagong, Bangladesh
| | - Md. Mamunur Rashid
- Bangladesh Institute of Tropical & Infectious Diseases, Chittagong, Bangladesh
| | - Md. Zakir Hossain
- Bangladesh Institute of Tropical & Infectious Diseases, Chittagong, Bangladesh
| | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - A. S. M. Alamgir
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mahbubur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | | | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
6
|
Chen Q, Chia A, Hang SK, Lim A, Koh WK, Peng Y, Gao F, Chen J, Ho Z, Wai LE, Kunasegaran K, Tan AT, Le Bert N, Loh CY, Goh YS, Renia L, Dong T, Vathsala A, Bertoletti A. Engineering immunosuppressive drug-resistant armored (IDRA) SARS-CoV-2 T cells for cell therapy. Cell Mol Immunol 2023; 20:1300-1312. [PMID: 37666955 PMCID: PMC10616128 DOI: 10.1038/s41423-023-01080-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Solid organ transplant (SOT) recipients receive immunosuppressive drugs (ISDs) and are susceptible to developing severe COVID-19. Here, we analyze the Spike-specific T-cell response after 3 doses of mRNA vaccine in a group of SOT patients (n = 136) treated with different ISDs. We demonstrate that a combination of a calcineurin inhibitor (CNI), mycophenolate mofetil (MMF), and prednisone (Pred) treatment regimen strongly suppressed the mRNA vaccine-induced Spike-specific cellular response. Such defects have clinical consequences because the magnitude of vaccine-induced Spike-specific T cells was directly proportional to the ability of SOT patients to rapidly clear SARS-CoV-2 after breakthrough infection. To then compensate for the T-cell defects induced by immunosuppressive treatment and to develop an alternative therapeutic strategy for SOT patients, we describe production of 6 distinct SARS-CoV-2 epitope-specific ISD-resistant T-cell receptor (TCR)-T cells engineered using the mRNA electroporation method with reactivity minimally affected by mutations occurring in Beta, Delta, Gamma, and Omicron variants. This strategy with transient expression characteristics marks an improvement in the immunotherapeutic field and provides an attractive and novel therapeutic possibility for immunosuppressed COVID-19 patients.
Collapse
Affiliation(s)
- Qi Chen
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Adeline Chia
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Shou Kit Hang
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Amy Lim
- National University Centre for Organ Transplantation, National University Hospital, Singapore, Singapore
| | - Wee Kun Koh
- National University Centre for Organ Transplantation, National University Hospital, Singapore, Singapore
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Fei Gao
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jili Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Zack Ho
- Lion TCR Pte Ltd, Singapore, Singapore
| | - Lu-En Wai
- Lion TCR Pte Ltd, Singapore, Singapore
| | - Kamini Kunasegaran
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Anthony Tanoto Tan
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nina Le Bert
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore
| | - Chiew Yee Loh
- A*STAR ID labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yun Shan Goh
- A*STAR ID labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Laurent Renia
- A*STAR ID labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anantharaman Vathsala
- National University Centre for Organ Transplantation, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Antonio Bertoletti
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.
- Singapore Immunology Network, A*STAR, Singapore, Singapore.
| |
Collapse
|
7
|
Wee LE, Pang D, Chiew C, Tan J, Lee V, Ong B, Lye DC, Tan KB. Long-term Real-world Protection Afforded by Third mRNA Doses Against Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 Infections, Coronavirus Disease 19-related Emergency Attendances and Hospitalizations Amongst Older Singaporeans During an Omicron XBB Wave. Clin Infect Dis 2023; 77:1111-1119. [PMID: 37280047 DOI: 10.1093/cid/ciad345] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Literature on long-term real-world vaccine effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) booster vaccines (up to and beyond 360 days) is scarce. We report estimates of protection against symptomatic infection, emergency department (ED) attendances and hospitalizations up to and beyond 360 days post-receipt of booster messenger RNA (mRNA) vaccines among Singaporeans aged ≥60 years during an Omicron XBB wave. METHODS We conducted a population-based cohort study including all Singaporeans aged ≥60 years with no documented prior SARS-CoV-2 infection who had previously received ≥3 doses of mRNA vaccines (BNT162b2/mRNA-1273), over a 4-month period during transmission of Omicron XBB. We reported the adjusted incidence-rate-ratio (IRR) for symptomatic infections, ED attendances and hospitalizations at different time-intervals from both first and second boosters, using Poisson regression; with the reference group being those who received their first booster 90 to 179 days prior. RESULTS In total, 506 856 boosted adults were included, contributing 55 846 165 person-days of observation. Protection against symptomatic infections among those who received a third vaccine dose (first booster) waned after 180 days with increasing adjusted IRRs; however, protection against ED attendances and hospitalizations held up, with comparable adjusted IRRs with increasing time from third vaccine doses (≥360 days from third dose: adjusted IRR [ED attendances] = 0.73, 95% confidence interval [CI] = .62-.85; adjusted IRR [hospitalization] = 0.58, 95% CI = .49-.70). CONCLUSIONS Our results highlight the benefit of a booster dose in reducing ED attendances and hospitalizations amongst older adults aged ≥60 years with no documented prior SARS-CoV-2 infection, during an Omicron XBB wave; up to and beyond 360 days post-booster. A second booster provided further reduction.
Collapse
Affiliation(s)
- Liang En Wee
- National Centre for Infectious Diseases, Singapore, Singapore
- Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | | | - Calvin Chiew
- National Centre for Infectious Diseases, Singapore, Singapore
- Ministry of Health, Singapore, Singapore
| | - Janice Tan
- Ministry of Health, Singapore, Singapore
| | - Vernon Lee
- Ministry of Health, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Benjamin Ong
- Ministry of Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kelvin Bryan Tan
- Ministry of Health, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Fryer HA, Hartley GE, Edwards ESJ, Varese N, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, van Zelm MC. COVID-19 Adenoviral Vector Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize Omicron BA.2 and BA.5 Variants. J Clin Immunol 2023; 43:1506-1518. [PMID: 37322095 PMCID: PMC10499924 DOI: 10.1007/s10875-023-01527-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.
Collapse
Affiliation(s)
- Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Nirupama Varese
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Augello M, Bono V, Rovito R, Tincati C, d'Arminio Monforte A, Marchetti G. Six-month immune responses to mRNA-1273 vaccine in combination antiretroviral therapy treated late presenter people with HIV according to previous SARS-CoV-2 infection. AIDS 2023; 37:1503-1517. [PMID: 37199415 PMCID: PMC10355808 DOI: 10.1097/qad.0000000000003585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in people with HIV (PWH) with a history of late presentation (LP) and their durability have not been fully characterized. DESIGN In this prospective, longitudinal study, we sought to assess T-cell and humoral responses to SARS-CoV-2 mRNA vaccination up to 6 months in LP-PWH on effective combination antiretroviral therapy (cART) as compared to HIV-negative healthcare workers (HCWs), and to evaluate whether previous SARS-CoV-2 infection modulates immune responses to vaccine. METHODS SARS-CoV-2 spike (S)-specific T-cell responses were determined by two complementary flow cytometry methodologies, namely activation-induced marker (AIM) assay and intracellular cytokine staining (ICS), whereas humoral responses were measured by ELISA [anti-receptor binding domain (RBD) antibodies) and receptor-binding inhibition assay (spike-ACE2 binding inhibition activity), before vaccination (T0), 1 month (T1) and 5 months (T2) after the second dose. RESULTS LP-PWH showed at T1 and T2 significant increase of: S-specific memory and circulating T follicular helper (cTfh) CD4 + T cells; polyfunctional Th1-cytokine (IFN-γ, TNF-α, IL-2)- and Th2-cytokine (IL-4)-producing S-specific CD4 + T cells; anti-RBD antibodies and spike-ACE2 binding inhibition activity. Immune responses to vaccine in LP-PWH were not inferior to HCWs overall, yet S-specific CD8 + T cells and spike-ACE2 binding inhibition activity correlated negatively with markers of immune recovery on cART. Interestingly, natural SARS-CoV-2 infection, while able to sustain S-specific antibody response, seems less efficacious in inducing a T-cell memory and in boosting immune responses to vaccine, possibly reflecting an enduring partial immunodeficiency. CONCLUSIONS Altogether, these findings support the need for additional vaccine doses in PWH with a history of advanced immune depression and poor immune recovery on effective cART.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Verheul MK, Nijhof KH, de Zeeuw-Brouwer ML, Duijm G, Ten Hulscher H, de Rond L, Beckers L, Eggink D, van Tol S, Reimerink J, Boer M, van Beek J, Rots N, van Binnendijk R, Buisman AM. Booster Immunization Improves Memory B Cell Responses in Older Adults Unresponsive to Primary SARS-CoV-2 Immunization. Vaccines (Basel) 2023; 11:1196. [PMID: 37515012 PMCID: PMC10384172 DOI: 10.3390/vaccines11071196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.
Collapse
Affiliation(s)
- Marije K Verheul
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Kim H Nijhof
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Geraly Duijm
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Hinke Ten Hulscher
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lisa Beckers
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Dirk Eggink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sophie van Tol
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Johan Reimerink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi Boer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
11
|
Gómez de la Torre JC, Hueda-Zavaleta M, Cáceres-DelAguila JA, Muro-Rojo C, Cruz-Escurra NDL, Benítes-Zapata VA. Humoral Response after a Fourth Dose with mRNA-1273 in Healthcare Workers with and without a History of SARS-CoV-2 Infection and Previously Vaccinated with Two Doses of BBIBP-CorV Plus BNT162b2 Vaccine. Vaccines (Basel) 2023; 11:vaccines11050894. [PMID: 37242998 DOI: 10.3390/vaccines11050894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 05/28/2023] Open
Abstract
There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a prospective cohort study to assess the humoral response using Elecsys® anti-SARS-CoV-2 S (anti-S-RBD) of 452 healthcare workers (HCWs) in a private laboratory in Lima, Peru at 21, 120, 210, and 300 days after a third dose with a BNT162b2 heterologous booster in HCW previously immunized with two doses of BBIBP-CorV, depending on whether or not they received a fourth dose with the mRNA1273 heterologous vaccine and on the history of previous SARS infection -CoV-2. Of the 452 HCWs, 204 (45.13%) were previously infected (PI) with SARS-CoV-2, and 215 (47.57%) received a fourth dose with a heterologous mRNA-1273 booster. A total of 100% of HCWs presented positive anti-S-RBD 300 days after the third dose. In HCWs receiving a fourth dose, GMTs 2.3 and 1.6 times higher than controls were observed 30 and 120 days after the fourth dose. No statistically significant differences in anti-S-RBD titers were observed in those HCWs PI and NPI during the follow-up period. We observed that HCWs who received a fourth dose with the mRNA1273 and those previously infected after the third dose with BNT162b2 (during the Omicron wave) presented higher anti-S-RBD titers (5734 and 3428 U/mL, respectively). Further studies are required to determine whether patients infected after the third dose need a fourth dose.
Collapse
Affiliation(s)
| | - Miguel Hueda-Zavaleta
- Hospital III Daniel Alcides Carrión, Essalud, Calana Road, Km 6.5, Calana, Tacna 23000, Peru
- Facultad de Ciencias de la Salud, Universidad Privada de Tacna, Bolognesi Avenue Number 1177, Tacna 23003, Peru
| | | | - Cecilia Muro-Rojo
- Roe Clinical Laboratory, Dos de Mayo Avenue, 1741, San Isidro, Lima 15076, Peru
| | | | - Vicente A Benítes-Zapata
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, La Fontana Avenue 550, La Molina, Lima 15024, Peru
| |
Collapse
|
12
|
Acedera ML, Sirichokchatchawan W, Brimson S, Prasansuklab A. Age, comorbidities, c-reactive protein and procalcitonin as predictors of severity in confirmed COVID-19 patients in the Philippines. Heliyon 2023; 9:e15233. [PMID: 37035364 PMCID: PMC10074734 DOI: 10.1016/j.heliyon.2023.e15233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Background The Coronavirus Disease 2019 (COVID-19) pandemic has been affecting people globally, and the Philippines is one of the countries greatly struck by the virus. The continued rise of new positive cases has drawn attention to the urgent need for healthcare management to cope with this challenge. Severity prediction could help improve medical decision-making and optimise the patient's treatment plan with a good clinical outcome. This study aimed to identify the determinants of COVID-19 disease severity. Methods Demographic characteristics and laboratory findings were collected from electronic medical records and paper forms of all confirmed COVID-19 cases reported by the University of Perpetual Help DALTA Medical Center between the September 1, 2020 and the October 31, 2021. We performed statistical analyses and interpretation of data to compare severe and non-severe groups. Results 5,396 confirmed cases were examined. Most of the severe cases were elderly, male, had blood type A, and with comorbidities. Cycle threshold (Ct) values were lower in the severe group. Most patients had higher-than-normal levels of all blood parameters except platelet, white blood cell (WBC), neutrophil, and lymphocyte counts. Age, sex, ABO blood groups, comorbidities, open reading frame 1 ab (ORF1ab) and nucleocapsid (N) gene Ct values, ferritin, C-reactive protein (CRP), procalcitonin (PCT), D-dimer, white blood cell (WBC) count, neutrophil count, and lymphocyte count were significantly associated with disease severity. In multivariate analysis, age groups >60 and 30-59 years, presence of comorbidities, CRP level >5 ng/mL, and PCT >0.05 ng/mL were identified as disease severity predictors. Conclusions Based on our results, age, comorbidities, CRP, and PCT level may be utilised as primary assessment factors for possible hospital admission and close monitoring upon testing. Early detection of these risk factors may provide strategic interventions that help reduce mortality, hospital admissions, and more expensive and extensive treatments.
Collapse
Affiliation(s)
- Marjonel L. Acedera
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
13
|
Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int J Mol Sci 2023; 24:ijms24065944. [PMID: 36983017 PMCID: PMC10051235 DOI: 10.3390/ijms24065944] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer-BioNTech and Moderna developed updated bivalent vaccines-Comirnaty and Spikevax-to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.
Collapse
Affiliation(s)
- Miriam Echaide
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Luisa Chocarro de Erauso
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| |
Collapse
|
14
|
Cavalcante TF, Barboza WDS, Martins-Filho PR. The vaccination status of COVID-19 hospitalized patients during the Omicron BQ.1.1 wave in Northeast Brazil suggests the need for a fifth booster dose in the elderly, with a time since the last dose of more than 6 months. EXCLI JOURNAL 2023; 22:169-172. [PMID: 36998702 PMCID: PMC10043451 DOI: 10.17179/excli2023-5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Affiliation(s)
- Taise Ferreira Cavalcante
- Investigative Pathology Laboratory, Federal University of Sergipe, Aracaju, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Aracaju City Hall, Municipal Health Department, Aracaju, Brazil
| | | | - Paulo Ricardo Martins-Filho
- Investigative Pathology Laboratory, Federal University of Sergipe, Aracaju, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- *To whom correspondence should be addressed: Paulo Ricardo Martins-Filho, Universidade Federal de Sergipe, Hospital Universitário, Laboratório de Patologia Investigativa, Rua Cláudio Batista, s/n. Sanatório, Aracaju, Sergipe, Brasil, CEP: 49060-100, E-mail:
| |
Collapse
|
15
|
Gao R, Zheng C, Yang M, Dai L, Chen C, Yao J, Zhang Z, Tang L, Shi Y, Han X. Immunogenicity assessment of elder hepatocellular carcinoma patients after inactivated whole-virion SARS-CoV-2 vaccination. Expert Rev Vaccines 2023; 22:1102-1113. [PMID: 37878494 DOI: 10.1080/14760584.2023.2274484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Research on immunogenicity after 3rd SARS-CoV-2 vaccine in elder hepatocellular carcinoma (HCC) was limited. This study aimed to investigate the efficacy and influencing factors of inactivated SARS-CoV-2 vaccine in elder HCC. RESEARCH DESIGN AND METHODS We assessed total antibodies, anti-RBD IgG, and neutralizing antibodies (NAb) toward SARS-CoV-2 wild type (WT) as well as BA.4/5 in 304 uninfected HCC, 147 matched healthy control (HC), and 53 SARS-CoV-2 infected HCC, all aged over 60 years. The levels of antibodies were compared in the period 7-90, 91-180, and >180 days after 2nd or 3rd vaccination, respectively. RESULTS HCC had lower seropositivity than HC after 2nd dose (total antibodies, 64% vs. 92%, P < 0.0001; anti-RBD IgG, 50% vs. 77%, P < 0.0001). But 3rd dose can efficaciously close the gap (total antibodies, 96% vs. 100%, P = 0.1212; anti-RBD IgG: 87% vs. 87%, P > 0.9999). Booster effect of 3rd dose can persist >180 days in HCC (2nd vs. 3rd: total antibodies, 0.60 vs. 3.20, P < 0.0001; anti-RBD IgG, 13.86 vs. 68.85, P < 0.0001; WT NAb, 11.70 vs. 22.47, P < 0.0001). Vaccinated HCC had more evident humoral responses than unvaccinated ones after infection (total antibodies: 3.85 vs. 3.20, P < 0.0001; anti-RBD IgG: 910.92 vs. 68.85, P < 0.0001; WT NAb: 96.09 vs. 22.47, P < 0.0001; BA.4/5 NAb: 86.53 vs. 5.59, P < 0.0001). CONCLUSIONS Our findings highlight the booster effect and protective role of 3rd dose. Our results could provide a theoretical foundation for informing decisions regarding SARS-CoV-2 vaccination in elder HCC.
Collapse
Affiliation(s)
- Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Cuiling Zheng
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Chen Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Dongcheng District, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, Chaoyang District, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Dongcheng District, China
| |
Collapse
|
16
|
Lau CS, Aw TC. Considerations in Understanding Vaccine Effectiveness. Vaccines (Basel) 2022; 11:20. [PMID: 36679865 PMCID: PMC9864852 DOI: 10.3390/vaccines11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Although vaccine effectiveness reports are essential to assessing policies on SARS-CoV-2 vaccination, several factors can affect our interpretation of the results. These include the waning of antibodies, the prevailing viral variants at the time of the study, and COVID-19 disease prevalence in the population. Disease prevalence significantly impacts absolute risk reduction and could skew expected efficacy when increased disease prevalence inflates the absolute risk reduction in the face of a constant relative risk reduction. These factors must be considered in the interpretation of vaccine effectiveness to better understand how vaccines can improve disease prevention among the population. We highlight the impact of various factors on vaccine effectiveness.
Collapse
Affiliation(s)
- Chin Shern Lau
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
| | - Tar Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
- Academic Pathology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|