1
|
Zhang R, Tan Y, Xu K, Huang N, Wang J, Liu M, Wang L. Cuproplasia and cuproptosis in hepatocellular carcinoma: mechanisms, relationship and potential role in tumor microenvironment and treatment. Cancer Cell Int 2025; 25:137. [PMID: 40205387 PMCID: PMC11983883 DOI: 10.1186/s12935-025-03683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/08/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the main phenotype of liver cancer with a poor prognosis. Copper is vital in liver function, and HCC cells rely on it for growth and metastasis, leading to cuproplasia. Excessive copper can induce cell death, termed cuproptosis. Tumor microenvironment (TME) is pivotal in HCC, especially in immunotherapy, and copper is closely related to the TME pathogenesis. However, how these two mechanisms contribute to the TME is intriguing. MAIN BODY We conducted the latest progress literature on cuproplasia and cuproptosis in HCC, and summarized their specific roles in TME and treatment strategies. The mechanisms of cuproplasia and cuproptosis and their relationship and role in TME have been deeply summarized. Cuproplasia fosters TME formation, angiogenesis, and metastasis, whereas cuproptosis may alleviate mitochondrial dysfunction and hypoxic conditions in the TME. Inhibiting cuproplasia and enhancing cuproptosis in HCC are essential for achieving therapeutic efficacy in HCC. CONCLUSION An in-depth analysis of cuproplasia and cuproptosis mechanisms within the TME of HCC unveils their opposing nature and their impact on copper regulation. Grasping the equilibrium between these two factors is crucial for a deeper understanding of HCC mechanisms to shed light on novel directions in treating HCC.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Yunfei Tan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Unit III, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Xu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China
| | - Jian Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, P.O. Box 2258, 100021, Beijing, People's Republic of China.
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli Area, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Guo X, Deng Y, Jiang W, Li H, Luo Y, Zhang H, Wu H. Single cell transcriptomic analysis reveals tumor immune infiltration by macrophage cells gene signature in lung adenocarcinoma. Discov Oncol 2025; 16:261. [PMID: 40029500 DOI: 10.1007/s12672-025-01834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play pivotal roles in innate immunity and contribute to the advancement of lung cancer. We aimed to identify novel TAM-related biomarkers and significance of macrophage infiltration in lung adenocarcinoma (LUAD) through an integrative analysis of single-cell RNA-sequencing (scRNA-seq) data. To describe the cell atlas and construct a novel prognostic signature in LUAD. METHODS The gene signature linked to TAMs was identified utilizing Scanpy from the scRNA-seq dataset GSE131907. Subsequent analysis involved evaluating the expression levels of these genes, their potential molecular mechanisms, and prognostic significance in LUAD using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We also constructed a risk score models through LASSO Cox regression for these genes. The underlying mechanism was further elucidated through the application of GSEA, ESTIMATE, TIDE, and other bioinformatic algorithms. RESULTS Single-cell atlas was described by analyze 29 scRNA-seq samples from 19 LUAD patients. The TAMs-related gene signature (TGS) was identified as an independent prognostic factor by LASSO Cox regression analysis using differential expression genes (DEGs) derived from pro- and anti-inflammatory macrophage cells. Risk score model including nine TAMs-related genes (FOSL1, ZNF697, ADM, UBE2S, TICAM1, S100P, BIRC3, TLE1, and DEFB1) were obtained for prognosis construction. Moreover, the risk model underwent additional validation in four external GEO cohorts: GSE31210, GSE72094, GSE26939, and GSE30219. Interestingly, TGS-high tumors revealed enrichments in TGF-β signaling and hypoxia pathways, which shown low immune infiltration and immunosuppression by ESTIMATE and TIDE algorithm. The TGS-high risk group exhibited lower richness and diversity in the T-cell receptor (TCR) repertoire. CONCLUSION This study introduces a novel TGS score developed through LASSO Cox regression analysis, utilizing DEGs in pro- and anti-inflammatory macrophage cells. High TGS tumors exhibited enrichment in TGF-β signaling and hypoxia pathways, suggesting their potential utility in predicting prognosis and immune responses in patients with LUAD. These results offer promising implications for the development of therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Youjun Deng
- Department of Thoracic Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center Shenzhen Cancer Hospital, Shenzhen, China
| | - Wenjun Jiang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital, Chengdu, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Hospital of Oncology, Kunming, China
| | - Yisheng Luo
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huachuan Zhang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Hao Wu
- Department of Thoracic Surgery, Shenzhen Second People's Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Zhang J, Hu D, Fang P, Qi M, Sun G. Deciphering key roles of B cells in prognostication and tailored therapeutic strategies for lung adenocarcinoma: a multi-omics and machine learning approach towards predictive, preventive, and personalized treatment strategies. EPMA J 2025; 16:127-163. [PMID: 39991096 PMCID: PMC11842682 DOI: 10.1007/s13167-024-00390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/24/2024] [Indexed: 02/25/2025]
Abstract
Background Lung adenocarcinoma (LUAD) remains a significant global health challenge, with an urgent need for innovative predictive, preventive, and personalized medicine (PPPM) strategies to improve patient outcomes. This study leveraged multi-omics and machine learning approaches to uncover the prognostic roles of B cells in LUAD, thereby reinforcing the PPPM approach. Methods We integrated multi-omics data, including bulk RNA, ATAC-seq, single-cell RNA, and spatial transcriptomics sequencing, to characterize the B cell landscape in LUAD within the PPPM framework. Subsequently, we developed an integrative machine learning program that generated the Scissor+ related B cell score (SRBS). This score was validated in the training and validation sets, and its prognostic value was assessed along with clinical features to develop predictive nomograms. This study further assessed the role of SRBS and SRBS genes in response to immunotherapy and identified personalized drug targets for distinct risk subgroups, with gene expression verified experimentally to ensure tailored medical interventions. Results Our analysis identified 79 Scissor+ B cell genes linked to LUAD prognosis, supporting the predictive aspect of PPPM. The SRBS model, which utilizes multiple machine learning algorithms, performed excellently in predicting prognosis and clinical transformation, embodying the preventive and personalized aspects of PPPM. Multifactorial analysis confirmed that SRBS was an independent prognostic factor. We observed varying biological functions and immune cell infiltration in the tumor immune microenvironment (TIME) between the high- and low-SRBS groups, underscoring personalized treatment approaches. Notably, patients with elevated SRBS may exhibit resistance to immunotherapy but show increased sensitivity to chemotherapy and targeted therapies. Additionally, we found that LDHA, as an SRBS gene with significant clinical implications, may regulate the sensitivity of LUAD cells to cisplatin. Conclusion This study presents a B cell-associated gene signature that serves as a prognostic marker to facilitate personalized treatment for patients with LUAD, adhering to the principles of PPPM. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00390-4.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Pu Fang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Min Qi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui Province China
| |
Collapse
|
4
|
Jue TR, Descallar J, Pham VVH, Bell JL, Shai-Hee T, Cazzolli R, Nagabushan S, Koh ES, Vittorio O. Cuproplasia-related gene signature: Prognostic insights for glioma therapy. Neurooncol Adv 2025; 7:vdae233. [PMID: 39896073 PMCID: PMC11786221 DOI: 10.1093/noajnl/vdae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background Adult-type diffuse gliomas encompass nearly a quarter of all primary tumors found in the CNS, including astrocytoma, oligodendroglioma, and glioblastoma. Histopathological tumor grade and molecular profile distinctly impact patient survival. Despite treatment advancements, patients with recurrent glioma have a very poor clinical outcome, warranting improved risk stratification to determine therapeutic interventions. Various studies have shown that copper is a notable trace element that is crucial for biological processes and has been shown to display pro-tumorigenic functions in cancer, particularly gliomas. Methods Differential gene expression, Cox regression, and least absolute shrinkage and selection operator regression were used to identify 19 copper-homeostasis-related gene signatures using TCGA lower-grade glioma and glioblastoma (GBM) cohorts. The GLASS Consortium dataset was used as an independent validation cohort. Enrichment analysis revealed the involvement of the signature in various cancer-related pathways and biological processes. Using this CHRG signature, a risk score model and a nomogram were developed to predict survival in glioma patients. Results Our prognostic CHRG signature stratified patients into high- and low-risk groups, demonstrating robust predictive performance. High-risk groups showed poorer survival outcomes. The nomogram model integrating CHRG signature and clinical features accurately predicted 1-, 3-, and 5-year survival rates in both training and test sets. Conclusions The identified 19-gene CHRG signature holds promise as a prognostic tool, enabling accurate risk stratification and survival prediction in glioma patients. Integrating this signature with clinical characteristics enhances prognostic accuracy, underscoring its potential clinical utility in optimizing therapeutic strategies and patient care in glioma management.
Collapse
Affiliation(s)
- Toni Rose Jue
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia 1466
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia 1466
| | - Joseph Descallar
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia 2170
- South Western Sydney Clinical School, University of New South Wales, Liverpool, New South Wales, Australia 2170
| | - Vu Viet Hoang Pham
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia 1466
| | - Jessica Lilian Bell
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia 1466
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia 1466
| | - Tyler Shai-Hee
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia 1466
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia 1466
| | - Riccardo Cazzolli
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia 1466
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, New South Wales, Australia 1466
| | - Sumanth Nagabushan
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia 2031
| | - Eng-Siew Koh
- South Western Sydney Clinical School, University of New South Wales, Liverpool, New South Wales, Australia 2170
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia 1466
| |
Collapse
|
5
|
Li X, Zhao Y, Wei S, Dai Y, Yi C. Construction of a cuproptosis-tricarboxylic acid cycle-associated lncRNA model to predict the prognosis of non-small cell lung cancer. Transl Cancer Res 2024; 13:6807-6824. [PMID: 39816567 PMCID: PMC11729758 DOI: 10.21037/tcr-24-660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
Background In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the prognosis of NSCLC. Methods Molecular signature databases and cuproptosis-related publications were made use of identifying cuproptosis-TCA-related genes. They were identified based on Pearson correlation analysis. The prognostic features associated with these lncRNAs were evaluated using the absolute contraction and selection operator and a receiver operating characteristic curve analysis. Additionally, downstream functional enrichment and immunoinfiltration were analyzed to examine the immunotherapeutic responses of patients with NSCLC. Results Eleven cuproptosis-TCA-associated lncRNAs were identified. A high-risk group was compared with a low-risk group based on risk scores, and the high-risk group had a significantly lower overall survival (OS). We established a prognostic risk profile, and based on these characteristics and clinical staging, a nomogram was constructed. An analysis of functional enrichment revealed the involvement of pathways associated with cellular and humoral immunity and fatty acylation. Risk scores differed significantly based on immune cells and pathways (antigen-presenting cell co-stimulation). Moreover, TP53, TTN, and MUC16 mutation status were strongly associated with risk scores, with patients identified as having a higher risk of NSCLC being more responsive to immunotherapy. Conclusions Eleven cuproptosis-TCA-associated lncRNAs can be used to predict the prognosis of NSCLC patients, thereby providing a new theoretical basis for immunotherapy.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yunlong Zhao
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengjie Wei
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuqing Dai
- Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chun Yi
- Department of Pathology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Guo X, Wang F, Li X, Luo Q, Liu B, Yuan J. Mitochondrial cholesterol metabolism related gene model predicts prognosis and treatment response in hepatocellular carcinoma. Transl Cancer Res 2024; 13:6623-6644. [PMID: 39816559 PMCID: PMC11730194 DOI: 10.21037/tcr-24-1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 01/18/2025]
Abstract
Background The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC. Methods MCM-related genes (MCMGs) were identified through The Cancer Genome Atlas (TCGA), The Molecular Signatures Database (MsigDB), and the Mitocarta3.0 databases. Differential gene expression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed using R software to construct a MCM-related model. This model underwent further analysis for somatic mutations, single sample gene set enrichment analysis (ssGSEA), stromal and immune cell estimation, immune checkpoint evaluation, and drug susceptibility prediction to assess the tumor microenvironment (TME) and therapeutic responses. The mRNA expression levels of the genes associated with the model were quantified using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). Results The model, which included six MCMGs (ACADL, ACLY, TXNRD1, DTYMK, ACAT1, and FLAD1), divided all patients (age ≤65 vs. >65 years, P<0.001; male vs. female, ns) into a high-risk group and a low-risk group. The high-risk group showed a higher mortality rate and lower survival rate with AUC of 0.785, 0.752, 0.756, 0.774 and 0.759 for the 1-, 2-, 3-, 4-, and 5-year respectively. A nomogram based on risk score, stage, T, and M had a better prognostic accuracy, with AUC of 0.808, 0.796, 0.811, 0.824 and 0.795 for the 1-, 2-, 3-, 4-, and 5-year respectively. The high-risk group showed enrichment in cell cycle, cell division, and chromosome processes, and a significantly higher tumor mutation burden (TMB) value compared to the low-risk group. Further immune infiltration analysis indicated a significantly reduction in the abundances of some immune cells (activated CD4 T cells, type 2 helper T cells, and neutrophils) and significantly higher expression levels of some immune checkpoint (CD80, CTLA4, HAVCR2, and TNFRSF4) in the high-risk group. Moreover, the risk score was associated with the response to immune checkpoint inhibitors (ICIs) therapy and efficiencies of multiple chemotherapy drugs. Conclusions This study developed a prognostic model based on MCMGs, which can predict the prognosis of liver cancer patients and their response to immunotherapy and chemotherapy. The model may provide new strategies to enhance the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Xuna Guo
- Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China
| | - Feng Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xuejing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuqian Luo
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Bihan Liu
- Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China
| | - Jianhui Yuan
- Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Department of Physics, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Zhang Q, Pan G, Zhang L, Xu Y, Hao J. The Predictive Value of Monocarboxylate Transporter 4 (MCT4) on Lung Adenocarcinoma Patients Treated with PD-1 Inhibitors. J Inflamm Res 2024; 17:10515-10531. [PMID: 39659754 PMCID: PMC11630727 DOI: 10.2147/jir.s493632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Monocarboxylate transporter 4 (MCT4) can influence the amount of lactate in the tumor microenvironment and further control cancer cell proliferation, migration, and angiogenesis. This study aimed to evaluate the predictive value of MCT4 for prognosis and immunotherapy efficacy in advanced lung adenocarcinoma (LUAD). Patients and methods First, bioinformatics analysis was used to assess the relevance of MCT4 for survival and immunotherapy outcomes in LUAD. Subsequently, we performed a retrospective study involving 126 patients with stage IIIb to IV LUAD treated with programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors. MCT4 expression in LUAD tissues was detected by immunohistochemistry (IHC), then the patients were divided into high and low expression groups. The differences in the medical records of the two groups were compared using the X2 test. Kaplan-Meier (K-M) method was used for survival analysis. Univariate and multivariate analysis were used to pinpoint independent predictors, and a nomogram was developed based on the significant factors for overall survival (OS) in the multivariate analysis. The predictive ability of the nomogram was evaluated through C-index, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results Both bioinformatics analysis and clinical study revealed that low MCT4 expression was associated with better prognosis and immunotherapy efficacy. Multivariate analysis of clinical characteristics showed that age >65 years, stage IV, high MCT4 expression, neutrophil-to-lymphocyte ratio (NLR)>3, lactate dehydrogenase (LDH)>250 (U/L) and carcinoembryonic antigen (CEA)>5 (ng/mL) were significantly associated with poor prognosis on immunotherapy. These factors were subsequently incorporated into the nomogram model. The C-index value of the model stood at 0.735 (95% CI= 0.662 ~ 0.807), indicating robust predictive performance of the model. The DCA curve showed that the model had a notable clinical application value. Conclusion High expression of MCT4 is associated with poor prognosis and reduced efficacy of immunotherapy in patients with advanced LUAD.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Guizhen Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Lu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
8
|
Luo R, Huang S, Shi X, Xu H, Peng J, Lei W, Li S, Zhang W, Shi L, Peng Y, Tang X. Copper metabolism-related lncRNAs predict prognosis and immune landscape in liver cancer patients. Transl Cancer Res 2024; 13:5784-5800. [PMID: 39697711 PMCID: PMC11651766 DOI: 10.21037/tcr-24-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Characterized by its high mortality and easy recurrence, hepatocellular carcinoma (HCC) poses significant clinical challenges. The association between copper metabolism and development of cancer has been identified. However, the underlying mechanisms of copper metabolism-related long non-coding RNAs (CMRLs) in HCC remain elusive. To address the gap, our study analyzed the prognostic and immuno-therapeutic value of CMRLs in HCC. METHODS This research utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data (n=424) for analysis, applying the "limma" package in R software for differential gene analysis and construction of a prognostic signature. We validated the signature using training and validation groups stochastically divided at a ratio of 1:1 and assessed prognostic value via Kaplan-Meier, C-index, and receiver operating characteristic (ROC) curves. By multivariate Cox regression, independent prognostic indicators were identified, and a nomogram was formulated for survival forecasting. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated biological pathways, and the immune landscape was examined through multiple algorithms. Finally, drug sensitivity was determined from Genomics of Drug Sensitivity in Cancer (GDSC), with mutation analysis conducted via maftools. RESULTS In this study, a predictive model based on four pivotal CMRLs (PRRT3-AS1, AC108752.1, AC092115.3, AL031985.3) significantly associated with HCC progression and prognosis was constructed and validated with the overall survival (OS) prediction area under the curve (AUC) values for 1, 3, and 5 years of 0.718, 0.688, and 0.669, respectively. The calibration curves and C-index values showed a solid prognostic ability of the nomogram. The high-risk group was notably higher than the low-risk group both in OS and tumor mutational burdens (TMBs). Moreover, functional annotation enrichment analysis of CMRLs revealed that the signature was mainly associated with mitotic function, chromosome, kinetochore, cell cycle, and oocyte meiosis. Furthermore, therapeutic drugs, including fluorouracil, afatinib, alpelisib, cedranib, crizotinib, erlotinib, gefitinib, and ipatasertib, were found to induce higher sensitivity in high-risk group. CONCLUSIONS The prognostic signature consisting of four CMRLs displays an outstanding predictive performance and improves the precision of immuno-oncology.
Collapse
Affiliation(s)
- Rui Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People’s Hospital, Huaian, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Xu
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jieyu Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenjie Lei
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shiqi Li
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Peng
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Hou X, Zhou T, Wang Q, Chen P, Zhang M, Wu L, Liu W, Jin X, Liu Z, Li H, Huang B. Role of cuproptosis in mediating the severity of experimental malaria-associated acute lung injury/acute respiratory distress syndrome. Parasit Vectors 2024; 17:433. [PMID: 39427197 PMCID: PMC11489997 DOI: 10.1186/s13071-024-06520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Malaria-associated acute lung injury/acute respiratory distress syndrome (MA-ALI/ARDS) is a fatal complication of Plasmodium falciparum infection that is partially triggered by macrophage recruitment and polarization. As reported, copper exposure increases the risk of malaria infection, and copper accumulation-induced cuproptosis triggers M1 macrophage polarization. It is thus hypothesized that cuproptosis could act as a critical mediator in the pathogenesis of MA-ALI/ARDS, but its underlying mechanism remains unclear. The present study aimed to explore the role of cuproptosis in the severity of murine MA-ALI/ARDS. METHODS We utilized an experimental model of MA-ALI/ARDS using female C57BL/6 mice with P. berghei ANKA infection, and treated these animals with the potent copper ion carrier disulfiram (DSF) or copper ion chelator tetrathiomolybdate (TTM). The RAW 264.7 macrophages, which were stimulated with infected red blood cells (iRBCs) in vitro, were also targeted with DSF-CuCl2 or TTM-CuCl2 to further investigate the underlying mechanism. RESULTS Our findings showed a dramatic elevation in the amount of copper and the expression of SLC31A1 (a copper influx transporter) and FDX1 (a key positive regulator of cuproptosis) but displayed a notable reduction in the expression of ATP7A (a copper efflux transporter) in the lung tissue of experimental MA-ALI/ARDS mice. Compared to the P. berghei ANKA-infected control group, mice that were administered DSF exhibited a remarkable increase in parasitemia/lung parasite burden, total protein concentrations in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio, vascular leakage, and pathological changes in lung tissue. Strikingly, the experimental MA-ALI/ARDS mice with DSF treatment also demonstrated dramatically elevated copper levels, expression of SLC31A1 and FDX1, numbers of CD86+, CD68+, SLC31A1+-CD68+, and FDX1+-CD68+ macrophages, and messenger RNA (mRNA) levels of pro-inflammatory cytokines (tumor necrosis factor [TNF-α] and inducible nitric oxide synthase [iNOS]) in lung tissue, but showed a remarkable decrease in body weight, survival time, expression of ATP7A, number of CD206+ macrophages, and mRNA levels of anti-inflammatory cytokines (transforming growth factor beta [TGF-β] and interleukin 10 [IL-10]). In contrast, TTM treatment reversed these changes in the infected mice. Similarly, the in vitro experiment showed a notable elevation in the mRNA levels of SLC31A1, FDX1, CD86, TNF-α, and iNOS in iRBC-stimulated RAW 264.7 cells targeted with DSF-CuCl2, but triggered a remarkable decline in the mRNA levels of ATP7A, CD206, TGF-β, and IL-10. In contrast, TTM-CuCl2 treatment also reversed these trends in the iRBC-stimulated RAW 264.7 cells. CONCLUSIONS Our data demonstrate that the activation of cuproptosis with DSF aggravated the severity of MA-ALI/ARDS by partially inducing M1 polarization of pulmonary macrophages, while inhibition of cuproptosis with TTM contrarily ameliorated the severity of MA-ALI/ARDS by promoting macrophage M2 polarization. Our findings suggest that blockage of cuproptosis could be a potential therapeutic strategy for treatment of MA-ALI/ARDS.
Collapse
Affiliation(s)
- Xinpeng Hou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Tingting Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qi Wang
- Guangzhou Chest Hospital, Guangzhou, 510095, People's Republic of China
| | - Pinru Chen
- Guangzhou Chest Hospital, Guangzhou, 510095, People's Republic of China
| | - Min Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhenlong Liu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Hua Li
- Department of Critical Care Medicine, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, 518105, China.
| | - Bo Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
- School of Basic Medical Science, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
10
|
Chen Y, Zhang W, Xu X, Xu B, Yang Y, Yu H, Li K, Liu M, Qi L, Jiao X. Gene signatures of copper metabolism related genes may predict prognosis and immunity status in Ewing's sarcoma. Front Oncol 2024; 14:1388868. [PMID: 39050579 PMCID: PMC11267503 DOI: 10.3389/fonc.2024.1388868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Background Cuproptosis is copper-induced cell death. Copper metabolism related genes (CMRGs) were demonstrated that used to assess the prognosis out of tumors. In the study, CMRGs were tested for their effect on TME cell infiltration in Ewing's sarcoma (ES). Methods The GEO and ICGC databases provided the mRNA expression profiles and clinical features for downloading. In the GSE17674 dataset, 22prognostic-related copper metabolism related genes (PR-CMRGs) was identified by using univariate regression analysis. Subsequently, in order to compare the survival rates of groups with high and low expression of these PR-CMRGs,Kaplan-Meier analysis was implemented. Additionally, correlations among them were examined. The study employed functional enrichment analysis to investigate probable underlying pathways, while GSVA was applied to evaluate enriched pathways in the ES (Expression Set). Through an unsupervised clustering algorithm, samples were classified into two clusters, revealing significant differences in survival rates and levels of immune infiltration. Results Using Lasso and step regression methods, five genes (TFRC, SORD, SLC11A2, FKBP4, and AANAT) were selected as risk signatures. According to the Kaplan-Meier survival analysis, the high-risk group had considerably lower survival rates than the low-risk group(p=6.013e-09). The area under the curve (AUC) values for the receiver operating characteristic (ROC) curve were 0.876, 0.883, and 0.979 for 1, 3, and 5 years, respectively. The risk model was further validated in additional datasets, namely GSE63155, GSE63156, and the ICGC datasets. To aid in outcome prediction, a nomogram was developed that incorporated risk levels and clinical features. This nomogram's performance was effectively validated through calibration curves.Additionally, the study evaluated the variations in immune infiltration across different risk groups, as well as high-expression and low-expression groups. Importantly, several drugs were identified that displayed sensitivity, offering potential therapeutic options for ES. Conclusion The findings above strongly indicate that CMRGs play crucial roles in predicting prognosis and immune status in ES.
Collapse
Affiliation(s)
- Yongqin Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Xu
- Sterile Supply Department, The First People Hospital of Jinan, Jinan, Shandong, China
| | - Biteng Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxuan Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haozhi Yu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ke Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingshan Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiejia Jiao
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Cheng X, Yang F, Li Y, Cao Y, Zhang M, JI J, Bai Y, Li Q, Yu Q, Gao D. The crosstalk role of CDKN2A between tumor progression and cuproptosis resistance in colorectal cancer. Aging (Albany NY) 2024; 16:10512-10538. [PMID: 38888512 PMCID: PMC11236303 DOI: 10.18632/aging.205945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cuproptosis is a type of cell death characterized by excessive copper-lipid reactions in the tricarboxylic acid cycle, resulting in protein toxicity stress and cell death. Although known as a cuproptosis inhibitor through CRISPR-Cas9 screening, the role of cyclin-dependent kinase inhibitor 2A (CDKN2A) in cuproptosis resistance and its connection to tumor development remains unclear. METHODS In this study, we combined single-cell sequencing, spatial transcriptomics, pathological image analysis, TCGA multi-omics analysis and in vitro experimental validation to comprehensively investigate CDKN2A distribution, expression, epigenetic modification, regulation and genomic features in colorectal cancer cells. We further explored the associations between CDKN2A and cellular pathway, immune infiltration and spatial signal communication. RESULTS Our findings showed an increasing trend in cuproptosis in the trajectory of tumor progression, accompanied by an upward trend of CDKN2A. CDKN2A underwent transcriptional activation by MEF2D and via the SNHG7/miR-133b axis, upregulating glycolysis, copper metabolism and copper ion efflux. CDKN2A likely drives epithelial-mesenchymal transition (EMT) and progression by activating Wnt signaling. CDKN2A is associated with high genomic instability and sensitivity to radiation and chemotherapy. Tumor regions expressing CDKN2A exhibit distinctive SPP1+ tumor-associated macrophage (TAM) infiltration and MMP7 enrichment, along with unique signaling crosstalk with adjacent areas. CONCLUSIONS CDKN2A mediates cuproptosis resistance through regulating glycolysis and copper homeostasis, accompanied by a malignant phenotype and pro-tumor niche. Radiation and chemotherapy are expected to potentially serve as therapeutic approaches for cuproptosis-resistant colorectal cancer with high CDKN2A expression.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Famin Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuanheng Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
- Department of Gastroenterology and Hepatology, Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yuke Cao
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jiameng JI
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuxiao Bai
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Dian Gao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
12
|
Siddique R, Thangavelu L, S R, Almalki WH, Kazmi I, Kumar A, Mahajan S, Kalra H, Alzarea SI, Pant K. lncRNAs and cyclin-dependent kinases: Unveiling their critical roles in cancer progression. Pathol Res Pract 2024; 258:155333. [PMID: 38723325 DOI: 10.1016/j.prp.2024.155333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse class of RNA molecules that do not code for proteins but play critical roles in gene regulation. One such role involves the modulation of cell cycle progression and proliferation through interactions with cyclin-dependent kinases (CDKs), key regulators of cell division. Dysregulation of CDK activity is a hallmark of cancer, contributing to uncontrolled cell growth and tumor formation. These lncRNA-CDK interactions are part of a complex network of molecular mechanisms underlying cancer pathogenesis, involving various signaling pathways and regulatory circuits. Understanding the interplay between lncRNAs, CDKs, and cancer biology holds promise for developing novel therapeutic strategies targeting these molecular targets for more effective cancer treatment. Furthermore, targeting CDKs, key cell cycle progression and proliferation regulators, offers another avenue for disrupting cancer pathways and overcoming drug resistance. This can open new possibilities for individualized treatment plans and focused therapeutic interventions.
Collapse
Affiliation(s)
- Raihan Siddique
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India.
| | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Hitesh Kalra
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| |
Collapse
|
13
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Jia R, Ren YZ, Li PN, Gao R, Zhang YS. SCSMD: Single Cell Consistent Clustering based on Spectral Matrix Decomposition. Brief Bioinform 2024; 25:bbae273. [PMID: 38855914 PMCID: PMC11163303 DOI: 10.1093/bib/bbae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/25/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
Cluster analysis, a pivotal step in single-cell sequencing data analysis, presents substantial opportunities to effectively unveil the molecular mechanisms underlying cellular heterogeneity and intercellular phenotypic variations. However, the inherent imperfections arise as different clustering algorithms yield diverse estimates of cluster numbers and cluster assignments. This study introduces Single Cell Consistent Clustering based on Spectral Matrix Decomposition (SCSMD), a comprehensive clustering approach that integrates the strengths of multiple methods to determine the optimal clustering scheme. Testing the performance of SCSMD across different distances and employing the bespoke evaluation metric, the methodological selection undergoes validation to ensure the optimal efficacy of the SCSMD. A consistent clustering test is conducted on 15 authentic scRNA-seq datasets. The application of SCSMD to human embryonic stem cell scRNA-seq data successfully identifies known cell types and delineates their developmental trajectories. Similarly, when applied to glioblastoma cells, SCSMD accurately detects pre-existing cell types and provides finer sub-division within one of the original clusters. The results affirm the robust performance of our SCSMD method in terms of both the number of clusters and cluster assignments. Moreover, we have broadened the application scope of SCSMD to encompass larger datasets, thereby furnishing additional evidence of its superiority. The findings suggest that SCSMD is poised for application to additional scRNA-seq datasets and for further downstream analyses.
Collapse
Affiliation(s)
- Ran Jia
- School of Mathematics and Statistics, Shandong University, Weihai 264209, Shandong, China
| | - Ying-Zan Ren
- School of Mathematics and Statistics, Shandong University, Weihai 264209, Shandong, China
| | - Po-Nian Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yu-Sen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, Shandong, China
| |
Collapse
|
15
|
Zhang L, Zhang X, Guan M, Zeng J, Yu F, Lai F. Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response. Respir Res 2024; 25:206. [PMID: 38745285 PMCID: PMC11092068 DOI: 10.1186/s12931-024-02839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures. METHODS This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into different ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells geneset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted to explore the role of ICSMRGs in LUAD. RESULTS Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical characteristics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but displayed resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant prognostic value and emerged as a risk factor for the majority of cancer patients. CONCLUSIONS ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor microenvironment and predicting treatment responsiveness.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xun Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Maohao Guan
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jianshen Zeng
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Fengqiang Yu
- Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Fancai Lai
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
16
|
Zhang L, Zhang X, Guan M, Zeng J, Yu F, Lai F. Identification of a novel ADCC-related gene signature for predicting the prognosis and therapy response in lung adenocarcinoma. Inflamm Res 2024; 73:841-866. [PMID: 38507067 DOI: 10.1007/s00011-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Previous studies have largely neglected the role of ADCC in LUAD, and no study has systematically compiled ADCC-associated genes to create prognostic signatures. METHODS In this study, 1564 LUAD patients, 2057 NSCLC patients, and more than 5000 patients with various cancer types from diverse cohorts were included. R package ConsensusClusterPlus was utilized to classify patients into different subtypes. A number of machine-learning algorithms were used to construct the ADCCRS. GSVA and ClusterProfiler were used for enrichment analyses, and IOBR was used to quantify immune cell infiltration level. GISTIC2.0 and maftools were used to analyze the CNV and SNV data. The Oncopredict package was used to predict drug information based on the GDSC1. Three immunotherapy cohorts were used to evaluate patient response to immunotherapy. The Seurat package was used to process single-cell data, the AUCell package was used to calculate cells' geneset activity scores, and the Scissor algorithm was used to identify ADCCRS-associated cells. RESULTS Through unsupervised clustering, two distinct subtypes of LUAD were identified, each exhibiting distinct clinical characteristics. The ADCCRS, consisted of 16 genes, was constructed by integrated machine-learning methods. The prognostic power of ADCCRS was validated in 28 independent datasets. Further, ADCCRS shows better predictive abilities than 102 previously published signatures in predicting LUAD patients' survival. A nomogram incorporating ADCCRS and clinical features was constructed, demonstrating high predictive performance. ADCCRS positively correlates with patients' gene mutation, and integrated analysis of bulk and single-cell transcriptome data revealed the association of ADCCRS with TME modulators. Cells representing high-ADCCRS phenotype exhibited more malignant features. LUAD patients with high ADCCRS levels exhibited sensitivity to chemotherapy and targeted therapy, while displaying resistance to immunotherapy. In pan-cancer analysis, ADCCRS still exhibited significant prognostic value and was found to be a risk factor for most cancer patients. CONCLUSIONS ADCCRS offers a critical prognostic insight for patients with LUAD, shedding light on the tumor microenvironment and forecasting treatment responsiveness.
Collapse
Affiliation(s)
- Liangyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China
| | - Xun Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China
| | - Maohao Guan
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China
| | - Jianshen Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China
| | - Fengqiang Yu
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China.
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the Fitst Affiliated Hospiral, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
17
|
Wang J, Li J, Liu J, Chan KY, Lee HS, Lin KN, Wang CC, Lau TS. Interplay of Ferroptosis and Cuproptosis in Cancer: Dissecting Metal-Driven Mechanisms for Therapeutic Potentials. Cancers (Basel) 2024; 16:512. [PMID: 38339263 PMCID: PMC10854932 DOI: 10.3390/cancers16030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Iron (Fe) and copper (Cu), essential transition metals, play pivotal roles in various cellular processes critical to cancer biology, including cell proliferation, mitochondrial respiration, distant metastases, and oxidative stress. The emergence of ferroptosis and cuproptosis as distinct forms of non-apoptotic cell death has heightened their significance, particularly in connection with these metal ions. While initially studied separately, recent evidence underscores the interdependence of ferroptosis and cuproptosis. Studies reveal a link between mitochondrial copper accumulation and ferroptosis induction. This interconnected relationship presents a promising strategy, especially for addressing refractory cancers marked by drug tolerance. Harnessing the toxicity of iron and copper in clinical settings becomes crucial. Simultaneous targeting of ferroptosis and cuproptosis, exemplified by the combination of sorafenib and elesclomol-Cu, represents an intriguing approach. Strategies targeting mitochondria further enhance the precision of these approaches, providing hope for improving treatment outcomes of drug-resistant cancers. Moreover, the combination of iron chelators and copper-lowering agents with established therapeutic modalities exhibits a synergy that holds promise for the augmentation of anti-tumor efficacy in various malignancies. This review elaborates on the complex interplay between ferroptosis and cuproptosis, including their underlying mechanisms, and explores their potential as druggable targets in both cancer research and clinical settings.
Collapse
Affiliation(s)
- Jinjiang Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Jiaxi Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jiao Liu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kit-Ying Chan
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Ho-Sze Lee
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Kenneth Nansheng Lin
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| | - Tat-San Lau
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong; (J.W.); (K.N.L.); (C.-C.W.)
| |
Collapse
|
18
|
SUN J, ZHANG H, LIU H, DONG Y, WANG P. [Construction of Lung Adenocarcinoma Prognosis Model and Drug Sensitivity Analysis Based on Cuproptosis Related Genes]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:591-604. [PMID: 37752539 PMCID: PMC10558763 DOI: 10.3779/j.issn.1009-3419.2023.102.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Lung cancer is one of the most common malignant tumors in the world, and the current lung cancer screening and treatment strategies are constantly improving, but its 5-year survival rate is still very low, which seriously endangers human health. Therefore, it is critical to explore new biomarkers to provide personalized treatment and improve the prognosis. Cuproptosis is a newly discovered type of cell death, which is due to the accumulation of excess copper ions in the cell, eventually leading to cell death, which has been suggested by studies to be closely related to the occurrence and development of lung adenocarcinoma (LUAD). Based on The Cancer Genome Atlas (TCGA) database, this study explored the association between cuproptosis-related genes (CRGs) and LUAD prognosis, established a prognostic risk model, and analyzed the interaction between CRGs and LUAD immune cell infiltration. METHODS The RNA-seq data of LUAD tissue and paracancerous or normal lung tissue were downloaded from the TCGA database; the RNA-seq data of normal lung tissue was downloaded from the Genotype-tissue Expression (GTEx) database, and the data of 462 lung adenocarcinoma cases were downloaded from the Gene Expression Omnibus repository (GEO) as verification. T the risk score model to assess prognosis was constructed by univariate Cox and Lasso-Cox regression analysis, and the predictive ability of the model was evaluated by receiver operating characteristic (ROC) curve and calibration curve. Immune-related and drug susceptibility analysis was further performed on high- and low-risk groups. RESULTS A total of 1656 CRGs and 1356 differentially expressed CRGs were obtained, and 13 CRGs were screened out based on univariate Cox and Lasso-Cox regression analysis to construct a prognostic risk model, and the area under the curves (AUCs) of ROC curves 1-, 3- and 5- year were 0.749, 0.740 and 0.689, respectively. Further study of immune-related functions and immune checkpoint differential analysis between high- and low-risk groups was done. High-risk groups were more sensitive to drugs such as Savolitinib, Palbociclib, and Cytarabine and were more likely to benefit from immunotherapy. CONCLUSIONS The risk model constructed based on 13 CRGs has good prognostic value, which can assist LUAD patients in individualized treatment, and provides an important theoretical basis for the treatment and prognosis of LUAD.
Collapse
|
19
|
Sun D, Zhang H, Zhang C. Development of a novel copper metabolism-related risk model to predict prognosis and tumor microenvironment of patients with stomach adenocarcinoma. Front Pharmacol 2023; 14:1185418. [PMID: 37284310 PMCID: PMC10241246 DOI: 10.3389/fphar.2023.1185418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Stomach adenocarcinoma (STAD) is the fourth highest cause of cancer mortality worldwide. Alterations in copper metabolism are closely linked to cancer genesis and progression. We aim to identify the prognostic value of copper metabolism-related genes (CMRGs) in STAD and the characteristic of the tumor immune microenvironment (TIME) of the CMRG risk model. Methods: CMRGs were investigated in the STAD cohort from The Cancer Genome Atlas (TCGA) database. Then, the hub CMRGs were screened out with LASSO Cox regression, followed by the establishment of a risk model and validated by GSE84437 from the Expression Omnibus (GEO) database. The hub CMRGs were then utilized to create a nomogram. TMB (tumor mutation burden) and immune cell infiltration were investigated. To validate CMRGs in immunotherapy response prediction, immunophenoscore (IPS) and IMvigor210 cohort were employed. Finally, data from single-cell RNA sequencing (scRNA-seq) was utilized to depict the properties of the hub CMRGs. Results: There were 75 differentially expressed CMRGs identified, 6 of which were linked with OS. 5 hub CMRGs were selected by LASSO regression, followed by construction of the CMRG risk model. High-risk patients had a shorter life expectancy than those low-risk. The risk score independently predicted STAD survival through univariate and multivariate Cox regression analyses, with ROC calculation generating the highest results. This risk model was linked to immunocyte infiltration and showed a good prediction performance for STAD patients' survival. Furthermore, the high-risk group had lower TMB and somatic mutation counters and higher TIDE scores, but the low-risk group had greater IPS-PD-1 and IPS-CTLA4 immunotherapy prediction, indicating a higher immune checkpoint inhibitors (ICIs) response, which was corroborated by the IMvigor210 cohort. Furthermore, those with low and high risk showed differential susceptibility to anticancer drugs. Based on CMRGs, two subclusters were identified. Cluster 2 patients had superior clinical results. Finally, the copper metabolism-related TIME of STAD was concentrated in endothelium, fibroblasts, and macrophages. Conclusion: CMRG is a promising biomarker of prognosis for patients with STAD and can be used as a guide for immunotherapy.
Collapse
Affiliation(s)
- Dongjie Sun
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chi Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Chen YT, Xu XH, Lin L, Tian S, Wu GF. Identification of Three Cuproptosis-specific Expressed Genes as Diagnostic Biomarkers and Therapeutic Targets for Atherosclerosis. Int J Med Sci 2023; 20:836-848. [PMID: 37324184 PMCID: PMC10266043 DOI: 10.7150/ijms.83009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease characterized by a lipid-driven infiltration of inflammatory cells in large and medium arteries and is considered to be a major underlying cause of cardiovascular diseases. Cuproptosis, a novel form of cell death, is highly linked to mitochondrial metabolism and mediated by protein lipoylation. However, the clinical implication of cuproptosis-related genes (CRGs) in atherosclerosis remains unclear. In this study, genes collected from the GEO database intersected with CRGs were identified in atherosclerosis. GSEA, GO and KEGG pathway enrichment analyses were performed for functional annotation. Through the random forest algorithm and the construction of a protein-protein interaction (PPI) network, eight selected genes (LOXL2, SLC31A1, ATP7A, SLC31A2, COA6, UBE2D1, CP and SOD1) and a vital cuproptosis-related gene FDX1 were then further validated. Two independent datasets (GSE28829 (N = 29), GSE100927 (N = 104)) were collected to construct the signature of CRGs for validation in atherosclerosis. Consistently, the atherosclerosis plaques showed significantly higher expression of SLC31A1, SLC31A2 and lower expression of SOD1 than the normal intimae. The area under the curve (AUC) of SLC31A1, SLC31A2 and SOD1 performed well for the diagnostic validation in the two datasets. In conclusion, the cuproptosis-related gene signature could serve as a potential diagnostic biomarker for atherosclerosis and may offer novel insights into the treatment of cardiovascular diseases. Based on the hub genes, a competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA and a transcription factor regulation network were ultimately constructed to explore the possible regulatory mechanism in atherosclerosis.
Collapse
Affiliation(s)
- Yong-Tong Chen
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong 518033, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong 510080, China
| | - Xuan-Hao Xu
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong 518033, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong 510080, China
| | - Ling Lin
- Department of Radiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Shuai Tian
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong 518033, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong 510080, China
| | - Gui-Fu Wu
- Department of Cardiology, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, China
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, Guangdong 518033, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong 510080, China
| |
Collapse
|
21
|
Kong FS, Ren CY, Jia R, Zhou Y, Chen JH, Ma Y. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med Genomics 2023; 16:61. [PMID: 36973786 PMCID: PMC10041742 DOI: 10.1186/s12920-023-01489-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Solute Carrier Family 31 Member 1 (SLC31A1) has recently been identified as a cuproptosis-regulatory gene. Recent studies have indicated that SLC31A1 may play a role in colorectal and lung cancer tumorigenesis. However, the role of SLC31A1 and its cuproptosis-regulatory functions in multiple tumor types remains to be further elucidated. METHODS Online websites and datasets such as HPA, TIMER2, GEPIA, OncoVar, and cProSite were used to extract data on SLC31A1 in multiple cancers. DAVID and BioGRID were used to conduct functional analysis and construct the protein-protein interaction (PPI) network, respectively. The protein expression data of SLC31A1 was obtained from the cProSite database. RESULTS The Cancer Genome Atlas (TCGA) datasets showed increased SLC31A1 expression in tumor tissues compared with non-tumor tissues in most tumor types. In patients with tumor types including adrenocortical carcinoma, low-grade glioma, or mesothelioma, higher SLC31A1 expression was associated with shorter overall survival and disease-free survival. S105Y was the most prevalent point mutation in SLC31A1 in TCGA pan-cancer datasets. Moreover, SLC31A1 expression was positively correlated with the infiltration of immune cells such as macrophages and neutrophils in tumor tissues in several tumor types. Functional enrichment analysis showed that SLC31A1 co-expressed genes were involved in protein binding, integral components of the membrane, metabolic pathways, protein processing, and endoplasmic reticulum. Copper Chaperone For Superoxide Dismutase, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha and Solute Carrier Family 31 Member 2 were copper homeostasis-regulated genes shown in the PPI network, and their expression was positively correlated with SLC31A1. Analysis showed there was a correlation between SLC31A1 protein and mRNA in various tumors. CONCLUSIONS These findings demonstrated that SLC31A1 is associated with multiple tumor types and disease prognosis. SLC31A1 may be a potential key biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruofan Jia
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
22
|
Zhao S, Zhang X, Gao F, Chi H, Zhang J, Xia Z, Cheng C, Liu J. Identification of copper metabolism-related subtypes and establishment of the prognostic model in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1145797. [PMID: 36950684 PMCID: PMC10025496 DOI: 10.3389/fendo.2023.1145797] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common and most malignant gynecological malignancies in gynecology. On the other hand, dysregulation of copper metabolism (CM) is closely associated with tumourigenesis and progression. Here, we investigated the impact of genes associated with copper metabolism (CMRGs) on the prognosis of OC, discovered various CM clusters, and built a risk model to evaluate patient prognosis, immunological features, and therapy response. METHODS 15 CMRGs affecting the prognosis of OC patients were identified in The Cancer Genome Atlas (TCGA). Consensus Clustering was used to identify two CM clusters. lasso-cox methods were used to establish the copper metabolism-related gene prognostic signature (CMRGPS) based on differentially expressed genes in the two clusters. The GSE63885 cohort was used as an external validation cohort. Expression of CM risk score-associated genes was verified by single-cell sequencing and quantitative real-time PCR (qRT-PCR). Nomograms were used to visually depict the clinical value of CMRGPS. Differences in clinical traits, immune cell infiltration, and tumor mutational load (TMB) between risk groups were also extensively examined. Tumour Immune Dysfunction and Rejection (TIDE) and Immune Phenotype Score (IPS) were used to validate whether CMRGPS could predict response to immunotherapy in OC patients. RESULTS In the TCGA and GSE63885 cohorts, we identified two CM clusters that differed significantly in terms of overall survival (OS) and tumor microenvironment. We then created a CMRGPS containing 11 genes to predict overall survival and confirmed its reliable predictive power for OC patients. The expression of CM risk score-related genes was validated by qRT-PCR. Patients with OC were divided into low-risk (LR) and high-risk (HR) groups based on the median CM risk score, with better survival in the LR group. The 5-year AUC value reached 0.74. Enrichment analysis showed that the LR group was associated with tumor immune-related pathways. The results of TIDE and IPS showed a better response to immunotherapy in the LR group. CONCLUSION Our study, therefore, provides a valuable tool to further guide clinical management and tailor the treatment of patients with OC, offering new insights into individualized treatment.
Collapse
Affiliation(s)
- Songyun Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xin Zhang
- Department of Pathology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Feng Gao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chi
- Southwest Medical University, Luzhou, China
| | | | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Wang Y, Wang S, Wang H, Yang J, Zhou H. Identification and Biological Validation of a Chemokine/Chemokine Receptor-Based Risk Model for Predicting Immunotherapeutic Response and Prognosis in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043317. [PMID: 36834729 PMCID: PMC9963044 DOI: 10.3390/ijms24043317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Over 80% of head and neck squamous cell carcinoma (HNSCC) patients failed to respond to immunotherapy, which can likely be attributed to the tumor microenvironment (TME) remolding mediated by chemokines/chemokine receptors (C/CR). This study aimed to establish a C/CR-based risk model for better immunotherapeutic responses and prognosis. After assessing the characteristic patterns of the C/CR cluster from the TCGA-HNSCC cohort, a six-gene C/CR-based risk model was developed to stratify patients by LASSO Cox analysis. The screened genes were multidimensionally validated by RT-qPCR, scRNA-seq, and protein data. A total of 30.4% of patients in the low-risk group had better responses to anti-PD-L1 immunotherapy. A Kaplan-Meier analysis showed that patients in the low-risk group had longer overall survival. A time-dependent receiver operating characteristic curve and Cox analyses indicated that risk score served as an independent predictive indicator. The robustness of the immunotherapy response and prognosis prediction was also validated in independent external datasets. Additionally, the TME landscape revealed that the low-risk group was immune activated. Furthermore, the cell communication analysis on the scRNA-seq dataset revealed that cancer-associated fibroblasts were the main communicators within the C/CR ligand-receptor network of TME. Collectively, The C/CR-based risk model simultaneously predicted immunotherapeutic response and prognosis, potentially optimizing personalized therapeutic strategies of HNSCC.
Collapse
|