1
|
Zhu Y, Zhuang W, Cheng H. Strategies to Enhance Protein Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6457-6470. [PMID: 40052814 PMCID: PMC11924232 DOI: 10.1021/acs.langmuir.4c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Therapeutic proteins play a crucial role in modern healthcare. However, the rapid clearance of proteins in the circulation system poses a significant threat to their therapeutic efficacy. The generation of anti-drug antibodies expedites drug clearance, resulting in another challenge to overcome in protein delivery. Several methods to increase the circulation half-lives of these proteins and to minimize their immunogenicity have been developed. This Review discusses the causes of protein clearance in the body, evaluates the FDA-approved strategies to prolong protein circulation, and highlights recent progress in the field. Additionally, the strengths and drawbacks of these methods and our perspectives for advancing protein delivery are provided.
Collapse
Affiliation(s)
- Yucheng Zhu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Weisi Zhuang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Silva-Pilipich N, Beloki U, Apaolaza P, Igea A, Salaberry L, Prats-Mari L, Rovira E, Ondiviela M, Gorraiz M, Lasarte JJ, Vanrell L, Smerdou C. Targeting PD-1 + T cells with small-format immunocytokines enhances IL-12 antitumor activity. Mol Ther 2025; 33:297-316. [PMID: 39563030 PMCID: PMC11764877 DOI: 10.1016/j.ymthe.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone. The antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 Nb. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.
Collapse
Affiliation(s)
- Noelia Silva-Pilipich
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain; Nanogrow Biotech, Montevideo 11500, Uruguay.
| | - Uxue Beloki
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Patricia Apaolaza
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Ana Igea
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Laura Salaberry
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Nanogrow Biotech, Montevideo 11500, Uruguay
| | - Laura Prats-Mari
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Eric Rovira
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Marina Ondiviela
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain
| | - Marta Gorraiz
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain; Immunology and Immunotherapy Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Juan José Lasarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain; Immunology and Immunotherapy Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Cristian Smerdou
- DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain.
| |
Collapse
|
3
|
Zuo C, Wen Y, Chen D, Ouyang J, Li P. Residence time prediction in magnetically controlled biomolecular local rebinding-dissociation kinetics. Anal Chim Acta 2024; 1331:343341. [PMID: 39532424 DOI: 10.1016/j.aca.2024.343341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The residence time of drug-target conjugates is a critical factor in drug screening and efficacy prediction. The local rebinding-dissociation kinetics gives insights into in-vivo drug-target interactions. A magnetic torque system (MTS) is designed to observe rebinding-dissociation kinetics for predicting residence time. The system utilizes an alternating magnetic field (AMF) to manipulate the magnetization motion of magnetically labeled biomolecules and the forces acting upon biomolecular bonds. The motion, sensed by a quartz crystal microbalance (QCM), reflects biomolecular interactions occurring at the particle surface. Meanwhile, the motion facilitates the separation of dissociated molecules from the surface, thereby obviating the necessity for fixed and mobile phases in common kinetics observations. The constant and static solution environment minimizes reagent consumption. The MTS was utilized to observe the local rebinding-dissociation of antibodies (PAB and MAB) to magnetic beads (MB) and to HER2 receptors. The residence times recorded by the MTS were larger than the results obtained via SPR method, due to the occurrences of rebinding-dissociation kinetics. Interaction behaviours can be meticulously regulated for varying affinities by modulating the intensity of magnetic field. A high intensity field (400 Oe) was applied for strong binding between antibody-MB (biotin-streptavidin), and a low intensity field (300 Oe) was applied for weak antigen-antibody interactions. An increase in AMF strength enhanced dissociation, with a shift from 300 Oe to 400 Oe resulting in a 1 ∼ 4-fold reduction in residence time. Overall, the MTS provides an interactive and customizable perspective on kinetics observations.
Collapse
Affiliation(s)
- Can Zuo
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Yumei Wen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Dongyu Chen
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Jihai Ouyang
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Ping Li
- School of Electronic, Information and Electrical Eng., Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| |
Collapse
|
4
|
Lee HJ, Chae BH, Ko DH, Lee SG, Yoon SR, Kim DS, Kim YS. Enhancing the cytotoxicity of immunotoxins by facilitating their dissociation from target receptors under the reducing conditions of the endocytic pathway. Int J Biol Macromol 2024; 278:134668. [PMID: 39137851 DOI: 10.1016/j.ijbiomac.2024.134668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Immunotoxins (ITs) are recombinant chimeric proteins that combine a protein toxin with a targeting moiety to facilitate the selective delivery of the toxin to cancer cells. Here, we present a novel strategy to enhance the cytosolic access of ITs by promoting their dissociation from target receptors under the reducing conditions of the endocytic pathway. We engineered monobodySS, a human fibronectin type III domain-based monobody with disulfide bond (SS)-containing paratopes, targeting receptors such as EGFR, EpCAM, Her2, and FAP. MonobodySS exhibited SS-dependent target receptor binding with a significant reduction in binding under reducing conditions. We then created monobodySS-based ITs carrying a 25 kDa fragment of Pseudomonas exotoxin A (PE25), termed monobodySS-PE25. These ITs showed dose-dependent cytotoxicity against target receptor-expressing cancer cells and a wider therapeutic window due to higher efficacy at lower doses compared to controls with SS reduction inhibited. ERSS/28-PE25, with a KD of 28 nM for EGFR, demonstrated superior tumor-killing potency compared to ER/21-PE25, which lacks an SS bond, at equivalent and lower doses. In vivo, ERSS/28-PE25 outperformed ER/21-PE25 in suppressing tumor growth in EGFR-overexpressing xenograft mouse models. This study presents a strategy for developing solid tumor-targeting ITs using SS-containing paratopes to enhance cytosolic delivery and antitumor efficacy.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byeong-Ho Chae
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Deok-Han Ko
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seul-Gi Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sang-Rok Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dae-Seong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
5
|
Lee D, Kim D, Kim D, Kim N, Nam YW, Lee BC, Song J, Chang J. Development of a targeted IL-12 immunotherapy platform for B-cell lymphomas. Int Immunopharmacol 2024; 139:112600. [PMID: 39002524 DOI: 10.1016/j.intimp.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment that utilizes the potential of the immune system to precisely identify and eradicate cancerous cells. Despite significant progress in immunotherapy, innovative approaches are required to enhance the effectiveness and safety of these treatments. Interleukin-12 (IL-12), widely recognized for its essential function in immune responses, has been explored as a potential candidate for treating cancer. However, early attempts involving the systemic administration of IL-12 were ineffective, with significant adverse effects, thus underscoring the need for innovation. To address these challenges, we developed a therapeutic molecule that utilizes a single-chain IL-12 mutant (IL-12mut) linked to a tumor-targeting arm. Here, we describe the development of a highly effective IL-12-based TMEkine™ platform by employing a B-cell lymphoma model (termed CD20-IL-12mut). CD20-IL-12mut combined the attenuated activities of IL-12 with targeted delivery to the tumor, thereby maximizing therapeutic potential while minimizing off-target effects. Our results revealed that CD20-IL-12mut exhibited potent anticancer activity by inducing complete regression and generating immunological memory for tumor antigens. Collectively, our data provide a basis for additional research on CD20-IL-12mut as a potential treatment choice for patients with B-cell lymphomas such as non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Dahea Lee
- Kanaph Therapeutics, Seoul, South Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | | |
Collapse
|
6
|
Rubahamya B, Dong S, Thurber GM. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. SCIENCE ADVANCES 2024; 10:eadk1894. [PMID: 38820153 PMCID: PMC11141632 DOI: 10.1126/sciadv.adk1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.
Collapse
Affiliation(s)
- Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Kopp A, Kwon H, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Impact of tissue penetration and albumin binding on design of T cell targeted bispecific agents. Neoplasia 2024; 48:100962. [PMID: 38183712 PMCID: PMC10809211 DOI: 10.1016/j.neo.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
Kim JH, Kim DS, Park HS, Kim YS. Engineering bispecific T-cell engagers to deplete eosinophils for the treatment of severe eosinophilic asthma. Clin Immunol 2023; 255:109755. [PMID: 37673224 DOI: 10.1016/j.clim.2023.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Severe eosinophilic asthma (SEA) is characterized by elevated eosinophil counts in the blood and airway mucosa. While monoclonal antibody therapies targeting interleukin-5 (IL-5) and its receptor (IL-5Rα) have improved treatment, some patients remain unresponsive. We propose an alternative approach to eliminate eosinophils using T cells by engineering IL-5Rα × CD3 bispecific T-cell engagers (bsTCEs) that target both IL-5Rα on eosinophils and CD3 on T cells. We designed different formats of IL-5Rα × CD3 bsTCEs, incorporating variations in valency, geometry, and affinity for the target antigen binding. We identified the single-chain variable fragment (scFv)-Fc format with the highest affinity toward the membrane-proximal domain of IL-5Rα in the IL-5Rα-binding arm showed the most potent cytotoxicity against IL-5Rα-expressing peripheral eosinophils by activating autologous primary T cells from healthy donors. This study proposes IL-5Rα × CD3 bsTCEs as potential alternatives for SEA treatment. Importantly, it demonstrates the first application of bsTCEs in eliminating disease-associated cells, including eosinophils, beyond cancer cells.
Collapse
Affiliation(s)
- Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dae-Seong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon 16499, Republic of Korea.
| |
Collapse
|
9
|
Khera E, Kim J, Stein A, Ratanapanichkich M, Thurber GM. Mechanistically Weighted Metric to Predict In Vivo Antibody-Receptor Occupancy: An Analytical Approach. J Pharmacol Exp Ther 2023; 387:78-91. [PMID: 37105581 PMCID: PMC11046736 DOI: 10.1124/jpet.122.001540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/11/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
In situ clinical measurement of receptor occupancy (RO) is challenging, particularly for solid tumors, necessitating the use of mathematical models that predict tumor receptor occupancy to guide dose decisions. A potency metric, average free tissue target to initial target ratio (AFTIR), was previously described based on a mechanistic compartmental model and is informative for near-saturating dose regimens. However, the metric fails at clinically relevant subsaturating antibody doses, as compartmental models cannot capture the spatial heterogeneity of distribution faced by some antibodies in solid tumors. Here we employ a partial differential equation (PDE) Krogh cylinder model to simulate spatiotemporal receptor occupancy and derive an analytical solution, a mechanistically weighted global AFTIR, that can better predict receptor occupancy regardless of dosing regimen. In addition to the four key parameters previously identified, a fifth key parameter, the absolute receptor density (targets/cell), is incorporated into the mechanistic AFTIR metric. Receptor density can influence equilibrium intratumoral drug concentration relative to whether the dose is saturating or not, thereby influencing the tumor penetration depth of the antibody. We derive mechanistic RO predictions based on distinct patterns of antibody tumor penetration, presented as a global AFTIR metric guided by a Thiele Modulus and a local saturation potential (drug equivalent of binding potential for positron emissions tomography imaging) and validate the results using rigorous global and local sensitivity analysis. This generalized AFTIR serves as a more accurate analytical metric to aid clinical dose decisions and rational design of antibody-based therapeutics without the need for extensive PDE simulations. SIGNIFICANCE STATEMENT: Determining antibody-receptor occupancy (RO) is critical for dosing decisions in pharmaceutical development, but direct clinical measurement of RO is often challenging and invasive, particularly for solid tumors. Significant efforts have been made to develop mathematical models and simplified analytical metrics of RO, but these often require complex computer simulations. Here we present a mathematically rigorous but simplified analytical model to accurately predict RO across a range of affinities, doses, drug, and tumor properties.
Collapse
Affiliation(s)
- Eshita Khera
- Departments of Chemical Engineering (E.K., M.R., G.M.T.) and Biomedical Engineering (G.M.T.), University of Michigan, Ann Arbor, Michigan; and Novartis Institute for BioMedical Research, Cambridge, Massachusetts (J.K., A.S.)
| | - Jaeyeon Kim
- Departments of Chemical Engineering (E.K., M.R., G.M.T.) and Biomedical Engineering (G.M.T.), University of Michigan, Ann Arbor, Michigan; and Novartis Institute for BioMedical Research, Cambridge, Massachusetts (J.K., A.S.)
| | - Andrew Stein
- Departments of Chemical Engineering (E.K., M.R., G.M.T.) and Biomedical Engineering (G.M.T.), University of Michigan, Ann Arbor, Michigan; and Novartis Institute for BioMedical Research, Cambridge, Massachusetts (J.K., A.S.)
| | - Matt Ratanapanichkich
- Departments of Chemical Engineering (E.K., M.R., G.M.T.) and Biomedical Engineering (G.M.T.), University of Michigan, Ann Arbor, Michigan; and Novartis Institute for BioMedical Research, Cambridge, Massachusetts (J.K., A.S.)
| | - Greg M Thurber
- Departments of Chemical Engineering (E.K., M.R., G.M.T.) and Biomedical Engineering (G.M.T.), University of Michigan, Ann Arbor, Michigan; and Novartis Institute for BioMedical Research, Cambridge, Massachusetts (J.K., A.S.)
| |
Collapse
|
10
|
Expanding the Therapeutic Window of EGFR-Targeted PE24 Immunotoxin for EGFR-Overexpressing Cancers by Tailoring the EGFR Binding Affinity. Int J Mol Sci 2022; 23:ijms232415820. [PMID: 36555466 PMCID: PMC9779439 DOI: 10.3390/ijms232415820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotoxins (ITs), which are toxin-fused tumor antigen-specific antibody chimeric proteins, have been developed to selectively kill targeted cancer cells. The epidermal growth factor receptor (EGFR) is an attractive target for the development of anti-EGFR ITs against solid tumors due to its overexpression on the cell surface of various solid tumors. However, the low basal level expression of EGFR in normal tissue cells can cause undesirable on-target/off-tumor toxicity and reduce the therapeutic window of anti-EGFR ITs. Here, based on an anti-EGFR monobody with cross-reactivity to both human and murine EGFR, we developed a strategy to tailor the anti-EGFR affinity of the monobody-based ITs carrying a 24-kDa fragment of Pseudomonas exotoxin A (PE24), termed ER-PE24, to distinguish tumors that overexpress EGFR from normal tissues. Five variants of ER-PE24 were generated with different EGFR affinities (KD ≈ 0.24 nM to 104 nM), showing comparable binding activity for both human and murine EGFR. ER/0.2-PE24 with the highest affinity (KD ≈ 0.24 nM) exhibited a narrow therapeutic window of 19 pM to 93 pM, whereas ER/21-PE24 with an intermediate affinity (KD ≈ 21 nM) showed a much broader therapeutic window of 73 pM to 1.5 nM in in vitro cytotoxic assays using tumor model cell lines. In EGFR-overexpressing tumor xenograft mouse models, the maximum tolerated dose (MTD) of intravenous injection of ER/21-PE24 was found to be 0.4 mg/kg, which was fourfold higher than the MTD (0.1 mg/kg) of ER/0.2-PE24. Our study provides a strategy for the development of IT targeting tumor overexpressed antigens with basal expression in broad normal tissues by tailoring tumor antigen affinities.
Collapse
|