1
|
Schwarz T, Ptok J, Damagnez M, Menne C, Alizei ES, Lang-Meli J, Maas M, Habermann D, Hoffmann D, Schulze Zur Wiesch J, Lauer GM, Kefalakes H, Cornberg M, Kraft ARM, Gliga S, Bock HH, Horn PA, Maini MK, Thimme R, Wedemeyer H, Nattermann J, Heinemann FM, Luedde T, Neumann-Haefelin C, Walker A, Timm J. HBV shows different levels of adaptation to HLA class I-associated selection pressure correlating with markers of replication. J Hepatol 2025; 82:805-815. [PMID: 39536821 DOI: 10.1016/j.jhep.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Immune responses by CD8 T cells are essential for control of HBV replication. Although selection of escape mutations in CD8 T-cell epitopes has previously been described in HBV infection, its overall influence on HBV sequence diversity and correlation with markers of HBV replication remain unclear. METHODS Whole-genome sequencing was applied to HBV isolates from 532 patients with chronic HBV infection and high-resolution HLA class I genotyping. Using a Bayesian model (HAMdetector) for identification of HLA-associated mutational states (HAMs), the frequency and location of residues under CD8 T-cell selection pressure were determined and the levels of adaptation of individual isolates were quantified. RESULTS Using previously published thresholds for the identification of HAMs, a total of 295 residues showed evidence of CD8 T-cell escape, the majority of which were located in previously unidentified epitopes. Interestingly, HAMs were highly enriched in the HBV core protein compared to all other proteins. When individual HBV isolates were compared, different levels of adaptation to HLA class I immune pressure were noted. The level of adaptation increased with patient age and correlated with markers of replication, with low levels of adaptation in HBeAg-positive infection. Furthermore, the levels of adaptation negatively correlated with HBV viral load and HBsAg levels, consistent with high levels of HLA class I-associated selection pressure in patients with low replication levels. CONCLUSIONS HBV sequence diversity is shaped by HLA class I-associated selection pressure with the HBV core protein being a predominant target of selection. Importantly, different levels of adaptation to immune pressure were observed between HBV infection stages, which need to be considered in the context of T-cell-based therapies. IMPACT AND IMPLICATIONS The immune response mediated by CD8 T cells plays a critical role in controlling HBV infection and shows promise for therapeutic strategies aimed at achieving a functional cure. This study demonstrates that mutational escape within CD8 T-cell epitopes is common in HBV and represents a key factor in the failure of immune control. Notably, the HBV core protein emerges as the primary target of CD8 T-cell selection pressure. Additionally, the observed correlation between HBV adaptation levels and viral replication markers indicates that CD8 T-cell immunity may influence transitions between phases of chronic HBV infection.
Collapse
Affiliation(s)
- Tatjana Schwarz
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Ptok
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Maximilian Damagnez
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Christopher Menne
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Elahe Salimi Alizei
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Lang-Meli
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michelle Maas
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Habermann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Smaranda Gliga
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Hans H Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Robert Thimme
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Andreas Walker
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, University of Düsseldorf, Faculty of Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Baig S, Berikkara A, Khalid R, Subhan SA, Abbas T, Abidi SH. In silico analysis of the effect of HCV genotype-specific polymorphisms in Core, NS3, NS5A, and NS5B proteins on T-cell epitope processing and presentation. Front Microbiol 2025; 15:1498069. [PMID: 39881992 PMCID: PMC11774985 DOI: 10.3389/fmicb.2024.1498069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 01/31/2025] Open
Abstract
Background HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several in silico methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions. Methods For this study, 8,942, 17,700, 14,645, and 3,277 HCV Core, NS3, NS5A, and NS5B sequences, respectively, from eight genotypes and 21 subtypes were retrieved from the Los Alamos HCV Database. Next, the NetCTL tool was employed to predict Cytotoxic T Lymphocyte (CTL) epitopes based on combined proteasomal cleavage, TAP efficacy, and HLA class I receptor binding scores. PEP-FOLD was used to model selected epitopes, followed by peptide-HLA docking using HPEPDOCK. Finally, molecular dynamics simulations were conducted for 200 ns using Desmond software to analyze differences in HLA-epitope (from different HCV genotypes) interaction kinetics and dynamics. Results A total of 3,410, 8,054, 6,532, and 14,015 CTL epitopes were observed in the HCV Core, NS3, NS5A, and NS5B sequences, respectively. Significant genotype/subtype-specific variations in CTL values and docking scores were observed among NS3, NS5A, and NS5B proteins. In silico results reveal that epitopes from genotype 6b (NS3), 6d/r (NS5B), 6o and 6 k (NS5A) exhibit higher immunogenicity than other genotypes, forming more energetically stable complexes with host receptors. These epitopes, compared to those from the same positions but different genotypes, showed binding energies of -144.24 kcal/mol, -85.30 kcal/mol, and - 43 kcal/mol, respectively. Over a 200 ns MD simulation, GT 6b and 6d/r epitopes displayed up to a 40% stronger binding energy with the HLA receptor. These findings suggest that patients infected with GT 6 may experience enhanced T cell responsiveness and broader immunogenicity. Conclusion Our study suggests that genotype/subtype-specific polymorphism in HCV may result in altered immune responses by modulating T-cell epitope processing and interaction with HLA receptors. Further experimental studies can be performed to confirm the effect of genotype/subtype-specific polymorphisms on T cell-mediated immune response.
Collapse
Affiliation(s)
- Samina Baig
- Department of Microbiology, University of Karachi, Karachi, Pakistan
- Dow Institute of Medical Technology, Dow University of Health Sciences, Karachi, Pakistan
| | - Assel Berikkara
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Ramsha Khalid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Syed A. Subhan
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Tanveer Abbas
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
3
|
Khan MN, Mao B, Hu J, Shi M, Wang S, Rehman AU, Li X. Tumor-associated macrophages and CD8+ T cells: dual players in the pathogenesis of HBV-related HCC. Front Immunol 2024; 15:1472430. [PMID: 39450177 PMCID: PMC11499146 DOI: 10.3389/fimmu.2024.1472430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Collapse
Affiliation(s)
- Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| | - Binli Mao
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Hu
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, Sichuan, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Adeel Ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing, China
| |
Collapse
|
4
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
5
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Targeting virus-specific CD8+ T cells for treatment of chronic viral hepatitis: from bench to bedside. Expert Opin Biol Ther 2024; 24:77-89. [PMID: 38290716 DOI: 10.1080/14712598.2024.2313112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION More than 350 million people worldwide live with chronic viral hepatitis and are thus at risk for severe complications like liver cirrhosis and hepatocellular carcinoma (HCC). To meet the goals of the World Health Organization (WHO) global hepatitis strategy, there is an urgent need for new immunotherapeutic approaches. These are particularly required for chronic hepatitis B virus infection and - B/D coinfection. AREAS COVERED This review summarizes data on mechanisms of CD8+ T cells failure in chronic hepatitis B, D, C and E virus infection. The relative contribution of the different concepts (viral escape, CD8+ T cell exhaustion, defective priming) will be discussed. On this basis, examples for future therapeutic approaches targeting virus-specific CD8+ T cells for the individual hepatitis viruses will be discussed. EXPERT OPINION Immunotherapeutic approaches targeting virus-specific CD8+ T cells have the potential to change clinical practice, especially in chronic hepatitis B virus infection. Further clinical development, however, requires a more detailed understanding of T cell immunology in chronic viral hepatitis. Some important conceptual questions remain to be addressed, e.g. regarding heterogeneity of exhausted virus-specific CD8+ T cells.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
- IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|